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ABSTRACT

BioDrugScreen is a resource for ranking molecules
docked against a large number of targets in the
human proteome. Nearly 1600 molecules from the
freely available NCI diversity set were docked onto
1926 cavities identified on 1589 human targets
resulting in >3 million receptor-ligand complexes
requiring >200000 cpu-hours on the TeraGrid. The
targets in BioDrugScreen originated from Human
Cancer Protein Interaction Network, which we
have updated, as well as the Human Druggable
Proteome, which we have created for the purpose
of this effort. This makes the BioDrugScreen
resource highly valuable in drug discovery. The
receptor-ligand complexes within the database
can be ranked using standard and well-established
scoring functions like AutoDock, DockScore,
ChemScore, X-Score, GoldScore, DFIRE and PMF.
In addition, we have scored the complexes with
more intensive GBSA and PBSA approaches
requiring an additional 120000 cpu-hours on the
TeraGrid. We constructed a simple interface to
enable users to view top-ranking molecules and
access purchasing and other information for
further experimental exploration.

INTRODUCTION

Virtual screening of large chemical libraries has become a
widely used tool to search for small molecules that bind to
a receptor of interest (1). A number of success stories have
been reported in the literature (2—4). The process consists
of three steps: docking, scoring and ranking. Docking is
the series of computational procedures to predict the 3D

structure of a receptor-ligand complex. It consists of the
sampling of large number of conformations of the ligand
until the most energetically favorable complex is found
(5). This process is driven by sophisticated algorithms
such as simulated annealing and the genetic algorithm
(6). One of the first computer programs to implement
docking was DOCK, written by Irwin Kuntz and
coworkers (7) at the University of California San
Francisco. Subsequently other programs, such as
AutoDock, became widely used (8). Today there exists
a number of programs in addition to AutoDock, such
as Gold (9), FlexX (10), Glide (11) and others.

In virtual screening, each member of the chemical
database is docked onto the receptor, resulting in as
many receptor-ligand complexes as the number of
molecules contained in the chemical library. The challenge
next is to exploit this structural information to identify
active compounds. This is accomplished through the
computational prediction of the binding affinity of a
compound to the receptor in a step known as scoring.
A score is a number that approximates the free energy
of binding of a compound to its receptor. Hence, the
lower the score, the more potent is the compound.
A score is assigned to all members of the docked
complexes and is used to rank the docked molecules.
The top compounds can then be purchased or chemically
synthesized to be tested in the laboratory. While signifi-
cant inroads have been made with docking, scoring
remains challenging as evidenced by the large number of
scoring functions that have been developed over the years;
these include empirical (12-14), knowledge based (15-18)
or physics based (7,19-21).

Despite its usefulness, virtual screening remains out of
reach to a large number of scientists who could benefit
significantly from this technique. Molecules that emerge
from virtual screening could either serve as leads in drug
discovery or as molecular probes in chemical biology
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efforts. The main impediment to the wide use of virtual
screening is the computational expertise required to
perform the calculations as well as the significant
computational resources needed to perform the
calculations. To remedy this situation, we created a Web
portal known as BioDrugScreen where we have docked
1592 molecules to nearly 2000 cavities within 1589
targets of relevance to cancer and other diseases. The
docked molecules can be ranked with an array of nine
scoring functions. The cancer targets originate from a
recently created database known as the Human Cancer
Protein Interaction Network (HCPIN). We also consid-
ered human targets for drugs approved by the Food and
Drug Administration (FDA). In this effort, all cavities
that can accommodate small molecules were included.
This makes it possible for scientists to target alternative
allosteric sites on their receptor of interest. We have
created a simple interface within BioDrugScreen to
enable users to access the ranking of molecules that were
docked to their target of interest. It is worth mentioning
other efforts that have worked to facilitate the search of
small molecules without explicit docking, but through a
pharmacophore approach (22).

MATERIALS AND METHODS
3D structures of protein targets

Protein targets included in the database are obtained from
HCPIN (23) and DrugBank v2.5 (24,25) databases. The
first HCPIN release contained structures up to February
of 2006. We worked to create a local updated version of
the database that we call HCPIN-2009. We collected
sequence information of all HCPIN targets at the
UniProt Web site (http://www.uniprot.org) using the
SwissProt name provided by the HCPIN Web site.
Targets without a SwissProt name were not considered.
DrugBank, on the other hand, provides sequence informa-
tion of all known targets directly at the DrugBank Web
site. In total, we collected 3155 human targets, 1147 and
2241 corresponded to DrugBank and HCPIN targets,
respectively. There are 233 sequences that are in
common between DrugBank and HCPIN. Protein struc-
tural coverage was determined by running a BLAST
(v2.2.19) protein sequence search against nonredundant
Protein Data Bank (PDB) sequences (March 2009). Only
PDB structures with sequence identity >80% and BLAST
E-value <107® were considered. This resulted in 1589
protein targets that have structural coverage for both
HPCIN and Human Druggable Proteome (HDP), 1412
among them are human targets. Relibase+ (v2.2.2) (26)
was used to identify suitable ligand binding pockets on
human proteins. A total of 1926 cavities were identified
on 1589 human targets with restriction of pocket volume
to be within 200-4000 A°.

Docking to proteome targets

Crystal structures of human targets were obtained from
RCSB database in PDB format. PDB files were processed
by removing all solvents, counterions and substrates. The
Reduce program (27) was used to add hydrogen atoms to

proteins and optimize some of the residue orientations.
The MGLTools (v1.5.2) (28) was used to assign
Gasteiger charges to the protein and generate structural
file for docking. The binding box was centered on the
pocket identified by the Relibase+ program with side
length set to 18 A, which is large enough to encompass
the entire pocket in the majority of cases. Affinity grids
on the binding pocket were constructed using AutoGrid4
(8) with grid spacing of 0.375A. Each grid map consisted
of 48 x 48 x 48 grid points. The National Cancer Institute
(NCI) diversity set of compounds was obtained from the
ZINCS (29) website. Compound isomers bearing the same
ZINC ID were not considered, resulting in a total of 1592
compounds. Autodock4 (8) was used to dock NCI
compounds to the pockets. Rigid receptor/flexible ligand
protocol was used in the docking process. Compound
conformational space was explored employing the
Lamarckian genetic algorithm. Each docking job con-
sisted of five runs. The maximum number of energy
evaluations was set to 400000. All other parameters
were set to default values.

Scoring of the docked complexes

In addition to the AutoDock score, which was computed
during the docking process, protein—ligand complexes
were scored with DFIRE (30), X-Score (31), PBSA,
GBSA, DockScore, GoldScore, ChemScore and PMF.
The latter four scores were computed with the CScore
module in syBYL (Tripos Inc., St Louis, MO, USA). The
PBSA and GBSA were calculated with the AMBER9
package (32), following similar procedure described else-
where (33). The protein and ligand interaction was
modeled using AMBER9 force field with ‘parm99’ and
‘gaff’” parameters. Ligands were assigned AM1-BCC
charges (34,35) with the ANTECHAMBER program, which is
part of the AMBER package. The protein—ligand complexes
were first subjected to 1500 steps of in vacuum energy
minimization followed by 50 steps of implicit solvent
energy minimization. The MM-PBSA Perl script from
the AMBER package was used to compute the binding
energies. It involves molecular mechanics, Poisson—
Boltzmann (PB) clectrostatics (36), Generalized Born
(GB) model (37) and solvent accessible surface area
(SASA) calculations.

RESULTS
Protein targets in BioDrugScreen

In our initial effort toward our long-term objective of
docking the entire human proteome, we considered two
sets of proteins. The first set includes cancer targets that
are obtained from a recently created dataset known as the
HCPIN. It contains proteins from seven different signal-
ing pathways that are associated with cancer together with
their interactions. The unique aspect of HCPIN is that 3D
structures are assigned to all proteins within the dataset.
The structures fall into two categories. The first is a core
set of structures known as ‘pathway proteins’ that are
directly implicated in cancer. These proteins are
obtained directly from the Kyoto Encyclopedia of Genes



and Genomes (KEGG) database. Other proteins not in
KEGG but interact with the core proteins are known as
‘interaction proteins’. A web site was created to provide
information about the interaction network that can be
found at http://nesg.org:9090/HCPIN/index.jsp. In an
effort to update the structural coverage of the HCPIN
database, we collected the latest sequence information of
HPCIN targets and searched the PDB for structures that
were released since 2006. We refer to this local updated
version as human cancer proteome database HCPIN-
2009. This was done for both ‘pathway’ and ‘interaction’
proteins resulting in a total of 1203 targets with structures.

In BioDrugScreen, we also consider proteins that are
targets of existing FDA-approved drugs. Our interest in
these proteins stemmed not only from their established
druggable potential, but also from the fact that they can
serve to develop drugs for the treatment of diseases other
than cancer. In addition, they can be used as ‘normal’
proteins during a search for cancer therapeutics. The 3D
structure of these proteins were retrieved from the
DrugBank database (38), as described in the ‘Materials
and Methods’ section. This is an annotated resource that
combines detailed drug data with comprehensive drug
target and drug action information. Among all the
sequences that we obtained from DrugBank v2.5, we
identified 1147 unique human drug targets. It was found
that 530 of them possessed a corresponding PDB crystal
structure.

Mapping binding cavities of targets in BioDrugScreen

Receptor-ligand interactions are driven by a complex
array of forces that include polar, nonpolar and entropy
(39). A requirement for optimal binding is the presence of
a cavity within the receptor that can accommodate a small
molecule ligand. For example, most enzymes possess well-
defined cavities that have been fine-tuned during evolution
to exquisitely accommodate a substrate (39). But when the
ligand is a protein, these cavities are no longer prerequi-
site, since the protein—protein interaction occurs over a
large surface that can be shielded from solvent to
promote favorable nonpolar interactions (40,41). While
it is challenging to design small molecules that target
such surfaces, distal sites may be exploited to modulate
the protein—protein interactions. Therefore, as we seek to
map binding sites within the human cancer and druggable
proteomes, we considered all cavities that can accommo-
date small molecules, whether or not they occur within an
enzyme active site or protein-interaction site.

In virtual screening, molecular docking on the entire
protein surface is possible, but computationally prohibi-
tive. It is typical that docking is focused on a cavity of
interest within a protein. For most enzymes, this cavity is
usually the active site, as identified by biochemical studies
or a crystal structure of the enzyme-substrate complex.
In most other cases, the cavity must be identified by
scanning the entire surface of the protein for depressions
and crevasses that can accommodate small molecules.
A number of computational methods have been
developed for that purpose over the years. In this work,
we following the approach implemented within the
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Relibase + program (26) for identifying cavities within
a protein surface reported in literatures (42,43). The
process is mostly driven by an external computer
program LigSite (44) to scan the surface of the proteins
within the PDB databank.

Docking the human proteome

The identification of cavities within the HCPIN and HDP
set the stage to dock small molecules to the targets within
these databases. To perform the docking, the AutoDock 4
program (45) requires the construction of an affinity grid
around each cavity. This pre-computed grid significantly
reduces computing costs during docking. Pair potentials
between atoms in a ligand and the receptor are computed
based on the position of the ligand atom within the grid
during the docking. The pair-wise potential is determined
by identifying the value within a table, which is
significantly faster than computing the value at each
step. The construction of the grids for all the cavities
within BioDrugScreen was performed using an in house
python script using the center of the binding cavity as
described in the ‘Materials and Methods’ section. We
estimate that the computation of the Grid for all
pockets within the receptors considered in this work was
~70 cpu-hours.

Once the grids were computed for all the cavities within
BioDrugScreen, we initiated the docking of small
molecules. A set of 1592 compounds from the NCI diver-
sity set were prepared for docking as described in the
‘Materials and Methods’ section. These molecules were
docked to each of the cavities in BioDrugScreen. Hence
a total of 1926 cavities x 1592 molecules = 3066 192
complexes resulted from this initiative. The coordinates
for the binding pose of each of these complexes is
provided for download at the BioDrugScreen site. It is
estimated that the docking effort required an equivalent
of ~200000 h of computer time.

Scoring the docked human proteome

A key step toward identifying active molecules in virtual
screening is scoring, which is a process that ranks
molecules based on binding affinity. Over the years, a
number of scoring functions have been developed. It is
well known that the performance of these scoring
functions is highly dependent on the receptor. To that
end, instead of relying on a single scoring function, we
have scored all docked structures in BioDrugScreen with
widely used established scoring functions. We parentheti-
cally add that BioDrugScreen also includes an option for
users to create their own scoring function. But this is an
optional step, as ranking of molecules can be accom-
plished with widely used scoring functions that we have
pre-computed for the complexes in the database. They
include knowledge-based statistical potentials such as the
DFIRE and PMF scoring functions. Empirical functions
such as AutoDock, GoldScore, X-Score and ChemScore
are also included. Unlike the knowledge-based potentials,
these scoring functions are developed using experimental
structural and ligand affinity data. Finally, DockScore
is a force field-based scoring function that consists of a
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Figure 1. A snapshot of the BioDrugScreen page with options to rank ligands that were pre-docked to a large number of cavities of receptors from

the human proteome.

Lennard Jones and Coulomb potential summed over all
pair-wise interactions between ligand and receptor.

In addition to standard scoring functions, we have used
the force field-based PBSA and GBSA approaches to
score receptor—ligand complexes (33). These physics-
based methods are significantly more intensive in their
computational requirements than standard scoring
functions. They are similar to the widely used MM-
PBSA method, except that the calculations are performed
on a single energy minimized structure of docked ligand/
target complex. The score consists of potential energy
determined by summing of all pair-wise energies using
a Lennard Jones and Coulomb potentials. In addition,
a solvation term is added that consists of polar and
nonpolar contributions. The nonpolar solvation
corresponds to the cost associated with creating a cavity
in the solvent. It is determined by computing the solvent-
accessible surface area of the molecule. The polar term
consists of a PBSA or Generalized-Born (GBSA)
calculations that measures the effect of introducing a
charged cavity within a solvent.

Ranking pre-docked receptor—ligand complexes in
BioDrugScreen

Upon accessing the http://www.biodrugscreen.org main
page, the user is presented with introductory text
describing some of the features within the site. Below
the text, the user clicks on the ‘Start’ button to get
access to the pre-docked database. A page appears with
two options shown as ‘RANK’ and ‘DERIVE’ links. The
‘DERIVE’ option is an advanced feature within
BioDrugScreen that enables users to create their own
customized scoring function and apply it to rank

receptor—ligand complexes within the portal. However,
this feature is not discussed in this manuscript, as it
relates to the server aspect of BioDrugScreen. The other
option is for the ranking pre-docked receptor—ligand
complexes.

When the user clicks on the ‘RANK’ button, they are
taken to a page to select their target of interest and get
started with ranking molecules. In this page, which is
shown in Figure 1, the user will find three options to
select a target. In the first option (Figure 2A), the user
clicks on a pull-down menu to scroll down a list of the
protein targets within BioDrugScreen. The list is ordered
in alphabetical order using the name of the target that is
obtained from the RCSB web site under ‘Molecular
Description’. Once a target is selected, another pull-
down menu will appear next to it prompting the user to
select a chain. The chains correspond to different binding
partners within a protein—protein complex. More than one
chain will appear only if the crystal structure involves
more than one protein. Once a chain is selected, a third
pull-down menu appears that lists the number of cavities.
Once a cavity is selected, a Jmol session will open. The
session depicts the 3D structure of the receptor in wire
representation and a surface is constructed around the
cavity to facilitate viewing of the shape of the cavity.
The user can find instructions to display the receptor in
surface representation to facilitate viewing of the binding
cavity of the docked molecules.

The second option for selecting a target is shown in
Figure 2B. The user can perform a keyword search for a
target of interest. Once the ‘Search’ button is clicked, a
table will appear with a list of receptors that matched the
search criterion. In the third column within the table, a list
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of cavities within the target is provided. When the user BLAST protein sequence search as shown in Figure 2C.
chooses a cavity, a Jmol session will appear along with a Once a sequence is pasted into the search box, a BLAST
table ranking the compounds. Finally, BioDrugScreen also search is performed and a table with sequences that match
provides a third option to identify targets through a the query sequence is shown. In the second column of the

Save Session H Load Session . New Function H Feedback H Main Menu . Tutorial

| Create Scoring Function %!E!comon |er£== ao%!armacoay

In this step the user picks a protein target following one of three options. Then a Jmol session will open along with a
table that shows the ranking of molecules that were pre-docked onto a cavity within the selected target. See
Tutorial for more detail.

| Select a target from menu < help -

Target: v
REAUTIVE PRUTEIN (TGNH)

CALMODULIN FUSED WITH CALMODUL (2F20)

CALMODULIN-DEPENDENT CALCINEUR (1MF8)

| Find +oCALMODULIN-RELATED PROTEIN NB- (1GGZ)

CALPAIN 1, LARGE [CATALYTIC] S (1TL9)

CALPAIN-7 (2QFE)

CAMP-DEPENDENT PROTEIN KINASE (1CX4)

CAMP-DEPENDENT PROTEIN KINASE, (2QVS)

| Searchicanp-DEPENDENT PROTEIN KINASE, (20CS) <ihelp:x

CAMP-DEPENDENT PROTEIN KINASE, (2F7E)

CARBONIC ANHYDRASE (1GBY)

CARBONIC ANHYDRASE XIl (1JCZ)

CASEIN KINASE 1 GAMMA 2 ISOFOR (2C47)

CASEIN KINASE | ISOFORM GAMMA- (2CHL)

< help -

(@

t 2009 - Samy Meroueh

{Q)

TIN PROTEIN LIGAS (1YVH)
CD40 LIGAND (119R)

CELL DIVISION PROTEIN KINASE 2 (3EZR) v

: ®
pioarugscreen

Save Session : Load Session E Newr Function - Feedback . Main Menu : Tutorial

G Scoring Function n| ﬂg!mmon!ergris\f !o%armaco,ogy \

In this step the user picks a protein target following one of three options. Then a Jmol session will open along with a
table that shows the ranking of molecules that were pre-docked onto a cavity within the selected target. See
Tutorial for more detail.

| Select a target from menu < help -
| Find target through a keyword search < help ~
Search:

. Search

| Search for target using a protein sequence < help ~

Copyright 2009 - Samy Meroueh

Figure 2. A snapshot depicting the three search options available in BioDrugScreen. (A) A pull-down menu lists all the targets within
BioDrugScreen. The user then selects the ‘Chain’ and ‘Binding Cavity’ pull-down menus to select chain and cavity; (B) targets can be found
through a keyword search. (C) Targets can be identified through a BLAST sequence search. The user pastes the sequence within the box
provided to conduct the search.
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Figure 2. Continued.

table, a list of cavities for each receptor is provided. When
a cavity is selected, a Jmol session along with a table with
ranked compounds is shown.

Below the Jmol session, a table is created that lists the
ranking of the receptor—ligand complexes of the NCI
diversity set docked onto the receptor of interest. The
table lists the top molecules as ranked by 9 scores,
namely AutoDock, ChemScore, DockScore, DFIRE,
GoldScore, PMF, X-Score, PBSA and GBSA (Fig. 3).
Each row corresponds to a different molecule. But the
molecules need not be the same for each scoring
function. For each molecule, we provide a total of five
links. The “ZINC” link, leads to purchasing and other
information at the ZINC Web site at http://zinc.
docking.org/index.shtml. This web site is a database of
commercially available compounds for virtual screening
(46). The ‘PubChem’ link leads to additional detailed
information for the molecules at the PubChem (47) web
site at http://pubchem.ncbi.nlm.nih.gov/. PubChem is a
large public database of biological data for small
molecules. It is significantly larger than the ZINC
database, as it is not strictly limited to commercially avail-
able molecules. The ‘MOL2’ icon leads to coordinates of
the docked molecule in mol2 format. Users can also
download the coordinates of the receptor with a link
located at the bottom of the Jmol session. These
coordinates are used to depict the small molecule bound
to the receptor in the Jmol session. The ‘COMPARE’ link
provides the ranking of each molecule in other scoring
functions. Finally, clicking on the ‘JMOL’ button will
take a user to the Jmol session that shows the 3D structure
of the ligand bound to receptor. The receptor is shown in
line representation, while the bound molecule is depicted

in capped-sticks. Both receptor and ligand are color-coded
based on atom types (C, N and O are shown in gray, blue
and red, respectively). Each page lists the top 50
molecules. The remaining molecules can be accessed by
clicking on the numbers at the top of the table ranging
from 1 to 32.

DISCUSSION

Virtual screening is now widely used to search for small
molecules ligands that bind to macromolecules (2—4). The
method is used extensively in drug discovery efforts.
However, the use of virtual screening has been limited to
individuals and research groups with significant
computational expertise and resources. We seek to
remedy this situation by creating a web resource known
as BioDrugScreen that contains about 3000000 receptor
complexes that were obtained by docking about 1600
compounds from the NCI diversity set to nearly 2000
cavities within targets of the human proteome. These
complexes were scored with established scoring functions,
such as AutoDock, PMF, DFIRE, ChemScore and
GoldScore. We also performed continuum electrostatic
calculations on all these complexes using the PB and
Generalized-Born methods and combined with results
with intermolecular potential energy from the Amber
force field. The resulting GBSA and PBSA terms are
also provided for ranking receptor-ligand complexes
within BioDrugScreen.

Our expectation is that the ‘Rank Ligand’ step within
BioDrugScreen will be used by users with a wide range of
computational expertise. It simply requires the selection of
a target from one of three possible options. A table is then



ploar

Nucleic Acids Research, 2010, Vol. 38, Database issue

»
ugscreern

Save Session Load Session Newr Function

Feedback

Main Menu : Tutorial

M ﬂ! E!cm on Hergﬁ { ’oﬁarmm‘ogy

In this step the user picks a protein target following one of three options. Then a Jmol session will open along with a
table that shows the ranking of molecules that were pre-docked onto a cavity within the selected target. See

Tutorial for more detail.

| Select a target from menu
Target: [ CASPASES (1JxQ)

| Find target through a keyword search

| Search for target using a protein sequence

See Table Below

< help -
v| Chain:[A | Binding Cavity:

< help -

< help -

Jmol
Target Information
Target Name: Caspase-9
Download Caspase-$ Structure
Link to BindingDB
Molecule Information
Scoring Function: pmf
Rank Number: 2
JMOL Optional Rendering
Show Protein in surface representation
1. Right Click JMOL window -> Select -> Protein -> All
2. Right Click JMOL window -> Surfaces -> Solvent Surface
1234567891011121314151617181920212223242526272829303132
Rank| autobock | chemscore DocK ofRE oL L% X-SCORE Posa G8sA
(-44.29) (-28.77) (197.54) | (-65195) | (-277.88) | (-10498) -1013) (-51.54)
1 motz | NS mor2 | NS mot2 | EIEH mot2 MmoL2 Motz MmoL2 mot2 | [ Motz
IR conpare | IR conpare | I compare | IR compare | IR compare | IR compare | IR conpare | IR conpare | IR COMPARE
(-2481) (-2687) (-192.31) (-595.18) (-255.88) (-102.8) -9.9) (-43.79) (-49.51)
2 mot2 | [ morz | HIEEH mot2 Motz mot2 | [ Motz | EIEEH mot2 mot2 | HES mot2
IR conpare | IR conpare | I compare | IR compare | I compare | IR compare | IR conpare | IR conpare | IR cOMPARE
(-2219) -26.5) F17211) (-583.53) (-255.36) (-98.75) -9.67) (-43.45) (-48.27)
3 =0 mow2 MmoL2 mot2 | SN moL2 moL2 moL2 MmoL2 MmoL2 MmoL2
IR conpare | IR conpare | I compare | IR compare | IR compare | IR compare | IR conpare | IR compare | IR cOMPARE

D771

Figure 3. Snapshot of BioDrugScreen following the selection of a receptor through one of the three mechanisms provided. A Jmol session depicts the
3D structure of a molecule bound to the protein Caspase-9. The molecule is shown in capped-sticks representation with atoms color-coded based on
atom types (N, C, S and H in blue, grey, yellow and white, respectively). The protein is shown in wire rendering. A table below the Jmol session
provides a listing of the molecules docked to the target and ranked using a series of standard scoring functions along with various links for further
structural analysis and information from other sites.
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created showing the ranking of the molecules from the
NCI dataset that are docked onto the target. The
molecules are ranked from best to worse, such that
the higher the rank, the greater the likelihood that the
molecules will bind to the target. Users can analyze the
3D structure of the complexes and access purchasing
information for these molecules directly from the ZINC
web site through the various links provided for each entry
(molecule) in the table. Since a large number of the targets
within BioDrugScreen are of relevance to cancer, it is our
expectation that the database will serve to identify new
anticancer agents.

While this manuscript was focused on the significant
receptor—ligand database within BioDrugScreen, it is
worth mentioning that the web portal provides additional
options for users with computational expertise. We
envision that these options will significantly enhance the
database aspect of the portal. The first such option enables
users to create and validate their own scoring functions
and to apply these custom scoring functions to rank the
docked chemical libraries within the database. The user
can create a training set using structural and affinity
data from PDBcal, PDBbind and BindingDB.
Subsequently, the user can choose the components that
will make up their scoring functions from among more
than 20 pre-computed descriptors. A regression analysis
is then performed to derive the empirical function, which
can be validated through enrichment and ROC plots on
40 targets that have been pre-docked with active and
decoy molecules from the Directory of Useful Decoys val-
idation set. The custom scoring function can be used to
rank docked molecules. BioDrugScreen incorporates
another sophisticated option that lets users dock
molecules to their favorable target on the TeraGrid and
score them with GBSA by simply uploading their PDB
file. BioDrugScreen includes a feature that lets users
monitor their job until it is completed. All user-initiated
docked complexes are uploaded automatically into the
database but will only be visible to the user who docked
the molecules.
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