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Abstract

Unlike other monoamine neurotransmitters, the mechanism by which the brain’s histamine content is regulated remains
unclear. In mammals, vesicular monoamine transporters (VMATs) are expressed exclusively in neurons and mediate the
storage of histamine and other monoamines. We have studied the visual system of Drosophila melanogaster in which
histamine is the primary neurotransmitter released from photoreceptor cells. We report here that a novel mRNA splice
variant of Drosophila VMAT (DVMAT-B) is expressed not in neurons but rather in a small subset of glia in the lamina of the
fly’s optic lobe. Histamine contents are reduced by mutation of dVMAT, but can be partially restored by specifically
expressing DVMAT-B in glia. Our results suggest a novel role for a monoamine transporter in glia that may be relevant to
histamine homeostasis in other systems.
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Introduction

Histamine was first identified as a potential neuromodulator at

the turn of the last century, and is now known to regulate multiple

physiological processes in mammals as well as invertebrates [1–9].

For all other classical neurotransmitters, the transport proteins

responsible for neurotransmitter storage and recycling play a

critical role in regulating the amount of transmitter that is

available for signaling at the synapse [10,11]. Therefore, to

understand the mechanisms by which histaminergic signaling is

regulated, it will be critical to determine the transporters and

transport mechanisms by which histamine and its metabolites are

stored, released and recycled.

Both cell surface and vesicular transporters are required for

neurotransmitter release and recycling. All classical neurotrans-

mitters are synthesized in the cytoplasm and therefore must

undergo transport into the lumen of secretory vesicles for regulated

release. Vesicular neurotransmitter transporters for most known

neurotransmitters have been identified and include the vesicular

glutamate (VGLUT1, 2 and 3) [12], GABA/Inhibitory Amino

Acid (VGAT/VIAAT) [13], acetylcholine (VAChT) and mono-

amine transporters (VMAT1 and 2) [14]. In mammals, histamine

is transported into synaptic vesicles and secretory granules by the

neuronal isoform of VMAT, VMAT2 [15–18].

After exocytotic release from the nerve terminal, neurotrans-

mitters can be recycled via either direct or indirect routes, and

each requires a distinct set of cell-surface transporters [19]. The

plasma membrane transporters responsible for the specific, high

affinity uptake of dopamine (DAT), serotonin (SERT), and

noradrenalin (NET) are well-characterized and localize primarily

to presynaptic nerve terminals [20]. Their localization is consistent

with a role in directly recycling monoamines for immediate re-

release, through re-uptake. In contrast, glutamate is primarily

transported by the excitatory amino acid transporters (EAATS)

into glia rather than the nerve terminal [21–23]; it is metabolized

to glutamine in glia by the enzyme glutamine synthase [24].

Glutamine is exported from glia via efflux through system N

transporters and then transported into glutamatergic neurons by

system A [25,26].

Since histamine is a monoamine neurotransmitter, its re-uptake

might be expected to occur at presynaptic nerve terminals, as for

other monoamines [9]. However, to date, a histamine transporter
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has not been identified in neurons. Rather, in mammals, astrocytes

take on this role. For example, they take up radiolabeled

histamine, possibly via non-specific organic cation transporters

(OCTs), and express the enzymes responsible for histamine

metabolism [27–32]. In mammals it is possible that histamine,

unlike all other neurotransmitters, is not recycled, but is degraded,

presumably in astrocytes. Alternatively, histamine, like glutamate,

might be recycled via a relatively circuitous route that requires

transport and metabolism in glia followed by re-export to neurons.

The Drosophila visual system is a useful system in which to study

histamine release and recycling [9]. Histamine is the primary

neurotransmitter released from insect and other arthropod

photoreceptors [33–35], and many of the molecular elements

required for histaminergic neurotransmission have been identified

in the fly’s visual system [33,36–39]. As for mammals, histamine is

synthesized in Drosophila by histidine decarboxylase, which

localizes to the presynaptic site of histamine release, the

photoreceptor terminal [34]. However, unlike mammals, it is

unclear how histamine is transported into synaptic vesicles, since

the Drosophila orthologue of VMAT is absent from fly photore-

ceptors [40]. Neurotransmitter release is both tonic and graded at

photoreceptors [41] and in Drosophila occurs at a rate sufficiently

high to require active mechanisms for recovery [9,42]. Changes in

the amount of histamine release and, perhaps more importantly,

its removal from the synaptic cleft, are presumed to signal to

interneurons and their ascending visual pathways [9]. However, it

is still not known how histamine concentration in the synaptic cleft

is controlled, nor is it clear how changes in synaptic histamine

might affect the higher functions of the visual system.

Histamine is metabolized in Drosophila by the product of the

gene ebony [43], which conjugates histamine to b-alanine to

generate the metabolite b-alanyl-histamine, or carcinine [44,45].

The gene product of tan mediates the hydrolysis of carcinine, and

thereby the liberation of histamine [36]. Interestingly, Tan is

localized to photoreceptors, the site of histamine synthesis,

whereas ebony is expressed in the epithelial glia that surround the

photoreceptor terminals [37,45]. The reciprocal localization of

Tan and Ebony, to neurons and glia respectively, implies that at

least in Drosophila, histamine is recycled via a relatively complex

pathway that involves uptake into glia [9]. Recent genetic

experiments suggest that the gene inebriated (ine) might function as

a carcinine transporter to allow metabolized histamine to be

taken up by photoreceptor cells [46]. However, the transporters

required for histamine uptake into glia and the mechanism by

which carcinine is exported from glia are still not known.

Moreover, with the possible exceptions of the OCTs and

Inebriated, the transporters responsible for histamine uptake

and homeostasis in both mammals and invertebrates likewise

remain obscure.

To investigate the regulation of aminergic signaling in the fly,

we have previously identified the Drosophila orthologue of the

vesicular monoamine transporter (dVMAT) [40,47]. The dVMAT

gene expresses two splice variants (DVMAT-A and -B) that differ

at their extreme C-termini [47]. This domain is required to traffic

mammalian VMAT2 and VACHT to synaptic vesicles and other

types of secretory vesicles [48–54]. As for mammalian VMATs,

DVMAT-A is expressed in all aminergic neurons in the fly CNS

[15–17,40,47,55]. We show here that DVMAT-B is not expressed

in neurons, but rather in a subset of glia that are adjacent to the

retina and store histamine. Furthermore, the loss of DVMAT-B’s

function at this site reduces histamine storage. These data indicate

that, unlike other VMATs, DVMAT-B has a functional role in glia

rather than neurons, and that DVMAT-B helps to regulate

histamine in the fly’s visual system.

Results

The mRNA of dVMAT is alternatively processed to yield two

variants [47]. In dVMAT-B, the segment indicated in Figure 1A is

retained. In dVMAT-A, all of the splice sites are used and the

indicated segment is removed as an intron. To determine the

expression pattern of dVMAT-B mRNA in the adult brain, we

performed in situ hybridization experiments. To generate a cDNA

probe specific for dVMAT-B, we amplified the sequence retained in

dVMAT-B mRNA and removed from dVMAT-A (Figure 1A, ‘‘B in

situ probe’’). Using this probe we observed a narrow band of

labeling in the region just beneath the retina (Figure 1B and 1C).

These data are consistent with a previous report showing that a

probe common to both dVMAT-A+B labels a thin band below the

retina in addition to aminergic neurons in the central brain and

optic ganglia [56]. Based on this labeling pattern and proximity to

the glial marker Neurexin IV, it was suggested that dVMAT might

be expressed in the fenestrated glia [56].

To further elucidate the localization and function of DVMAT-

B, we generated an antiserum to the N-terminus domain shared by

DVMAT-A and -B, and two separate antibodies specific for the

DVMAT-B C-terminus (see Methods for additional details). To

demonstrate the specificity of our antibodies and to investigate the

relationship of DVMAT-A and/or -B to histamine storage, we

characterized a dVMAT mutant line. (A more complete phenotypic

analysis of the dVMAT mutant will be reported elsewhere.) We

have previously reported that CG6119 encodes the 39 portion of

dVMAT [47], and have obtained a line (l(2)SHO459) containing a

transposable P element in this predicted gene segment [57]. We

used inverse PCR and DNA sequencing to confirm that the

insertion site of l(2)SHO459 is in the last coding exon of dVMAT.

The insertion creates a functional deletion of the last two

transmembrane domains of both DVMAT-A and -B (see

Figure 1D, ‘‘P’’). We therefore refer to l(2)SHO459 as dVMATP1.

Western blots of adult head homogenates were probed with the

antibody directed to the N-terminus of DVMAT shared by the

DVMAT-A and -B splice variants (anti-N). Little or no protein

representing either DVMAT isoform remains in the homozygotes

containing the P insertion as compared with controls (Figure 1E,

compare lanes ‘‘P/CyO’’ and ‘‘P/P’’). The absence of a detectable

Author Summary

Neurons, the cells in the brain responsible for carrying
information, communicate with each other using a class of
chemicals known as neurotransmitters. One family of
neurotransmitters, the monoamines, includes dopamine,
serotonin, and histamine, all of which play major
physiological roles. However, unlike dopamine and sero-
tonin, the regulation of the brain’s histamine content is
poorly understood. We are using the fruitfly Drosophila
melanogaster to study the storage and release of histamine
from brain cells. Both mammals and insects use a class of
proteins called transporters to store amines, but, to date,
amine transporters have been thought to be restricted to
neurons. We have found that the support cells, or glia, that
facilitate the function of neurons in the fly’s visual system
contain a new form of monoamine transporter. Despite its
circumscribed distribution, this protein is required to
maintain normal levels of histamine throughout the visual
system. We speculate that other animals may use a similar
strategy to regulate the function of this important
neurotransmitter.

Glial Amine Transporter
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band in homogenates derived from the dVMATP1 mutant

demonstrates that anti-N is specific for DVMAT.

To generate additional dVMAT alleles, we excised the P-element

in dVMATP1. One allele, dVMATD14, removes most of the

transposon including the white (w) eye marker gene but leaves

behind 51 base pairs within the sixth and last coding exon of

dVMAT. The insertion is in-frame and encodes an additional 17

amino acids (HDEITSSLLTLFHHELG). Immunoblots of

dVMATD14 flies using anti-N show very small amounts of DVMAT

(Figure 1E, ‘‘D14/D14’’).

We next characterized the two C-terminus directed antibodies

that we generated to specifically detect DVMAT-B. Since only the

C-termini of DVMAT-A and -B differ, a peptide representing the

last 21 amino acids of DVMAT-B was used to develop a

polyclonal antibody specific to the B form (anti-B1, see Methods).

Immunoblots using anti-B1 did not show a detectable band on

Western blots using adult head homogenates that gave robust

signals when probed with either anti-DVMAT-A or anti-N (not

shown). Therefore, to validate the specificity of the antibody and

to determine the expression pattern of the DVMAT-B splice

variant, we performed immunolabeling experiments using whole

adult brains. In contrast to our previously described antibody to

DVMAT-A (see [40,47]), aminergic neurons in the adult brain

were not labeled with anti-B1. Rather, anti-B1 specifically labeled a

relatively thin layer between the retina and the optic lobe

(Figure 2A). To confirm the specificity of labeling using anti-B1,

we repeated this experiment using the dVMATD14 flies. Labeling

using anti-B1 was dramatically reduced in the D14 mutants

(Figure 2B), confirming the specificity of the anti-B1 antibody.

Additional labeling experiments using anti-B1 indicate that

DVMAT-B is not expressed elsewhere in the adult fly brain (data

not shown). Despite the presence of dVMAT-B mRNA in the

embryonic nervous system [47] we did not detect DVMAT-B

protein in labeling experiments using anti-DVMAT-B in either

whole embryos, the central nervous system of third-instar larvae

(central brain plus optic lobes), or larval fillets that included Type

II neuromuscular junctions, which are octopamine positive [58].

A previous study has shown that an mRNA in situ probe for

dVMAT-A+B labels cells beneath the basement membrane that

correspond in position to those of fenestrated glia [56]. Our in situ

results and immunolabelings using anti-B1 confirm this pattern for

both the dVMAT-B mRNA and the DVMAT-B protein. We were

surprised by these results and the possibility that DVMAT-B

might—as a result—localize to glia, since mammalian VMATs

localize exclusively to neurons and neuroendocrine cells [15–

17,59]. We therefore performed additional experiments using a

second antibody that was independently generated against the C-

terminus of DVMAT-B (anti-B2.). We used anti-B2 to label

cryosections, and co-labeled with an antibody to Ebony to help

demonstrate the localization of the DVMAT-B label. Ebony labels

a defined subset of glia in the lamina and medulla (the epithelial

glia; [45]). Using anti-B2 we obtained results similar to those

obtained in experiments using anti-B1; we observed a single band

of labeling in wt flies that was absent in dVMATP1 flies (Figure 2C

and 2D) between the retina and the lamina, and absence of

labeling at other sites in the adult brain. These data confirm the

specificity of anti-B1 and -B2 and indicate that DVMAT-B protein

is expressed in a single relatively restricted region of the adult

brain, consistent with our in situ probe of dVMAT-B mRNA.

To determine the identity of the cells expressing DVMAT-B, we

first performed additional experiments using the anti-N antibody

directed against the N-terminus of DVMAT. Since the N-terminus

of DVMAT is common to both DVMAT-A and B, labeling using

anti-N showed the expression of both isoforms (DVMAT-A+B)

Figure 1. Mutant alleles of dVMAT reduce expression of
DVMAT-A and -B. (A) dVMAT-A and -B share a common translational
start site (indicated as ‘‘A, B start’’) and a common N-terminus, but
diverge at their C-termini. Coding exons in the dVMAT gene that are
common to both dVMAT-A and-B are shown as gray boxes, introns as
black lines. To generate alternative carboxy termini, the indicated
genomic sequence (magenta box) is spliced out from dVMAT-A and
retained in dVMAT-B. The in situ probe for dVMAT-B contains the first
260 nucleotides of this sequence. The P element insert in the dVMAT
mutant allele dVMATP1 (black arrowhead) disrupts the coding sequence
of both dVMAT-A and -B. (B,C) In situ hybridization of head sections
shows transcription of the dVMAT-B gene in a layer between the retina
and lamina (B). Magnified view of (B) shown in (C). (D) Cartoons
showing the predicted topology of DVMAT with lumenal domains
above and cytoplasmic domains below the parallel gray lines
representing the vesicle membrane. Open circles indicate domains
shared by DVMAT-A and -B. Filled, magenta circles indicate the C-
terminal domain specific for DVMAT-B. The P element insertion site in
the last exon of the dVMATP1 (marked with ‘‘P’’ and a black arrowhead)
functionally deletes transmembrane domains 11 and 12 and the C-
terminus (shaded gray). The imprecise excision allele dVMATD14 results
in an insertion of 51 base pairs, and 17 amino acids in-frame with the
original downstream codons (marked as ‘‘D14’’ with a blue arrowhead,
with blue circles indicating the inserted residues). (E) Western blot using
the N-terminus antibody directed against both DVMAT-A and -B splice
variants shows an absence of DVMAT protein in dVMATP1 homozygotes
(P/P), and dramatically reduced levels in dVMATD14 (D14/D14),
compared with heterozygous controls (P/CyO and D14/CyO). The
plasma membrane associated protein Late Bloomer (indicated as ‘‘lb’’)
was used as a loading control. Re, retina; La, lamina; Me, medulla. Bars:
(B) 50 microns, (C) 20 microns.
doi:10.1371/journal.pgen.1000245.g001
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and allowed the simultaneous visualization of both patterns of

expression. In Figure 3A, labeling with anti-N in whole-mounts of

the entire brain revealed a punctate pattern in the central brain

and medulla as well as scattered cell bodies. This pattern was

similar if not identical to the labeling in the adult brain we

previously observed using an antibody specific for DVMAT-A

[40]. Labeling with DVMAT-A also showed a punctate pattern in

the lamina that represents projections from the LP2 cluster of

serotonergic neurons [40]. Using anti-N to label DVMAT-A+B,

we observed a similar punctate labeling pattern in the lamina

(Figure 3A and 3B); however, unlike the pattern we saw using the

antibody to DVMAT-A, the entire surface of the lamina was

labeled by anti-N (Figure 3A, see also Figure 3C). These data are

consistent with the expression pattern of DVMAT-B in the distal

lamina that we observed using the anti-B antibodies.

The structure of the lamina has been analyzed in both the housefly

and Drosophila [60–64]. The region expressing DVMAT-B in the

distal lamina contains several layers of morphologically distinct glia.

To determine whether the cells in the lamina that express DVMAT-

B might indeed be glia, adult heads were fixed and sectioned using a

cryostat and then double-labeled with the primary antibodies anti-N

(Figure 3D) and a glia-specific marker, anti-Repo (Figure 3E).

Labeling of cryostat sections with anti-N showed bands of punctate

labeling in the medulla, consistent with previous labelings using the

antibody to DVMAT-A [40]. Labeling with anti-N in the medulla

revealed that there was a minimal overlap with glial cell nuclei,

consistent with the exclusive localization of DVMAT-A to aminergic

neurons in the central nervous system [40,47]. In contrast, a band

just beneath the retina labeled with anti-N (Figure 3D, arrow)

appeared to overlap with Repo-labeled glial cell nuclei in the distal

lamina (Figure 3F), supporting the possibility that DVMAT-B is

indeed expressed in glia.

To further examine the localization of DVMAT-B, we

performed co-labeling experiments using the antibodies specific

for DVMAT-B: anti-B1 and anti-B2. To establish the relationship

of DVMAT-B labeling to photoreceptors, we first performed co-

labelings using an antibody to the gene product of tan. Although

originally identified as a mutation affecting pigmentation in the

cuticle [43], Tan protein also localizes to photoreceptors, where it

converts recycled carcinine to histamine [36,37,44]. Labeling with

anti-B2 (red) and anti-Tan (green) revealed a mutually exclusive

pattern of expression, indicating that DVMAT-B was not

expressed in photoreceptor cells (Figure 4A–4C). Rather, it

appeared to bracket the photoreceptor cell axons where they

extended beneath the retina, in a position beneath the basement

membrane. Co-labeling with anti-B1 and the photoreceptor

specific antibody MAb24B10 [65,66] confirmed this relationship

(data not shown).

We next used the DVMAT-B specific antibodies to directly

investigate the expression of DVMAT-B in glia. For these

experiments, we used the line repo-Gal4 to drive expression of

mCD8-GFP and thereby label the plasma membrane of glial cells

(Figure 4D–4I). This stratagem labeled glial cell membranes

throughout the optic lobe and central brain (Figure 4D and 4G).

Using the anti-B2 antibody we observed partial co-localization of

DVMAT-B to the profiles enclosed by these glial cell membranes

in the distal lamina (Figure 4F and 4I). As in the medulla, the glial

processes in the distal lamina that extended toward the retina were

less intensely labeled than other more proximal membranes

(Figure 4D–4F), as clearly seen at high magnification (Figure 4G–

4I). Nonetheless, these data strongly suggest that DVMAT-B is

expressed in a subset of glial membranes abutting the retina. In

addition, the localization and morphology of the DVMAT-B

expressing cells suggests that they correspond to the fenestrated

glia previously described in the housefly [62] (see Discussion).

Even though it has been suggested that dVMAT mRNA is

expressed in the fenestrated glia [56], the localization of a vesicular

monoamine transporter to glial cells had not been conclusively

demonstrated. Both because of the heterodox nature of our

observation and the difficulty inherent in interpreting co-

localization from light micrographs, we performed additional

immunolabelings at higher resolution, using electron microscopy

(EM). For these experiments we used the anti-N antibody to

visualize DVMAT-A+B; anti-N but not anti-B1 gave a good EM

signal using the pre-embedding method. A high concentration of

silver-enhanced gold particles was readily detected in the lamina,

proximal to the basement membrane (Figure 5A), with some

additional labeling seen in the retina itself. In addition, small

profiles in the lamina cortex were also labeled. These may be

profiles of serotonin-containing nerve terminals that express

DVMAT-A [40], and are consistent with the punctate lamina

labeling seen in light micrographs with anti-N (see Figure 3). The

labeled glia were penetrated by ommatidial bundles of photore-

ceptor axons and also had extensive convolutions of their proximal

cell surface (Figure 5B), consistent with the morphology of the

fenestrated glia [62]. The convoluted morphology of the glia

membranes made it difficult to determine the precise subcellular

localization of DVMAT in material prepared by the pre-

embedding method.

Previous electron microscopic analyses in the housefly have

shown that two layers of glia occupy the region immediately

beneath the basement membrane in the lamina. These include not

only the fenestrated glia immediately abutting the basement

Figure 2. Antibodies raised against the C-terminus of DVMAT-B
label the distal lamina. Confocal images of whole adult w and
dVMATD14 mutant brains were labeled with the DVMAT-B antiserum
anti-B1 (A,B). Labeling is visible in the distal lamina of the w control
brain (A), but markedly reduced in the homozygous dVMATD14 mutant
(B). Confocal images of wt and dVMATP1 homozygote head sections
were labeled with anti-B2 (C,D) (magenta) and anti-Ebony (C,D) (green).
In the wt, control sections, DVMAT-B labeling is visible in the distal
lamina (C). In the dVMATP1 mutant, however, no DVMAT-B expression is
detected (D). These results demonstrate the specificity of both anti-B1

and -B2. Re, retina; La, lamina; Me, medulla. Bars: 50 microns.
doi:10.1371/journal.pgen.1000245.g002
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membrane but also the pseudocartridge glia, which are proximal,

i.e. closer to the central brain, relative to the fenestrated glia

[61,62]. Both are distal to the somata of the laminar cortex and, with

the exception of the photoreceptor axons that penetrate these glia,

neither the cell bodies nor processes of neurons occupy the region of

the distal lamina that is labeled by DVMAT-B. Thus, the immuno-

EM data support the conclusion that DVMAT-B is expressed in glial

cells. Furthermore, DVMAT labeling is close to the basement

membrane (Figure 5A and 5B), and additional label is seen in the

proximal retina, consistent with our light micrographs (Figures 3 and

4). We therefore conclude that DVMAT-B expressing cells represent

the fenestrated glia (see Discussion).

Previous immunohistochemical studies have shown that a

similar region in the distal lamina just beneath the basement

membrane is labeled with an antibody to histamine [44]. This

location suggests that histamine could be contained in the

fenestrated glia, but this interesting possibility has never been

addressed. Furthermore, the fact that DVMAT-B localizes to cells

in this region suggests that it might play a hitherto unacknowl-

edged role in the glial storage of histamine in the Drosophila visual

system. Importantly, the 12 transmembrane ‘‘backbone’’ required

for transmitter transport is equivalent in DVMAT-A and -B, and

we have shown that the DVMAT backbone common to DVMAT-

A and -B recognizes histamine [47].

To immunolabel histamine in the fly’s visual system, we used a

previously characterized antibody and fixation protocol [67].

Consistent with previous reports [35,44], the histamine antibody

immunolabeled the retina, nerve terminals in the medulla, and

much of the proximal lamina (Figure 6A). In addition, a band

immediately beneath the retina in the distal lamina (Figure 6A)

was labeled strongly for histamine. Strikingly, double labeling

using anti-B2 showed robust co-localization (Figure 6B and 6C),

suggesting that the same glial cells that express DVMAT-B also

store histamine.

To explore this possibility further, and examine the possible

functional role of DVMAT-B in histamine storage, we determined

whether loss of dVMAT would decrease histamine labeling. To test

this possibility, we used the same antibody against histamine to

label brains from the dVMATD14 mutant and from w controls, and

visualized the pattern of immunolabeling using confocal micros-

copy. In w optic lobes the antibody labeled the retina, distal

lamina, and axon terminals in the medulla (Figure 7A, 7C, and

7D). Removal of the retina prior to labeling allowed visualization

of the lamina surface and revealed a robust labeling pattern at the

distal surface of the lamina in the w control (Figure 7B) that was

dramatically reduced in the dVMATD14 homozygote (Figure 7E).

This difference suggested that not only do the subretinal cells that

express DVMAT-B store histamine, but also that DVMAT-B

function in these cells is required for histamine storage.

Since neither DVMAT-A nor DVMAT-B are expressed in

photoreceptor cells [40,47], we were surprised to find that histamine

labeling in photoreceptor cell bodies in the retina was also decreased

Figure 3. The antibody to DVMAT-A+B labels the optic neuropiles. (A) Projected confocal image of whole w adult brain labeled with the
antibody against the N-terminus of DVMAT (anti-N) that recognizes both DVMAT-A and -B. The entire surface of the lamina is labeled with anti-N in a
honeycomb pattern (white arrows). In the central brain, cell bodies (asterisk) and a large number of processes are labeled, consistent with the
previously described expression of DVMAT-A. Additional punctate labeling in the lamina (B) (arrowheads) is likely to represent previously described
serotonergic varicosities, more easily seen in a single optical section of the lamina (B) (arrowheads) and in a tangential section through the lamina (C)
(La, see arrowheads) and distal medulla (C) (Me). Labeling of the lamina surface is also apparent (C) (arrows) in the tangential view of the lamina and
distal medulla. (D–F) Cryostat sections of w adult brains labeled for Repo (green) and DVMAT-A+B (magenta). Repo label in glial cell nuclei of the optic
lobe and central brain does not co-localize with the label for DVMAT-A+B, but the DVMAT-A+B label in the distal lamina appears to co-localize with
glial cell nuclei (D) (arrow) (overlap shown in F). Bars: (A) 50 microns, (B,C) 25 microns, (D–F) 50 microns.
doi:10.1371/journal.pgen.1000245.g003
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in dVMATD14 relative to controls (compare Figure 7C and 7F,

arrowheads). In contrast, dVMAT mutants showed no dramatic

decrease in labeling for histamine in the proximal lamina near the

chiasm, or in photoreceptor cell terminals in the medulla (compare

Figure 7D and 7G). Thus, the presumptive role of DVMAT-B in

neurotransmitter storage does not extend to all aspects of histamine

homeostasis in the fly. Nonetheless, these data suggest that dVMAT

may regulate histamine storage and homeostasis in the visual system

in a more general fashion than might be expected based on its

circumscribed pattern of expression.

Cryostat sections labeled for histamine also showed decreased

labeling in the distal lamina and the retina in the dVMATD14

mutant (Figure 7I) relative to the w control (Figure 7H). The

labeled sections also show that the residual labeling in the

proximal lamina localizes to a region previously shown to contain

another glia subset, the marginal glia [62,68]. The pronounced

labeling of this region suggests that histamine might be

redistributed to an ectopic site in the dVMAT mutant.

To quantify the contribution of DVMAT to histamine storage

more accurately, we used high performance liquid chromatography

(HPLC) to measure the total histamine content in dVMAT mutant

heads (Figure 8A). As controls, we used: 1) w1118Cs10 (w; +/+), the

genetic background into which dVMATP1 had been out-crossed; 2) a

precise excision of the P element in l(2)SHO459 (p.e.); and 3)

dVMATP1 heterozygotes (P/+). The histamine content in heads

derived from the three control lines—w1118Cs10, p.e., and P/+—was

660.4, 5.960.4 and 6.160.3 and ng/head respectively. In contrast,

the dVMATP1 (P/P) homozygotes contained 4.260.2 ng/head, a

30% reduction relative to the controls (Bonferroni post-test, p,0.01).

The homozygous imprecise excision (dVMATD14, ‘‘D14’’ in

Figure 8A), contained 3.260.5 ng/head, a 47% reduction relative

to controls (Bonferroni post-test, p,0.001). These data indicate that

dVMAT plays an unexpectedly important role in regulating the

histamine content of the head, and together with the results from our

histamine labelings they indicate that this role is exerted on the visual

system by means of the fenestrated glia.

Finally, to address the role of DVMAT-B in the glial storage of

histamine more specifically, we performed genetic rescue exper-

iments (Figure 8B). To rescue the function of DVMAT-B in glia,

we used the repo-Gal4 driver to drive expression of the UAS-

dVMAT-B transgene. We compared the histamine concentrations

of heads from homozygous mutant flies containing repo-Gal4 alone

Figure 4. DVMAT-B is not detected in photoreceptor cells and co-localizes with a marker for Drosophila glia. A primary antibody to the
protein Tan (A) (green) labels the photoreceptor cell bodies and their axons that extend into the lamina (La) and medulla (Me), seen in horizontal
cryostat sections of the head. Co-labeling with anti-B2 (B) (magenta) shows no overlap with Tan in merged images (C). Glia were labeled using repo-
Gal4 to drive expression of the plasma membrane marker mCD8-GFP (D,G) (green). Some glial processes extend into the medulla (D,G) (small
arrowheads). DVMAT-B was co-labeled using anti-B2 (E,H) (magenta). The merged images (F,I) show robust co-localization of DVMAT-B to profiles
enclosed by glial cell membranes in the distal lamina, and additional, faint co-labeling of processes that extend distally into the retina (F,I) (large
arrowheads). (G–I) Enlarged views of (D–F), to show the co-localization of the two signals. Bars: (A–F) 50 microns, (G–I) 10 microns.
doi:10.1371/journal.pgen.1000245.g004
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versus repo-Gal4+UAS-dVMAT-B. We note that repo-Gal4 alone

decreased histamine levels (compare Figure 8A and 8B).

Therefore, all flies were tested in a repo-Gal4 background, and

our control for baseline histamine levels was dVMATP1/+; repo-

Gal4/+ (indicated as ‘‘Base.’’ with the genotype abbreviated as P/

+; Repo/+). The repo:dVMAT-B, genetically rescued flies (‘‘Res.1’’

and ‘‘Res.2’’), showed a significant increase (Dunnett’s multiple

comparison test, p,0.05) in histamine relative to those containing

repo-Gal4 alone (indicated as ‘‘Mut.’’ P/P, Repo/+). These data

indicate that expression of DVMAT-B in glia partially rescues the

loss of histamine from the visual system.

Discussion

As for glutamate, but unlike other biogenic amines, histamine

recycling in Drosophila requires metabolism in nearby glia.

Hitherto, the glial recycling pathway has been thought to be

restricted to the epithelial glia that surround sites of lamina

histamine release at the photoreceptor terminals [36,37,44,45].

We now find that DVMAT-B localizes to a separate subset of glia

that lie at the interface between the retina and the lamina, and that

loss of DVMAT-B reduces histamine storage in the visual system,

thus implicating these cells in the overall regulation of histamine

after its release from photoreceptors.

Ultrastructural and immunohistochemical studies in the fly have

identified several distinct glial populations in the lamina. Although

detailed ultrastructural accounts are available only in the housefly

[61,62], it is clear that Drosophila has similar populations of glia,

and that genetic markers exist for most [68,69]. The epithelial glia

have been assigned an important role in histamine recycling

[36,44,45], but the remaining glial subtypes have not been

functionally characterized. The fenestrated glia lie closest to the

retina and surround the photoreceptor axons as they enter the

distal face of lamina (see Figure 9A). Processes from the fenestrated

glia also extend through the basement membrane and into the

retina. Our data strongly suggest that DVMAT-B localizes to the

Drosophila equivalent of the fenestrated glia, consistent with the

previously described location of the dVMAT transcript [56].

We find that DVMAT-B expression in glia is important for

regulating the histamine content of the visual system. Mutation of

dVMAT decreases histamine storage in the fly’s head and expression

of DVMAT-B in glia partially rescues this deficit. Importantly,

immunolabeling for histamine in dVMAT mutants shows changes in

both the fenestrated glia and photoreceptor cells, suggesting a more

prominent role for DVMAT-B in histamine homeostasis than might

be expected based on its limited pattern of expression.

We have shown previously that histamine and other mono-

amines are recognized by a DVMAT/VMAT2 chimera contain-

ing the domains common to DVMAT-A and -B [47]. These data

Figure 5. Immuno-EM shows that DVMAT in the distal lamina
labels glia. (A) Electron micrograph of a tangential section through the
proximal retina (Re) with seven rhabdomeres (arrowheads) visible in
two complete cross-sections of ommatidia. The basement membrane,
bm arrows in (A,B), separates the retina from the underlying lamina.
Electron-dense gold particles lie just beneath the basement membrane.
Beneath this band of labeling, an additional small profile quite distinct
in appearance (double arrowhead) also expresses label, and may
represent the profile of a serotonin-containing nerve terminal. (B)
Higher magnification views of the labeled fenestrated glia and
photoreceptor axons in the distal lamina. Gold particles (arrowhead)
overlie the fenestrated glia. bm, basement membrane; pa, photorecep-
tor axons; t, tracheae; lc, glial nuclei. Bars: (A) 5 microns, (B) 2 microns.
doi:10.1371/journal.pgen.1000245.g005

Figure 6. Co-labeling for DVMAT-B and histamine. (A) A primary antibody to histamine (magenta) labels photoreceptor cell terminals in the
medulla (asterisks), an area in the proximal lamina (arrowheads) that contains the epithelial glia and axons of the outer photoreceptor cells, and a
band just beneath the retina (arrows). The retina is weakly labeled in this section. (B) Co-labeling with anti-B2 (green) shows co-localization (C) with
histamine in the band beneath the retina. Bar: 40 microns.
doi:10.1371/journal.pgen.1000245.g006
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support the idea that DVMAT-B could function as a histamine

transporter in glia. It is also conceivable that DVMAT-B could

recognize structurally related substrates such as the histamine

metabolite carcinine. Although this remains speculative, it is useful

to consider in the assessing the potential role of DVMAT-B in

histamine homeostasis.

The location of DVMAT-B and the effects of the dVMAT

mutant on histamine storage together suggest several potential

functions for DVMAT-B. First, it is possible that DVMAT-B and

the fenestrated glia play a role in histamine recycling. It is already

known that histamine released from photoreceptor cell terminals

in the lamina is metabolized to carcinine in the epithelial glia by

Ebony [44,45] and possibly transported into photoreceptor cells by

Inebriated [46]. Carcinine is then converted back into histamine in

the photoreceptors by Tan [36] to complete the recycling

pathway. The shuttle pathway involving ebony and tan is very

rapid [46]. Nonetheless, it is possible that carcinine produced by

the epithelial glia could be stored in the fenestrated glia prior to its

transport into the photoreceptor terminal, and that DVMAT-B

allows the vesicular storage of carcinine and/or histamine in the

fenestrated glia (Figure 9B, ‘‘Recycling’’ model). If DVMAT-B

allows the fenestrated glia to function as an intermediate in the

histamine-recycling pathway, it might be expected that the final

step of the pathway, conversion of carcinine to histamine in the

photoreceptors, would be blocked in dVMAT mutants. An

elevation in carcinine is seen in tan mutants, and similarly, if

DVMAT-B is required for recycling, mutation of dVMAT may

elevate carcinine contents. In future experiments we will test this

possibility using a previously developed assay [44] to analyze the

effects of ebony and tan on histamine metabolism.

Second, it is possible that the fenestrated glia play a role in

regulating the ‘spillover’ of any excess histamine that might diffuse

away from its intended site of action, or otherwise accumulate

ectopically after light-evoked release. Neurotransmitter transport-

ers play an important role in regulating the amount of transmitter

in the extracellular space that is available for signaling to

postsynaptic receptors [70–74]. Inhibition of plasma membrane

glutamate transporters, for example, increases glutamatergic

signaling at extra-synaptic ionotropic receptors in the hippocam-

pus [75] and cerebellum [76–78]. Glutamate spillover also

regulates the activation of metabotropic receptors that localize to

extrasynaptic sites on postsynaptic cells [79] and nearby neurons

[80]. Similarly, GABA and dopamine transporters may regulate

the amount of cross-talk that occurs between nearby synapses [81–

83]. The position of the epithelial glia at the site of histamine

release suggests that these rather than the fenestrated glia might

control spillover into an adjacent synapse. In addition, the

epithelial glia have recently been shown to express a histamine

receptor, HclB (HisCl1) [84,85] that could conceivably regulate

histamine storage. However, it also remains possible that the

fenestrated glia are involved in regulating possible spillover into

more distal sites or over a longer time course. If this is indeed their

primary role, loss of DVMAT-B activity would be predicted to

cause a progressive, light-evoked decrease in spatial resolution

Figure 7. dVMAT mutants show decreased histamine labeling in subretinal glia. (A–G) Confocal projection images of whole-mount
preparations of retina and optic lobes in control w (A–D) and mutant dVMATD14 homozygotes (E–G). Tangential views are shown in (A,C,D,F,G); the
surface of the lamina is shown in (B) and (E). In w tissues, a primary antiserum to histamine shows labeling of the retina (A) (arrowheads), the distal
lamina (arrows) and nerve terminals in the medulla (asterisks). dVMATD14 mutants (E–G) show reduced labeling at the surface of the lamina (E)
(arrows) and retina (F) (arrowheads) relative to the lamina (B) and retina (C) in w. Labeling of nerve terminals in the medulla (D,G) (asterisks) and an
area near the optic chiasm (D,G) (small arrow) in the dVMAT mutant (G) is less prominently reduced relative to the w control (D). (H) Cryostat sections
of a w head labeled with the anti-histamine antibody also show labeling of the lamina, including a band just beneath the retina (H) (large arrows) as
well as processes in the medulla (asterisks). Note that labeling of the retina is less evident in these cryostat sections compared with that in the
confocal stacks shown in (A–G). (I) dVMATD14 shows a decrease in labeling in the distal lamina relative to w—compare (H) and (I) (large arrows).
Labeling in the medulla (asterisks) is less reduced in dVMATD14 and is strong in the proximal lamina (small arrow). Bars: (A) 50 microns, (B–G)
25 microns, (H,I) 50 microns.
doi:10.1371/journal.pgen.1000245.g007
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through the excitation of neighboring cartridges, a possibility that

optomotor turning responses at different light intensities [86] could

reveal.

A third, recently described role for neurotransmitter transport-

ers in glia is the storage and regulated release of transmitter. In

addition to their well-established role in neurons, VGLUTs are

also expressed in glia, and exocytotic glutamate release from

astrocytes may regulate synaptic transmission [87–89]. Glial

transporters also regulate extracellular levels of neurotransmitter

through non-exocytotic mechanisms [90,91]. In mammals,

variations in the electrochemical potential across the plasma

membrane of non-neuronal cells can promote GABA efflux

through the GABA transporter [90]. A related transporter

expressed in glia, xCT, uses an exchange mechanism to regulate

glutamate levels at the Drosophila neuromuscular junction [91].

These studies highlight the emerging appreciation for glia as

important sites of neurotransmitter release.

To assess the possibility that the function of the fenestrated glia

may lie in this third role, to store and release histamine, it is useful

to consider the unusual electrophysiological properties of the

photoreceptor synapse. Since histamine activates a hyperpolariz-

ing chloride channel [33], decreased histaminergic signaling

depolarizes the target neurons in the lamina [9,92]. Therefore,

unlike most other synapses, the continuous presence of neuro-

transmitter in the synaptic cleft generates the resting state of the

postsynaptic neuron, and decreases in cleft transmitter concentra-

tion depolarize the target neurons [9]. Thus, the constant presence

of histamine in the synaptic cleft is required to maintain the

postsynaptic target neurons in their normal state. We speculate

that the fenestrated glia may provide a reserve pool of histamine

for signaling in the lamina (Figure 9B, ‘‘Reserve’’), with DVMAT-

B serving to store and/or release the reserve pool. We would

expect such release to occur under conditions of low neuronal

histamine release, as when neuronal stores have by some means

been depleted. A possible phenotype of the dVMAT mutant would

be a reduced sensitivity, or altered rate of adaptation to light,

testable using electroretinograms that report on neurotransmission

at the photoreceptor synapse [93], or more direct intracellular

recordings [94]. If glial histamine release facilitates adaptation, the

response of the mutant would be expected to differ from wt under

conditions of varying stimulus intensity. Regardless of whether the

fenestrated glia provide a substrate for histamine recycling,

spillover or reserve, further work will be required to resolve the

relationships of these cells to histamine recycling in the epithelial

glia [36,37,44,45].

For each of the models we describe, it is possible that DVMAT-

B functions in a manner similar to other vesicular transporters and

mediates the storage of histamine in intracellular vesicles, albeit in

glial rather than neuronal vesicles. Histamine could conceivably be

stored in vesicles similar to those found in mammalian glia that

release glutamate [87–89]. Alternatively, it is possible that

DVMAT-B does not function as a classical vesicular transporter.

The C-terminus of DVMAT-A is similar to the trafficking

domains of mammalian VMATs and VAChT, and as for other

vesicular transporters, DVMAT-A is efficiently endocytosed in vitro

[47,48]. In contrast, DVMAT-B contains a novel C-terminal

domain, and is poorly endocytosed in vitro [47]. Indeed, most

DVMAT-B appears to remain on the plasma membrane when it is

expressed in cultured S2 cells [47]. It is therefore possible that

DVMAT-B primarily localizes to the cell surface of the fenestrated

glia in vivo as it does in S2 cells in vitro. Given that the fenestrated

glia have extremely thin and highly convoluted processes,

distinguishing between these possibilities will require additional,

quantitative EM studies beyond those we report here.

If DVMAT-B localizes to plasma membrane in vivo as it does in

vitro, its mechanism of transport would differ from other known

vesicular transporters, all of which use a proton gradient to drive

active transport. During periods of sustained neuronal activity, the

extracellular milieu can acidify and the glial cytoplasm alkalinize

Figure 8. dVMAT mutant heads store less histamine than
controls. (A) Histamine content is decreased by 30% in the
homozygous dVMATP1 allele (P/P) and 47% in homozygotes of the
dVMATD14 allele (D14) compared with the control line w1118Cs10 (w; +/+).
Additional controls include a precise excision of the P in dVMATP1 (p.e.)
and dVMATP1 heterozygotes (P/+); one-way ANOVA p,0.0001, with
Bonferroni post-hoc test used to compare all data. Differences in head
histamine from w;+/+ are indicated as **, p,0.01 and ***, p,0.001. Bars
show the mean6SEM of independent trials measuring 3–4 heads/trial
of randomly mixed sexes, with the number of trials (n) indicated in the
bars. (B) Genetic rescue of dVMAT-B. All lines are in a genetic
background containing the transgene repo-Gal4/+, and the genotype
of the line used as a baseline control is dVMATP1/+; repo-Gal4/+
(indicated as ‘‘Base. P/+; Repo/+’’). In this background, histamine
content is reduced 45% by rendering the dVMATP1 allele homozygous
(dVMATP1/dVMATP1; repo-Gal4/+, indicated as ‘‘Mut. P/P; Repo/+’’.
Rescue was performed using repo-Gal4 with two separate UAS-
dVMAT-B transgenes, UAS-dVMAT-B1 and -B2, indicated as ‘‘Res.1 P/P;
Repo/B1’’ and ‘‘Res.2 P/P; Repo/B2’’, respectively. Additional controls
include dVMATP1 heterozygotes with repo-Gal4 and either UAS-dVMAT-
B1 or -B2, (indicated as ‘‘Con.1 P/+; Repo/B1’’, and ‘‘Con.2 P/+; Repo/
B2’’). One-way ANOVA (p,0.0006, with Dunnett’s multiple comparison
tests) shows that ‘‘Mut.’’ head histamine content differs from all other
lines (p,0.05: *). Bars show mean6SEM of independent trials
measuring 4 heads, of randomly mixed sexes, with the number of
trials indicated in the bars.
doi:10.1371/journal.pgen.1000245.g008
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[95–97]. The resultant, inwardly directed pH gradient could

conceivably cause a vesicular transporter at the plasma membrane

to transport neurotransmitter out of the cytoplasm and into the

extracellular space. However, substrate exchange rather than

active transport could also allow the export of histamine by

DVMAT-B. Indeed, it is tempting to speculate that histamine

stored in the fenestrated glia could be exchanged for extracellular

carcinine. This idea is particularly attractive if DVMAT-B and the

fenestrated glia serve to release histamine into the synaptic cleft as

in the ‘‘Reserve’’ model. In this scenario, elevated levels of synaptic

carcinine would directly activate the release of histamine into the

cleft by the fenestrated glia. The exchange of histamine for

carcinine would potentially serve both to maintain a baseline pool

of histamine in the synapse while simultaneously sequestering

carcinine for later recycling in photoreceptors.

Even though neurotransmitter metabolism in mammals differs

from that in insects [43,98], our results may bear on the transport

mechanisms by which histamine homeostasis is maintained in

mammals. Histamine uptake and metabolism in a variety of

mammalian cells, including glia, is well established [27–32].

However, as in invertebrates, the plasma membrane transporters

and putative recycling pathways for histamine both remain

unclear. The unsuspected localization of DVMAT-B to glia and

its role in regulating histamine levels in the fly raises the possibility

that mammals may employ similar, novel mechanisms for the

storage of histamine.

Materials and Methods

In situ Hybridization
For in situ hybridization, fly heads were mounted in Tissue-Tek

O.C.T. compound (Microm, Walldorf, Germany) and were shock-

frozen in liquid nitrogen. Sections (10 microns thick) were cut and

fixed with 4% paraformaldehyde. After acetylation and prehy-

bridization, subsequent hybridization with a digoxigenin-labeled

dVMAT-B specific RNA probe (see Figure 1A) was performed

overnight at 55uC. Specimens were blocked with normal goat

serum in Tris-buffer saline / 0.1% Triton X-100 (TBT) and then

treated with an alkaline phosphatase-coupled anti-digoxigenin

antiserum (1:1,000 dilution in TBT). NBT/BCIP color was

developed overnight.

UAS-dVMAT-B Lines
To facilitate the analysis of dVMAT-B transgenes, an hemag-

glutinin (HA) epitope tag was inserted at the identical site

previously used for dVMAT-A [47]. The HA tag does not affect

either expression or transport activity [47]. The HA-tagged

construct representing the previously described coding sequence

of dVMAT-B [47] was amplified using the polymerase chain

reaction (PCR) and inserted into the expression construct pEX-

UAS [99] to generate UAS-dVMAT-B. The sequence was verified

at the UCLA Genotyping and Sequencing Core Facility and flies

were transformed using standard methods [100] (Rainbow

Transgenics, Newbury Park, CA). To test expression, 9 lines were

crossed to the driver daughterless-gal4 (da-Gal4) and homogenates

from the progeny probed on Western blots as previously described

using a primary antibody (HA.11, Covance Research Products,

Denver, PA, USA) directed against the HA tag [40]. Two lines

showing moderate levels of expression were chosen for genetic

rescue experiments.

Antibody Production
To generate an antiserum against the N-terminus of DVMAT

shared by both the A and B splice variants (anti-N), a GST fusion

protein containing the first 120 amino acids of DVMAT was

generated. These residues represent the cytoplasmic N-terminus of

DVMAT-A and -B, which precedes the first predicted transmem-

brane domain [47]. The relevant amplicon was generated using PCR

and the primers AGGTGGAATTCAATCATCGACCGATG and

ATACCCAAGCTTTCAGCGATTGGATCCCCGCCAG (in-

cluding underlined EcoRI and HindIII sites respectively) and

Figure 9. The location and possible function of the fenestrated glia. (A) Photoreceptor cells R1–R6 terminate in the lamina where they
innervate lamina target neurons. Groups of six R1–R6 terminals and lamina target neurons are organized into cartridges, the component modules of
the lamina. The diagram illustrates the relationship between the photoreceptor cell axons (red), the basement membrane (blue) separating the retina
and lamina, and the lamina target neurons (silver). Identified glial subtypes in the fly’s lamina include the fenestrated (dark green), pseudocartridge
(orange), satellite (light green), epithelial (yellow), and marginal glia (brown). (B) Possible functions of DVMAT-B in the fenestrated glia include:
recycling metabolized histamine back to the photoreceptors (‘‘Recycling’’); preventing spillover of histamine into nearby cartridges (‘‘Spillover’’); and
releasing a reserve pool of histamine into the lamina to regulate its concentration during periods of heavy release (‘‘Reserve’’).
doi:10.1371/journal.pgen.1000245.g009
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subcloned between the EcoRI and HindIII sites in the expression

vector pGEX-KG, a gift of Greg Payne (UCLA), to generate a fusion

with glutathione-S transferase (GST). The fusion protein was injected

into rabbits (Cocalico Biologicals, Reamstown, PA, USA) and the

antiserum affinity purified against the same fusion protein immobi-

lized on nitrocellulose [47]. For Western blots and immunolabeling,

anti-N was used at concentrations of 1/1000 and 1/250 respectively.

To generate an antiserum specific for DVMAT-B, an HPLC-

purified peptide representing the last 21 amino acids of DVMAT-

B (SVPDSDAEAGRTNEAYESERL, B1-peptide) was synthe-

sized, conjugated to KLH and then injected into rats (Covance

Research Products). The serum was affinity purified against the

predicted carboxy terminus of DVMAT-B using a fusion protein

GST-DVMAT-B containing the DVMAT-B specific carboxy

terminal domain [47] immobilized on nitrocellulose. The affinity-

purified antibody was used at dilutions of 1:50 for immunohisto-

chemistry.

A second antibody to DVMAT-B (anti-B2) was also raised in rats.

The HPLC-purified peptide (H2N-GASVPDSDAEAGRTN+C-

CONH2, B2-peptide) was coupled to KLH and injected into rats

(Eurogentec, Seraing, Belgium). The serum was affinity purified

using B2-peptide conjugated to ACH-Sepharose. It was applied at a

dilution of 1:100 for immunohistochemistry.

dVMAT Mutants
A fly line containing a P element insertion into the gene CG6119

(the 39 end of dVMAT) [47] has been previously isolated as an

anonymous lethal gene on the second chromosome (l(2)SHO459)

[57]. The line was a generous gift of Dr. S.X. Hou (NIH) and is

maintained by the Indiana Stock Center (Bloomington, IL, USA)

as a lethal mutation balanced over CyO. We designate this allele

dVMATP1. To generate imprecise excisions from dVMATP1, the

parent line was mated to a source of transposase (D2-3) and

transposition allowed to occur in gametes of the F1 generation

using standard genetic techniques. PCR amplification using a

series of primers in the dVMAT gene was used to determine the

approximate size of any deletions that occurred. PCR products

from lines of interest were obtained from homozygous flies and

sequenced (UCLA Genotyping and Sequencing Core). For the

D14 line, a 51 base-pair sequence from the P element was

retained. This allele is designated as dVMATD14. Since dVMATD14

is phenotypically white, visual pigments that can impair immuno-

labeling experiments are absent. Another line showing a precise

excision (D10) was used as a control and is indicated in the text as

‘‘p.e.’’. Additional controls include Canton-S, and w1118 out-

crossed 10 times to Canton-S (w1118Cs10, indicated in the text as w;

+/+) [101]. dVMATP1 was outcrossed 5 times to w1118Cs10 prior to

genetic rescue experiments.

Immunofluorescent Labeling
To immunolabel histamine in whole mounts, adult heads were

manually dissected and fixed on ice in 4% 1-ethyl-3-(3-

dimethylamino-propyl)carbodiimide (EDAC), 0.1 M Na2HPO4/

NaH2PO4 buffer, pH 7.4 for 2.5 hours. For immunolabeling

experiments using anti-DVMAT-B1 heads were dissected and

fixed for 1.5 hour at 23uC in 4% PFA, 0.1 M Na2HPO4/

NaH2PO4 buffer, pH 7.4. Fixed brains were washed in PBS, 0.2%

Triton X-100, incubated for 30 minutes in PBS, 0.2% Triton X-

100, 5% FBS (block) and in 1:100 rabbit anti-histamine or 1:50 rat

anti-DVMAT-B1 antibody overnight at 4uC followed by the

corresponding secondary antibodies (1:1000 of anti-rabbit Alexa

Fluor 555, anti-rat Alexa Fluor 555, Molecular Probes, Eugene,

OR, USA) for 4 hours at 23uC before mounting in Aqua

PolyMount (Polysciences, Warrington, PA, USA).

To immunolabel cryostat sections using anti-N, heads were

fixed in 4% PFA and embedded in OCT freezing solution (Sakura

Finetechnical Co., Tokyo, Japan), frozen in liquid nitrogen and

sections cut in a frontal plane at 10 mm thickness on a cryostat

(Reichert-Jung 2800, Frigocut). The sections were processed for

double-immunolabeling with two primary antibodies, mouse anti-

Repo used at a dilution of 1:10 and rabbit anti-DVMAT N-

terminal at 1:250. The corresponding secondary antibodies were

used: Alexa-488 goat anti-mouse (Molecular Probes) at 1:100 and

Cy3 conjugated goat anti-rabbit (Jackson ImmunoResearch, West

Grove, PA) at 1:400. Labeled sections were mounted in

Vectashield beneath no. 0 cover glasses.

The anti-DVMAT-B2 antiserum (1:100), an affinity-purified

rabbit antiserum ap63 against Tan peptides (1:1000) [37], and a

rabbit anti-Ebony antiserum against a 221-aa peptide spanning

amino acids Gly438 to Asp658 of the Ebony protein [45] (1:750)

were employed for additional co-localization experiments. Primary

antisera were applied overnight at 4uC. Secondary Cy2-, Cy3- or

Cy5- conjugated antibodies (Dianova, Hamburg, Germany) were

incubated either for 2 hours at 23uC or overnight at 4uC at a

dilution of 1:200 to 1:1000. Slices were mounted in DakoCytoma-

tion Glycergel (DakoCytomation, Hamburg, Germany). For

double-labeling with anti-histamine and anti-DVMAT-B2, a

modified fixation procedure was applied: flies were fixed in 4%

2-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDAC) in

0.1 M phosphate buffer, pH 7.4, for 2 hours followed by 4%

paraformaldehyde for 3 hours at 4uC. Fly heads were embedded

in Tissue-Tec (Sakura Finetec, Zoeterwude, Netherlands), frozen

in liquid nitrogen and sectioned at 10 mm. Histamine was detected

with a rabbit anti-histamine antiserum (ImmunoStar, Hudson,

WI, USA) at a 1:500 dilution. Primary antisera were applied

overnight at 4uC. Secondary antibodies were incubated for

2 hours at 23uC.

EM Immunocytochemistry
Pre-embedding method. Heads were fixed in 2% PFA and

3.75% acrolein in 0.1 M PB, embedded in 7% agarose and 80 mm

slices cut in a horizontal plane using a Vibratome. The sections

were processed for immunohistochemistry with the rabbit

polyclonal anti-N-terminal epitope of DVMAT (anti-N) used at

a dilution of 1:25. A goat anti-rabbit 1.4 nm gold-conjugated

secondary antibody (Nanoprobes, Yaphank, NY, USA; Cat.

no. 2003) was used at 1:100. Labeled slices were postfixed with

2% glutaraldehyde, silver enhanced using an Amersham kit (Cat.

no. RPN491; Amersham, Bucks, UK), then postfixed with 0.5%

osmium tetroxide. After dehydration and embedding in PolyBed

810, 70 nm ultrathin sections were contrasted with uranyl acetate

and Reynold’s lead citrate and examined using an FEI Tecnai 12

electron microscope operated at 80 kV, and images collected with

a Kodak Megaview II digital camera using AnalySIS software (SIS

GmbH; Münster, Germany).

High-Performance Liquid Chromatography (HPLC)
The histamine content of adult heads was analyzed by HPLC

with fluorometric detection. Heads were homogenized and lysates

prepared as described [40]. Histamine in the head lysates was

derivatized with o-phthalaldehyde (OPA) before automated

injection onto the HPLC column. The OPA derivatizing agent

was prepared by adding 40 microliters of OPA (100 mg/ml of

ethanol) and 5 microliters of beta-mercaptoethanol to 3.95 ml of

0.125 M boric acid buffer, pH 10. A 30-microliter aliquot of OPA

reagent was reacted with the sample for 30 s. The OPA-amino

acid adducts were resolved on a reverse-phase 36150 mm column

(Betabasic-18, 3 microns, C18, Thermo Electron) with sodium
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acetate (35 mM, pH 5.9 adjusted with glacial acetic acid), 1%

tetrahydrofuran, as aqueous solvent. The organic mobile phase

consisted of 70% acetonitrile, 15% methanol, and 15% sodium

acetate (35 mM final concentration), pH 7.65 (adjusted with

glacial acetic acid). The flow rate was 0.6 ml/min with a gradient

profile as follows: 17–32% in 12 min, 32–40% in 3.5 min. The

column was washed with a gradient of 40–100% in 0.5 min, held

at 100% for 1 min, and returned to 17% in 0.5 min. The column

was equilibrated at 17% for 6 min before injection of the next

sample. Complete analysis required 24 min. The limit of detection

was 5 fmol. This whole procedure, including data collection and

calculations, was automated using Gilson hardware and software.
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