Subvalent Compounds

Concomitant Carboxylate and Oxalate Formation From the Activation of CO_{2} by a Thorium(III) Complex

Alasdair Formanuik, ${ }^{[a]}$ Fabrizio Ortu, ${ }^{[a]}$ Christopher J. Inman, ${ }^{[b]}$ Andrew Kerridge, ${ }^{[c]}$ Ludovic Castro, ${ }^{[d]}$ Laurent Maron, ${ }^{*[d]}$ and David P. Mills* ${ }^{[a]}$

Abstract

Improving our comprehension of diverse CO_{2} activation pathways is of vital importance for the widespread future utilization of this abundant greenhouse gas. CO_{2} activation by uranium(III) complexes is now relatively well understood, with oxo/carbonate formation predominating as CO_{2} is readily reduced to CO , but isolated thorium (III) CO_{2} activation is unprecedented. We show that the thorium(III) complex, $\left[\operatorname{Th}\left(\mathrm{Cp}^{\prime \prime}\right)_{3}\right] \quad\left(1, \quad \mathrm{Cp}^{\prime \prime}=\left\{\mathrm{C}_{5} \mathrm{H}_{3}\left(\mathrm{SiMe}_{3}\right)_{2}{ }^{-}\right.\right.$ $1,3\}$), reacts with CO_{2} to give the mixed oxalate-carboxylate thorium(IV) complex $\left[\left\{T h\left(\mathrm{Cp}^{\prime \prime}\right)_{2}\left[\mathrm{~K}^{2}-\mathrm{O}_{2} \mathrm{C}\left\{\mathrm{C}_{5} \mathrm{H}_{3}-3,3^{\prime}-\right.\right.\right.\right.$ (SiMe $\left.\left.\left.\left.)_{3}\right)_{2}\right\}\right]_{2}\left(\mu-\kappa^{2}: \kappa^{2}-\mathrm{C}_{2} \mathrm{O}_{4}\right)\right]$ (3). The concomitant formation of oxalate and carboxylate is unique for CO_{2} activation, as in previous examples either reduction or insertion is favored to yield a single product. Therefore, thorium(III) CO_{2} activation can differ from better understood uranium(III) chemistry.

There has been an international drive to reduce emissions of CO_{2} through cleaner energy generation since its identification as a key contributor to global warming. ${ }^{[1]}$ In tandem the employment of CO_{2} as a C_{1} feedstock for fine chemical (by direct insertion into organic molecules) ${ }^{[2]}$ and liquid fuel (via reduction to CO for Fischer-Tropsch processes) ${ }^{[3]}$ synthesis have rapidly expanded to complement the optimized photosynthetic pathways employed by nature. ${ }^{[4]}$ Early d-transition metal com-
[a] A. Formanuik, Dr. F. Ortu, Dr. D. P. Mills
School of Chemistry, The University of Manchester
Manchester, M13 9PL (UK)
E-mail: david.mills@manchester.ac.uk
[b] C. J. Inman
Department of Chemistry and Biochemistry, School of Life Sciences University of Sussex, Brighton, BN1 9QL (UK)
[c] Dr. A. Kerridge
Department of Chemistry, Lancaster University, Lancaster, LA1 4YB (UK)
[d] Dr. L. Castro, Prof. L. Maron LPCNO, CNRA and INSA, Université Paul Sabatier, 135 Avenue de Rangeuil, Toulouse 31077 (France) E-mail: laurent.maron@irsamc.ups-tlse.fr
\square Supporting information for this article and authors' ORCIDs are available D on the WWW under http://dx.doi.org/10.1002/chem.201604622.
Of © 2016 The Authors. Published by Wiley-VCH Verlag GmbH \& Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
plexes have received most attention for CO_{2} activation as their inherent oxophilicity is advantageous in overcoming the considerable thermodynamic and kinetic barriers in this process. ${ }^{[5]}$ Similarly, actinides are highly oxophilic, so CO_{2} activation by UIII complexes is also developing rapidly ${ }^{[6]}$ and proof of concept catalytic processes have been disclosed. ${ }^{[7]}$ The mapping of $U^{1 I I}$ mediated CO_{2} activation by DFT calculations has provided key insights into possible mechanistic pathways. ${ }^{[8]}$ In contrast, Cloke reported the only example of CO_{2} activation by a putative $\mathrm{Th}^{\text {III }}$ intermediate ${ }^{[9]}$ as $\mathrm{Th}^{\text {III }}$ small molecule activation is in its infancy. ${ }^{[10,11]}$ Herein we report the first reaction of an isolated $\mathrm{Th}^{\text {III }}$ complex with CO_{2}, and CS_{2} for comparative studies.
$\left[\mathrm{Th}\left(\mathrm{Cp}^{\prime \prime}\right)_{3}\right]\left(1, \mathrm{Cp}^{\prime \prime}=\left\{\mathrm{C}_{5} \mathrm{H}_{3}\left(\mathrm{SiMe}_{3}\right)_{2}-1,3\right\}\right)$ reacts with 0.5 to 10 equivalents of CS_{2} to give $\left[\left\{\operatorname{Th}\left(\mathrm{Cp}^{\prime \prime}{ }_{3}\right)\right\}_{2}\left(\mu-\kappa^{1}: \kappa^{2}-\mathrm{CS}_{2}\right)\right]$ (2) as the only isolable product in 45% yield (Scheme 1; see the Supporting Information for full details). This reaction is consistent with

Scheme 1. Synthesis of 2 and 3 from 1.
$U^{\prime \prime \prime}$ chemistry as the double reduction of CS_{2} by $\left[\mathrm{U}\left(\mathrm{Cp}^{\prime}\right)_{3}\right]\left(\mathrm{Cp}^{\prime}=\right.$ $\left.\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{SiMe}_{3}\right)$ yields $\left[\left\{\mathrm{U}\left(\mathrm{Cp}^{\prime}{ }_{3}\right)\right\}_{2}\left(\mu-\kappa^{1}: \kappa^{2}-\mathrm{CS}_{2}\right)\right]$. ${ }^{[12]}$ However, 1 reacts with excess CO_{2} to give $\left[\left\{T h\left(\mathrm{Cp}^{\prime \prime}\right)_{2}\left[\eta^{2}-\mathrm{O}_{2} \mathrm{C}\left\{\mathrm{C}_{5} \mathrm{H}_{3}-3,3^{\prime}-\right.\right.\right.\right.$ $\left.\left.\left.\left(\mathrm{SiMe}_{3}\right)_{2}\right]\right]_{2}\left(\mu-\mathrm{k}^{2}: \mathrm{K}^{2}-\mathrm{C}_{2} \mathrm{O}_{4}\right)\right]$ (3) in 65% yield (Scheme 1), in contrast to the $\mathrm{U}^{\mathrm{II} \mathrm{\prime}}$ reduction of CO_{2} by $\left[\mathrm{U}\left(\mathrm{Cp}^{\prime}\right)_{3}\right]$ to afford $\left[\left\{U\left(C p^{\prime}\right)_{3}\right\}_{2}(\mu-O)\right]$ and $C O .{ }^{[13]}$ The FTIR spectrum of 3 has absorptions at $1653 \mathrm{~cm}^{-1}$ and $1560 \mathrm{~cm}^{-1}$ that can be attributed to asymmetric $\mathrm{C}-\mathrm{O}$ stretches of the oxalate and carboxylate groups respectively ${ }^{[14]}$ The reaction of 2 with CO_{2} gave a mixture of products including carboxylate (see the Supporting Information).

Figure 1. Molecular structure of a) 2 and b) $3.2 \mathrm{C}_{7} \mathrm{H}_{8}$ with selected atom labelling and displacement ellipsoids set to 30% probability level. Hydrogen atoms, minor disorder components and lattice solvent omitted for clarity.

The solid state structures of 2 and $3 \cdot 2 \mathrm{C}_{7} \mathrm{H}_{8}$ were determined by single crystal XRD (Figure 1. A polymorph $\mathbf{2 b} \cdot 2 \mathrm{C}_{6} \mathrm{H}_{14}$ was also obtained; see the Supporting Information). The $\left(\mu-\mathrm{CS}_{2}\right)^{2-}$ unit in $\mathbf{2}$ was disordered over two positions so only the major component is discussed here. This fragment binds in an asymmetrical $\mu-\kappa^{1}: \kappa^{2}$-fashion [S-C: $1.644(11)$ and $1.717(10) \AA$; S-C-S: $\left.124.4(7)^{\circ}\right]$, in common with the motif seen for $\left[\left\{U\left(\mathrm{Cp}_{3}^{\prime}\right)\right\}_{2}(\mu-\right.$ $\left.\left.\left.\kappa^{1}: \kappa^{2}-C S_{2}\right)\right][S-C: 1.464(19) \text { and } 1.831(19) \AA \AA ; \text { S-C-S: 131.7(13) })^{\circ}\right]^{[12]}$ and similar to that seen for $\left[\left\{U\left[O S i(O t B u)_{3}\right]_{3}\right\}_{2}\left(\mu-\kappa^{2}: \kappa^{2}-\mathrm{CS}_{2}\right)\right][\mathrm{S}-\mathrm{C}:$ $1.594(12)$ and $1.748(11) \AA$; S-C-S: 131.6(8) ${ }^{\circ}$. ${ }^{[15]}$ The oxalate of 3 has similar metrical parameters to those seen in $\left[\left\{T h\left(\mathrm{COT}^{\mathrm{TIPS} 2}\right)\left(\mathrm{Cp}^{*}\right)\right\}_{2}\left(\mu-\mathrm{K}^{2}: \kappa^{2}-\mathrm{C}_{2} \mathrm{O}_{4}\right)\right] .{ }^{[9]}$ The carboxylate ligand exhibits both $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}=\mathrm{C}$ lengths in the C_{5} ring and a geminal $3,3^{\prime}$-disilane. The $\mathrm{C}-\mathrm{O}_{\text {carboxylate }}[1.284(5)$ and $1.263(5) \AA$ Å] lengths evidence delocalization about the carboxylate framework, although the binding is asymmetric due to sterics [Th- $\mathrm{O}_{\text {carboxylate }}$ 2.400 (3) and 2.484(2) \AA]. The electronic structures of 2 and 3 were characterized at the DFT level, employing the B3LYP ex-change-correlation functional and a polarized split-valence basis set for structural optimizations. Structural parameters of 3 were in good agreement with experiment (see the Supporting Information for full details).
We postulated that $\mathbf{3}$ forms via a $\left[\left\{T h\left(\mathrm{Cp}^{\prime \prime}\right)_{3}\right\}_{2}\left(\mu-\mathrm{CO}_{2}\right)\right]$ intermediate that is analogous to $\mathbf{2}$. The bulky $\mathrm{Cp}^{\prime \prime}$ ligands hinder the elimination of CO and the formation of $\left[\left\{T h\left(\mathrm{Cp}^{\prime \prime}\right)_{3}\right\}_{2}(\mu-\right.$ O)] ${ }^{[16]}$ so a second molecule of CO_{2} reacts with the $\left(\mu-\mathrm{CO}_{2}\right)^{2-}$ fragment to give an oxalate. There are many examples of sterically demanding ligands promoting oxalate formation over a μ-oxo or carbonate in f-block CO_{2} activation. ${ }^{[8,17]}$ Subsequent
insertion of CO_{2} into a $\mathrm{Th}-\mathrm{Cp}^{\prime \prime}$ moiety and silyl/proton migration yields 3. The insertion of CO_{2} into lanthanide- Cp^{R} bonds to form carboxylates has been postulated not to require steric strain to proceed. ${ }^{[18]}$ Additional experiments were performed to probe the mechanism of formation of $\mathbf{3}$ (see the Supporting Information for full details). A Toepler pump was used to react 1 with 1 or 2 equivalents of CO_{2} or ${ }^{13} \mathrm{CO}_{2}$ at $-78^{\circ} \mathrm{C}$, and $3 / 3-$ ${ }^{13} \mathrm{C}$ was the only identifiable product by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ spectroscopy in all cases. The reaction of 1 with supercritical CO_{2} was monitored by ${ }^{1} \mathrm{H}$ NMR spectroscopy, and comparison with an authentic sample showed the formation of 3 . Minor products in all reaction mixtures could not be identified. In situ FTIR spectroscopy was used to monitor the conversion of 1 to 3 at $-78^{\circ} \mathrm{C}$ in methylcyclohexane with stoichiometric CO_{2}. No intermediates could be detected but the $\mathrm{CO}_{2(g)}$ absorption at $2338 \mathrm{~cm}^{-1}$ diminished on slow warming to room temperature, coincident with the ingress of an oxalate absorption at $1653 \mathrm{~cm}^{-1}$ that is seen in the FTIR spectrum of crystalline 3. The experiment was repeated with ${ }^{13} \mathrm{CO}_{2}$ and the oxalate absorbance of $3-{ }^{13} \mathrm{C}$ was observed at $1609 \mathrm{~cm}^{-1}$, consistent with reduced mass considerations.
Given that no intermediates could be detected experimentally, we performed DFT studies to rationalize this unusual mechanism. Figure 2 shows the calculated enthalpy reaction profile for the formation of 3 , with the double reduction of CO_{2} to give a $\mu-\kappa^{1}: \kappa^{2}-\mathrm{CO}_{2}$ dinuclear $\mathrm{Th}^{\text {IV }}$ complex the proposed first step based on the analogous CS_{2} reaction as well as CO_{2} reactivity reported with other actinide complexes. ${ }^{[8,12,15,17]}$ The oxalate formation invokes nucleophilic attack of a CO_{2} molecule by a dimetalloxycarbene intermediate $\left[\left\{T h\left(\mathrm{Cp}^{\prime \prime}{ }_{3}\right)\right\}_{2}\left(\mu-\kappa^{1}: \kappa^{1}-\right.\right.$ CO_{2})] (C2) in a carbenic fashion, which has previously only been seen in d-block CO_{2} activation for $\mathrm{Ti}^{\mathrm{iv}}{ }^{[19]}$ No pre-interaction is required between the $\mathrm{Th}^{\mathrm{IV}}$ centers and the second CO_{2} molecule, which is in contrast with all previous examples of $\mathrm{Sm}^{\|[17 \mathrm{az}-\mathrm{c}]}$ and $\mathrm{U}^{1 \|[17 \mathrm{~d}]}$ oxalate formation. The resultant cis- $\mu-\kappa^{1}: \kappa^{1}-$ $\mathrm{C}_{2} \mathrm{O}_{4}$ transition state (TS1) is one of several possible conformers that have $\Delta_{\mathrm{r}} H^{\circ}$ values within the estimated error of the calculation (ca. $3 \mathrm{kcal} \mathrm{mol}^{-1}$) of each other, thus we do not comment on this further. Rearrangement of the oxalate to a trans- μ $\kappa^{1}: \kappa^{1}$-binding mode increases the steric demands about the $\mathrm{Th}^{1 /}$ centers (C3). The potential energy surface for these rearrangements is very flat and despite our efforts it was not possible to locate a transition state. This leads to insertion of CO_{2} at a single position of a $\mathrm{Th}-\mathrm{Cp}^{\prime \prime}$ moiety at each $\mathrm{Th}^{\mathrm{IV}}$ center (TS2) as the silicon centers stabilize negative charge at the beta position, allowing the best overlap with the empty orbital of CO_{2}. These insertions are accompanied by the rearrangement of the oxalate to a $\mu-\kappa^{2}: \kappa^{2}$-binding mode. Subsequent proton and silyl group migrations in the dearomatized $\mathrm{Cp}^{\prime \prime}$ rings give the observed product 3 at an energetic minimum.

To conclude we have shown that although CS_{2} activation by $\left[\mathrm{Th}\left(\mathrm{Cp}^{\prime \prime}\right)_{3}\right]$ is analogous to that seen for a similar $\mathrm{U}^{\prime \prime \prime}$ system, the mechanism by which it reacts with CO_{2} to form a mixed oxalate/carboxylate product has no precedent in U'II chemistry, in which CO_{2} reduction (and subsequent carbonate formation depending on the supporting ligands) predominates. We probed this reaction to show that the oxalate is generated by

Figure 2. Computed enthalpy reaction profile for the formation of 3.
a mechanism only seen previously in d-block chemistry, whereas the carboxylate forms via a route only seen before in f-element chemistry for lanthanide complexes. This shows that Th ${ }^{\text {III }}$ small molecule activation can furnish results that complement and contrast with uranium, lanthanide and d-transition metals. Future studies will target heteroallene activation by $\mathrm{Th}^{\text {III }}$ complexes supported by different ligand systems to test the generality or divergence of these processes.

Experimental Section

Full synthetic details, characterization data and computational data for 2 and $\mathbf{3}$ is available in the Supporting Information. Additional research data supporting this publication are available from The University of Manchester eScholar repository at DOI: 10.15127/ 1.302780.

Acknowledgements

This work was supported by the EPSRC (grant numbers EP/ L014416/1, EP/M023885/1 and EP/J002208/2), the Nuclear FiRST DTC and the University of Manchester. L.M. thanks the Humboldt Foundation and the Chinese Academy of Sciences for experienced researcher grants as well as CalMip for computing time. The authors thank Prof. F. G. N. Cloke and Dr N. Tsoureas (University of Sussex) for helpful discussions, advice and access to equipment for mechanistic studies.

Keywords: actinides • reduction • small molecule activation • subvalent compounds • thorium
[1] P. Falkowski, R. J. Scholes, E. Boyle, J. Canadell, D. Canfield, J. Elser, N. Gruber, K. Hibbard, P. Hogberg, S. Linder, F. T. Mackenzie, B. Moore III, T. Pedersen, Y. Rosenthal, S. Seitzinger, V. Smetacek, W. Steffen, Science 2000, 290, 291-296.
[2] a) T. Sakakura, J.-C. Choi, H. Yasuda, Chem. Rev. 2007, 107, 2365-2387; b) Q. Liu, L. Wu, R. Jackstell, M. Beller, Nat. Commun. 2015, 6, 5933.
[3] N. M. West, A. J. Miller, J. A. Labinger, J. E. Bercaw, Coord. Chem. Rev. 2001, 255, 881-898.
[4] a) M. M. Halmann, Chemical Fixation of Carbon Dioxide: Methods for Recycling CO_{2} into Useful Products, CRC, Boca Raton, 1993; b) M. Aresta, Carbon Dioxide as a Chemical Feedstock, Wiley-VCH, Weinheim, 2010.
[5] a) W. B. Tolman, Activation of Small Molecules: Organometallic and Bioinorganic Perspectives, Wiley-VCH, Weinheim, 2006; b) A. Paparo, J. Okuda, Coord. Chem. Rev. 2016, doi: 10.1016/j.ccr.2016.06.005.
[6] a) S. T. Liddle, Angew. Chem. Int. Ed. 2015, 54, 8604-8641; Angew. Chem. 2015, 127, 8726-8764; b) H. S. La Pierre, K. Meyer, Prog. Inorg. Chem. 2014, 58, 303-416; c) B. M. Gardner, S. T. Liddle, Eur. J. Inorg. Chem. 2013, 3753-3770; d) O. P. Lam, K. Meyer, Polyhedron 2012, 31, 1-9; e) P. L. Arnold, Chem. Commun. 2011, 47, 9005-9010; f) O. T. Summerscales, F. G. N. Cloke, Struct. Bonding (Berlin) 2008, 127, 87-117; g) I. Castro-Rodríguez, K. Meyer, Chem. Commun. 2006, 1353-1368; h) W. J. Evans, S. A. Kozimor, Coord. Chem. Rev. 2006, 250, 911 -935; i) M. Ephritikhine, Dalton Trans. 2006, 2501-2516; j) I. Korobkov, S. Gambarotta, Prog. Inorg. Chem. 2005, 54, 321-348.
[7] a) D. P. Halter, F. W. Heinemann, J. Bachmann, K. Meyer, Nature 2016, 530, 317-321; b) E. Lu, S. T. Liddle, Dalton Trans. 2015, 44, 1292412941; c) B. M. Gardner, J. C. Stewart, A. L. Davis, J. McMaster, W. Lewis, A. J. Blake, S. T. Liddle, Proc. Natl. Acad. Sci. USA 2012, 109, 9265-9270; d) A.-C. Schmidt, A. V. Nizovtsev, A. Scheurer, F. W. Heinemann, K. Meyer, Chem. Commun. 2012, 48, 8634-8636; e) A. R. Fox, S. C. Bart, K. Meyer, C. C. Cummins, Nature 2008, 455, 341-349.
[8] a) L. Castro, O. P. Lam, S. C. Bart, K. Meyer, L. Maron, Organometallics 2010, 29, 5504-5510; b) O. P. Lam, L. Castro, B. Kosog, F. W. Heinemann, L. Maron, K. Meyer, Inorg. Chem. 2012, 51, 781 -783; c) L. Castro, L. Maron, Chem. Eur. J. 2012, 18, 6610-6615; d) W. Ding, W. Fang, Z. Chai, D. Wang, J. Chem. Theory Comput. 2012, 8, 3605-3617; e) W. Ding, D. Wang, Organometallics 2014, 33, 7007-7010; f) C. E. Kefalidis, L. Castro, L. Perrin, I. Del Rosal, L. Maron, Chem. Soc. Rev. 2016, 45, 2516-2543.
[9] Z. E. Button, J. A. Higgins, M. Suvova, F. G. N. Cloke, S. M. Roe, Dalton Trans. 2014, 43, 2588-2596.
[10] F. Ortu, A. Formanuik, J. R. Innes, D. P. Mills, Dalton Trans. 2016, 45, 7537-7549.
[11] A. Formanuik, F. Ortu, R. Beekmeyer, A. Kerridge, R. W. Adams, D. P. Mills, Dalton Trans. 2016, 45, 2390-2393.
[12] J. G. Brennan, R. A. Andersen, A. Zalkin, Inorg. Chem. 1986, 25, 17561760.
[13] J.-C. Berthet, J.-F. Le Maréchal, M. Nierlich, M. Lance, J. Vigner, M. Ephritikhine, J. Organomet. Chem. 1991, 408, 335-341.
[14] K. Nakamoto, Infrared and Raman Spectra of Inorganic and Co-ordination Compounds, 4th ed., Wiley, New York, 1986.
[15] V. Mougel, C. Camp, J. Pécaut, C. Copéret, L. Maron, C. E. Kefalidis, M. Mazzanti, Angew. Chem. Int. Ed. 2012, 51, 12280-12284; Angew. Chem. 2012, 124, 12446-12450.
[16] a) P. C. Blake, M. F. Lappert, R. G. Taylor, J. L. Atwood, H. Zhang, Inorg. Chim. Acta 1987, 139, 13-20; b) P. C. Blake, N. M. Edelstein, P. B. Hitchcock, W. K. Kot, M. F. Lappert, G. V. Shalimoff, S. Tian, J. Organomet. Chem. 2001, 636, 124-129.
[17] a) W. J. Evans, C. A. Seibel, J. W. Ziller, Inorg. Chem. 1998, 37, 770-776; b) W. J. Evans, J. M. Perotti, J. C. Brady, J. W. Ziller, J. Am. Chem. Soc. 2003, 125, 5204-5212; c) L. Castro, D. P. Mills, C. Jones, L. Maron, Eur. J.

Inorg. Chem. 2016, 6, 792 -796; d) N. Tsoureas, L. Castro, A. F. R. Kilpatrick, F. G. N. Cloke, L. Maron, Chem. Sci. 2014, 5, 3777-3788.
[18] a) W. J. Evans, D. B. Rego, J. W. Ziller, A. G. DiPasquale, A. L. Rheingold, Organometallics 2007, 26, 4737-4745; b) W. J. Evans, J. M. Perotti, S. A. Kozimor, T. M. Champagne, B. L. Davis, G. W. Nyce, C. H. Fujimoto, R. D. Clark, M. A. Johnston, J. W. Ziller, Organometallics 2005, 24, 3916-3931. [19] A. Paparo, J. S. Silvia, C. E. Kefalidis, T. P. Spaniol, L. Maron, J. Okuda, C. C. Cummins, Angew. Chem. Int. Ed. 2015, 54, 9115-9119; Angew. Chem. 2015, 127, 9243-9247.

Received: September 30, 2016
Published online on October 27, 2016

