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P H Y S I C A L  S C I E N C E S

Flow-induced “waltzing” red blood cells: 
Microstructural reorganization and the corresponding 
rheological response
Chih-Tang Liao1,2,3†, An-Jun Liu1,4,5†, Yeng-Long Chen1,6,7*

We investigate flow-induced structural organization in a dilute suspension of tumbling red blood cells (RBCs) 
under confined shear flow. For small Reynolds (Re = 0.1) and capillary numbers (Ca), with fully coupled hydro
dynamic interaction (HI) and without interparticle adhesion, we find that HI between the biconcave discoid 
particles prompts the formation of layered RBC chains and synchronized rotating RBC pairs, referred here as 
“waltzing doublets.” As the volume fraction  increases, more waltzing doublets appear in RBC files. Stronger 
shear stress disrupts structural arrangements at higher Ca. We find that the flow-induced organization of waltzing 
doublets changes how the suspension viscosity varies with  qualitatively. The intrinsic viscosity is particularly 
sensitive to microstructural rearrangement, increasing (decreasing) with  at low (high) Ca that correlates with 
the change in the fraction of doublets. We verified flow-induced collective motion with comparison to two-cell 
simulations in which the cell volume fraction is controlled by varying the domain volume.

INTRODUCTION
Intriguing microstructures and phase transitions can emerge in 
equilibrium colloidal suspensions depending on thermal fluctua-
tions, the volume fraction of dispersed substances, and interparticle 
interaction (1, 2). The presence of external fields, such as a thermal, 
an electromagnetic, or a flow field could also give rise to the emer-
gence of nonequilibrium collective motion and dynamic patterns 
(3, 4). In both passive and active particle suspensions, long-range 
hydrodynamic interaction yields captivating correlated particle motion 
(5–9). Spatial confinement modulates interparticle interaction and 
introduces near boundary hydrodynamic effects. Thus, it plays a 
crucial role in inducing ordered microstructures (10–12). Shear-
induced transition from a disordered to an ordered microstructure 
could account for remarkable changes in suspension rheology (11, 13). 
Consequently, the rheological characteristics of a particular suspen-
sion depend on the particle volume fraction, shear rate, and con-
finement length, among other factors.

Because of the physiological importance of red blood cells (RBCs), 
the microstructure and dynamics of RBC suspensions have been 
extensively studied. Understanding the flow dynamics of artificial 
capsules, RBCs, and other biological cells enables single particle ma-
nipulation and collective assembly for biomedical engineering and 
physiological diagnostics and treatments (14, 15). Studies have il-
lustrated that blood and blood cell properties can serve as indicators 
for pathological conditions (16, 17), and soft polymeric micro-
capsules have applications as molecular drug carriers (18). Further-
more, intercellular attraction induces RBC aggregation and severely 

affects blood viscosity response to shear flow (19–21). RBC clustering 
can cause both shear thickening and shear thinning in blood flow 
(22, 23), which could indicate abnormally increased concentrations 
of attraction-inducing molecules in the blood (20, 24).

The RBC can be viewed as a bag of cytoplasm composed of a 
lipid bilayer supported on a spectrin network. Despite its relatively 
simple cell structure, it exhibits complex viscoelastic dynamics. In 
shear flow, RBCs manifest various cell shapes with different modes 
of motion such as tumbling, rolling, and tank-treading governed by 
the shear rate, RBC elasticity, spatial confinement, and inner/outer 
fluid viscosity contrast (25).

A recent rheoscope experiment shows that files of regularly spaced 
RBCs along the flow direction can develop in unidirectional shear 
flow (7), and accompanying numerical simulations suggest that other 
simple crystalline arrangements are also possible (7). A two-dimensional 
(2D) numerical simulation reveals that, in addition to the single file 
arrangement, RBCs can reorganize as two stacked files along the shear 
gradient direction as the volume fraction increases, with cells pass-
ing each other. Moreover, files of RBC doublets form under strong 
spatial constraints at high-volume fractions (26, 27).

Under pressure-driven flow, parachute-shaped RBCs rearrange 
as a single file in a circular tube of a diameter less than 10 m. As the 
hematocrit rises, RBCs would deform with slipper-like shapes and 
arrange in a zig-zag configuration. However, disordered arrange-
ment prevails in wider tubes (28). Similarly, in a quasi-2D rectangu-
lar microfluidic channel, either single or multiple files of RBCs can 
emerge, depending on the hematocrit, the channel width, and the 
magnitude of pressure drop. Stiffer membrane elasticity, neverthe-
less, hinders the formation of ordered configurations (6, 7).

The key physical forces that influence hydrodynamics-driven 
particle motion in flow are particle inertia, viscous dissipation, and 
particle elasticity. The particle Reynolds number Rep ≡ ​​ ̇ ​​R2/ cap-
tures the effects of particle inertia relative to viscous dissipation, and 
the capillary number Ca ≡ ​​  ̇​​R/G indicates the ratio of the fluid stress 
to the particle elastic restoring stress. Here,  is the fluid density, ​​  ̇​​ is 
the shear rate, R is the RBC radius,  is the fluid viscosity, and G 
denotes the RBC shear modulus. In dilute microparticle suspensions, 

1Institute of Physics, Academia Sinica, Taipei 11529, Taiwan (R.O.C.). 2Department 
of Engineering and System Science, National Tsing Hua University, Hsinchu 30004, 
Taiwan (R.O.C.). 3Nano Science and Technology Program, Taiwan International 
Graduate Program, Academia Sinica and National Tsing Hua University, Taipei 
11529, Taiwan (R.O.C.). 4Department of Physics, National Taiwan University, Taipei 
10621, Taiwan (R.O.C.). 5Department of Physics, University of Illinois at Urbana-
Champaign, Urbana, IL 61801, USA. 6Department of Chemical Engineering, National 
Tsing Hua University, Hsinchu 30004, Taiwan (R.O.C.). 7Physics Division, National 
Center for Theoretical Sciences, Taipei 10621, Taiwan (R.O.C.).
*Corresponding author. Email: yenglong@phys.sinica.edu.tw
†These authors contributed equally to this work.

Copyright © 2022 
The Authors, some 
rights reserved; 
exclusive licensee 
American Association 
for the Advancement 
of Science. No claim to 
original U.S. Government 
Works. Distributed 
under a Creative 
Commons Attribution 
NonCommercial 
License 4.0 (CC BY-NC).

mailto:yenglong@phys.sinica.edu.tw


Liao et al., Sci. Adv. 8, eabq5248 (2022)     25 November 2022

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

2 of 8

hydrodynamic interactions between the particles and the wall 
boundaries dominate the physical mechanisms of hydrodynamics-
driven cross-stream particle migration, which has been well charac-
terized and understood in the regime of Rep ≪ 1 and Ca ≪ 1 (29–40). 
In dense suspensions of soft particles, the interplay between par-
ticle cross-stream migration and interparticle collisions results in 
particle-free layers that can substantially affect suspension rheology 
(22, 23, 41). In this study, we keep Rep constant at 0.1 and allow Ca 
to vary between 0.01 and 0.2.

Limited analyses and modeling have suggested that interparticle 
hydrodynamic fields lead to collective microstructural reorganiza-
tion in similar systems for tank-treading deformable particles (7, 8). 
Here, we apply the lattice Boltzmann method coupled with model 
elastic biconcave capsules through the immersed boundary method 
(42) to investigate flow-driven microstructural rearrangements and 
the rheological consequences for tumbling RBC suspensions, with-
out inter-RBC adhesion, under confined shear flow. We model the 
cell membrane as a discrete elastic spring network composed of 
642 vertices and 1240 triangular faces. The fluid lattice grid size is 
x = 0.5 m. RBCs are confined in a box domain (Lx, Ly, Lz) ≅ (18R, 
3R, 18R) of volume V = Lx Ly Lz, with the RBC radius R = 3.91 m. 
Two parallel walls at 0 and Ly move in opposite directions to induce 
shear flow in the x direction. The boundary condition along the x 
and z directions is periodic. For simplicity, the viscosity ratio of the 
RBC cytosol to the surrounding fluid is set to be unity. We focus on 
the dilute limit with the RBC volume fraction 0.02 <  = NVRBC/V < 
0.1, where N is the total number of RBCs, and VRBC = 93.30 m3, in 
which the interparticle and near boundary hydrodynamic interac-
tions both strongly influence single and collective particle dynamics. 
Each simulation trajectory length is longer than 2000 strains ( = ​​  ̇​​t) 
such that the measured fluid stress reaches steady values. The 
model system corresponds to the dimensions of microvessels and 
microfluidic devices for biological and artificial cell sorting (7, 43). 
The model schematics are shown in Fig. 1 (A and B), and addition-
al details are given in Methods.

To compare how interparticle collective structure affects doublet 
formation and suspension rheology, we also perform simulations 
with only two RBCs in a chosen periodic domain matching the sus-
pension volume fraction for comparison. In the two-cell model, the 
volume fraction is controlled by changing Lx and Lz. We place two 
RBCs at the center with an interparticle distance of 3 m, and we 
generate an ensemble of 18 initial configurations for each set of  
and Ca by rotating the RBC pair about the z axis by  = 10° and 
 = [0, 180).

RESULTS
Waltzing RBCs
We identify three types of hydrodynamics-induced microstructural 
reorganization as shown in the top-down time-lapse snapshots in 
Fig.  1B and movies S1 to S3. For Ca  <  0.03, a few RBC doublets 
form, turn synchronously for several rotations (“waltz”), and break 
apart intermittently. For 0.03 < Ca < 0.1, the cells migrate toward 
the center flow plane because of cross-stream migration caused by 
near-wall hydrodynamic stress of a deformed elastic particle. In ad-
dition, the long-range interparticle hydrodynamic interaction re-
organizes rotating RBCs in regularly spaced arrangements in the 
center flow plane, with zero average translational velocity. Corre-
spondingly, the waltzing doublets synchronously rotate persistently 

for many cycles. For Ca > 0.1, RBC doublets are again more short-
lived as the stronger shear forces pull pairs apart. However, the reg-
ularly spaced files of RBCs in the flow-vorticity (xz) plane remain, 
and the file width widens as RBCs flow past each other.

To quantify the aforementioned microstructures, we compute the 
2D pair correlation function g(r) by projecting the center-of-mass 
position of RBCs in the flow-vorticity (xz) plane. The peaks in g(r) 
reflect the doublet formation, regularly spaced intrafile ordering 
along the flow direction and interfile ordering in the vorticity direc-
tion. For r < 2R, we observe peaks in g(r) that indicate doublets as 
shown in Fig. 1 (C to E). For Ca = 0.01, a single peak appears for 
r < 2R, indicating doublets with regular spacing between paired RBCs. 
Two peaks emerge in the same region for Ca = 0.07, indicating that 
the inter-RBC spacing in doublets varies slightly during rotation at 
higher shear rates. In addition, RBCs form doublets and line up in 
files rather than assemble into disordered aggregates as depicted in 
the right and left insets of Fig. 1E, respectively. For Ca = 0.18, dou-
blets are very short-lived as the RBCs move past others because of 
the stronger shear forces, and the peaks for r < 2R disappear.

Figure  1  (C  and  D) shows that a lower cell volume fraction 
( < 5%) facilitates the formation of files of RBCs along the flow (x) 
direction, which is indicated by peaks in g(r) for r > 2R. The peaks 
between 3R ≤ r < 4R indicate the center-to-center distance between 
two neighboring cells in the same file, which may be bimodal, as 
shown in fig. S1. We find no simple dependence of the center-to-
center distance between two neighboring synchronously rotating 
RBCs on the shear rate. Figure 1C shows that the peaks in g(r) for 
r ≈ 6R, 7R, and 9R, also shown in the snapshots in figs. S1 and S2, 
further indicate the long-range RBC file organization at a low .

The number of doublets should correlate with the average num-
ber of nearest neighbors, defined by ​​N​ n​​  = ​ ∫0​ l ​​ 2rg(r ) dr​, where the 
upper limit l is chosen to be 1.53R near the location of the minimum 
of g(r) for lower Ca (see Fig. 1, C to E). Figure 1F shows that Nn in-
creases as Ca increases up to Ca = 0.1, followed by decreasing Nn as 
Ca further increases for all  examined here.

Dynamics analysis
RBCs rotate/tumble in shear flow at low shear stresses (44, 45). The 
rotation time trot of a single RBC in simple shear flow is the inverse 
of the rotation frequency, which varies linearly with the shear rate 
(46). We apply fast Fourier transform to a time series window of 
selected material points on each particle, as shown in fig. S3, to 
calculate the corresponding frequency spectrum and the rota-
tion period.

We focus on the low Ca regime where the RBCs tumble or per-
form kayaking-like motion, in which the axis of revolution of the 
RBC precesses about the vorticity (z) axis (47). These solid-like mo-
tions resemble Jeffery orbits (48) that capture the motions of ax-
isymmetric rigid particles under simple shear flow in the Stokes 
flow limit. We use the following criteria to quantify doublets: The 
time trajectory of the center-to-center distance between an RBC 
pair oscillates as the pair rotates. During an oscillation cycle, if the 
average distance is less than 2R and the maximum center-to-center 
distance is less than 8R/3, then that pair of RBCs is counted as a 
doublet during that cycle. Movies S4 to S6 show waltzing RBC dou-
blets identified through the above criteria. By checking these crite-
ria along the time trajectory for all pairs of RBCs, we can identify 
the number of waltzing doublets Nd(t) of a system at each time step 
and define the doublet fraction as (t) = 2Nd(t)/N.
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To determine the rotation period ​​​ rot​​  = ​  ̇ ​ ​t​ rot​​​ of RBC doublets 
and singlets (in terms of strains), we first determine whether an 
RBC is in the doublet state at any given time. If an RBC is in the 
doublet state for longer than 90% of the time within a time window 
longer than 100 strains, then this time window is assigned as dou-
blet dominant. Conversely, if an RBC is in the doublet state for 
shorter than 10% of the time within a time window longer than 
100 strains, then this time window is assigned as singlet dominant. 
Within these windows, we calculate rot for each RBC. We calculate 
the average rotation period of a given state (Ca, ) from the average 
of the rotation periods for all RBCs in all ensembles corresponding 
to the state.

For both the suspension and the two-cell system, the doublet ro-
tation period increases linearly from about 20 to about 30 as Ca 
increases from 0.01 to 0.2, while the singlet rotation period varies 
within 10% of 20 (Fig. 1G). For the singlet RBCs in the suspension 

and in the two-cell system, rot is nearly independent of Ca. The onset 
of particle rotation at small Ca also appears consistent with previous 
reported results (46, 49). In contrast, the doublet rotation period 
increases as Ca increases with a slope ≈ 60 in both the suspension 
and the two-cell system, indicating increased resistance compared 
to the singlet. This may be attributed to the increased effective hy-
drodynamic radius of the doublet leading to increased friction. The 
effective hydrodynamic radius may increase with the shear rate due 
to increased separation within the doublet as a result of increased 
shear stress.

To further analyze the RBC motion, we determine the RBC roll-
ing angle  [defined by the angle between the vorticity (z) axis and 
the normal vector at the biconcave dimple] and the tumbling angle 
 [defined by the angle between the flow (x) direction and the pro-
jection of the major axis of the deformed RBCs on the xy plane]. Note 
S1 and figs. S3 and S4 provide examples of the detailed rotation 

Fig. 1. RBC confined suspension structure and dynamics. (A) Schematic of the two-cell simulation, with the selected material points indicated by numbers. (B) Top-
down view of time-lapse sequence snapshots of dilute RBC suspension in confined shear flow with  = 0.045 for Ca = 0.01 (top), 0.08 (middle), and 0.12 (bottom). The se-
lected doublets in dashed circles illustrate the synchronized rotation as time progresses for each state. The xz-projected pair correlation function g(r) for  = 0.024 (C), 0.04 
(D), and 0.06 (E) at Ca = 0.01 (black circle), 0.07 (blue diamond), and 0.18 (red triangle). The insets in (E) show disordered RBCs (left) and aligned RBC aggregates (right) with 
 = 0.06 at Ca = 0.01(left) and Ca = 0.07 (right). (F) The average number of the nearest neighbors dependence on Ca for various . (G) The averaged rotation times of dou-
blets (filled symbols) and singlets (hollow symbols) dependence on Ca in the suspension (circles) and the two-cell (squares) system for  = 0.04 (pink) and 0.06 (black). The 
red and blue dashed lines are the linear regression fits.
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analysis. The ensemble average of these two angles is defined as the 
average over all particles in all trials for chosen  and Ca, over the 
last quarter period of the simulation. The average rolling angle <> = 
0.29 ± 0.01  at  = 2% and saturates at 0.37 ± 0.01  at  = 6%, and 
it is largely independent of Ca with Rep = 0.1. The averaged tum-
bling angle <> = 0.02 ± 0.01 , which is consistent with the physical 
interpretation that the RBC makes full rotations as it tumbles.

State diagram
In Fig. 2 (A and B) , the state diagrams of the time-averaged doublet 
fraction ​​

_
 ​​ in the (Ca, ) phase space shows that doublets are more 

likely to emerge at larger  and smaller Ca. The highest ​​
_

 ​​ for the 
suspension system occurs for  > 0.045 and 0.075 < Ca < 0.1, and the 
probability of the doublet formation noticeably reduces as Ca be-
comes greater than 0.1 (Fig. 2A). ​​

_
 ​​ rises as  increases for all Ca. We 

note that the configurational snapshots and the pair correlation 
functions in Fig. 1C show regularly spaced RBC singlets at  = 0.01. 
As  increases, the long-range interparticle hydrodynamic interac-
tions promote additional RBCs to the regular positions of the RBC 
singlets, thus forming pairs. Thus, the doublet fraction increases as 
 increases. In contrast, ​​

_
 ​​ generally drops with increasing Ca as shown 

in Fig. 2A. Figure 2B shows that the doublet structure nearly vanish-
es for Ca < 0.05 in the two-cell system regardless of the volume frac-
tion. Inasmuch as there are only two cells, there cannot be inter- and 
intralayer organization, and the microstructure is distinctly dis-
similar from that of the suspension. Thus, the mechanism in which 
additional cells are promoted to regularly spaced singlet RBC posi-
tions is not available in the two-cell model. Accordingly, the discrep-
ancy in the state diagrams between the suspension and the two-cell 
system could be anticipated.

Suspension viscosity
To investigate the contribution of suspending substances to the vis-
cosity of a suspension, we calculate both the relative viscosity rel =  / 
0 and the intrinsic viscosity ​[ ] = ( − ​​ 0​​ ) / (​​ 0​​  ) = ​​yx​ p ​ / (​ ̇ ​ ​​ 0​​ )​, where 
0 is the solvent viscosity and ​​​yx​ p ​​ represents the shear component of 
the particle stress. Details of fluid stress and viscosity evaluations 
are given in Methods. For a hard sphere suspension in an unbounded 
domain, [] = 5/2, and it increases with  for nondilute suspensions 
due to increased interparticle interaction. Correspondingly, Fig. 2C 
shows that [] increases with the doublet fraction. While this is con-
sistent with other studies of aggregating RBCs with inter-RBC attractive 

interactions (50, 51), hydrodynamic interaction is the sole driver for 
the observed RBC doublet structure in this study.

Figure 3A shows that rel decreases and exhibits shear thinning 
as Ca increases for  = 0.024 to 0.06. The thinning rate ∂rel/∂Ca 
increases as  increases. For  < 0.04, ∂rel/∂Ca is nearly invariant as 
Ca increases. This is likely due to flow-induced particle cross-stream 
migration, with all particles focused in the flow center plane. For 
 > 0.04, we observe a slight upturn in rel at the smallest Ca. This 
may be attributed to the breakup of RBC pairs or RBC clusters that 
occur at the higher  due to the increased likelihood of interparticle 
collisions. The shear thinning effect is commonly observed in blood 
and is partially attributed to cell deformation and cell migration 
away from the walls, resulting in a more concentrated RBC distri-
bution near the center.

Furthermore, synchronized rotating RBCs due to hydrodynamic 
interactions may also affect lower viscosity by coordinating flow 
around the pair (26, 27). Figure 3B shows the same trends for the 
two-cell system, although the data variances are larger because of 
the smaller sample size. As expected, rel increases linearly as  in-
creases in the dilute suspension as we observe in Fig. 3 (C and D). 
We also observe that the slope ∂rel/∂ decreases as Ca increases.

Figure 4A shows that [] slightly increases, while  increases for 
Ca = 0.03, which correlates with the increasing ​​

_
 ​​. Figure 4A shows 

that ∂[]/∂ ≈ 0 for Ca = 0.06. This may be attributed to the faster 
decreasing [] because of increasing Ca (and particle deformation) 
as  increases, resulting in a crossing point at Ca = 0.06 as shown in 
Fig. 4B. Furthermore, [] decreases as  increases and ∂[]/∂ becomes 
negative for 0.08 < Ca < 0.2. This change in ∂[]/∂ as Ca increases 
is due to a combination of factors that affect [], including the inter-
particle arrangements, particle deformation, and also possibly the 
gradual transition of modes of RBC motion as Ca increases (52, 53).

More insights may be gained by examining how [] depends on 
Ca. Figure 4B shows that [] decreases as Ca increases for all , which 
has been observed in other studies and previously attributed to RBC 
deformation (52, 53). We observe that flow-induced microstructural re
organization also contributes to the change in []. Moreover, |∂[]/∂Ca| 
increases as  increases. We observe in Fig. 2A that the change in ​​

_
 ​​ 

with Ca is much slower for  < 0.04 compared to  > 0.045. This is 
also reflected in the number of nearest neighbors Nn, which is weakly 
dependent on Ca for  < 0.04 but decreases substantially as Ca in-
creases for  > 0.045, as shown in Fig. 1F. Figure 2C shows that  is 
linearly correlated with []. These observations indicate that the 

Fig. 2. Doublet dynamic state dependence in the RBC suspension. Doublet fraction state diagrams for (A) the RBC suspension and (B) the two-cell system. The color 
map represents the magnitude of ​​

_
 ​​. The crosses indicate states that are found to not reach stationarity within the trial run time (see note S2 and fig. S6). (C) The averaged 

intrinsic viscosity dependence on the doublet fraction for  = 0.049, Ca = 0.03 (blue) and 0.06 (cyan) and  = 0.06, Ca = 0.03 (black) and 0.06 (red). The dashed lines are 
linear fits through the data.
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Fig. 3. Dependence of the relative viscosity on the RBC suspension properties. Relative viscosity (rel) dependence on Ca in (A) the suspension and (B) the two-
cell system. The dependence of rel on  in (C) the suspension and (D) the two-cell system.

Fig. 4. Dependence of the intrinsic viscosity for the RBC suspensions. On (A)  and (B) Ca and for the two-cell system on (C)  and (D) Ca.
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breakup of waltzing doublets is correlated to the change in ∂[]/∂Ca  
with .

We also pinpoint how doublet formation influences [] by com-
parison to the two-cell system. In the two-cell system, doublets do 
not form for Ca < 0.05 due to the lack of regularly spaced layers. 
Figure 4D shows that [] decreases as Ca increases for all , but no 
curve crossing is observed for   =  0.04 to 0.065. Furthermore, 
Fig. 4C shows ∂[]/∂ < 0 for all Ca, in contrast to the suspension 
system. This suggests that hydrodynamics-induced interparticle 
ordering is also responsible for the changes in the rheological prop-
erties of the suspension and the two-cell system.

DISCUSSION
We carry out 3D simulations of dilute suspensions of model non-
adhesive RBCs in confined simple shear flow via the lattice Boltzmann 
method combined with the immersed boundary method to investi-
gate flow-induced collective microstructure and associated changes 
to the suspension dynamic properties. In the dilute suspension, we 
find the emergence of intermittent synchronously rotating RBC dou-
blets at low Ca. We observe tumbling cells align and form files along 
the flow direction once the hydrodynamic interaction is strong enough 
to drive slightly deformed cells to migrate toward the center plane 
of the channel. The flow field generated by particle-flow interactions 
result in regular spacing between RBCs in a file (8, 27). RBCs in differ-
ent files rotate in a synchronized manner, and more cells form pairs, 
revolve, and break up as though they are waltzing. As the shear stress 
further increases, we find that the number of files often reduces and 
that cells stay in more crowded bands leading to frequent collision.

Our calculations of the intrinsic viscosity reflect these micro-
structure transitions. At low Ca, [] weakly increases as  increases, 
corresponding to increased doublet fraction. At intermediate Ca, [] is 
nearly independent of , which could be attributed to flow-induced 
ordering of RBCs. Our data also suggest that the variation of the 
RBC doublet fraction with respect to  and Ca correlates with how 
[] varies with  and Ca. As Ca further increases, the RBC files may 
merge into wide bands. Cells repeatedly collide. Thus, disordered 
cell arrangements emerge and correspond to decreasing [].

Our study shows that interparticle hydrodynamics interactions (HI) 
is a key factor in flow-induced microstructural arrangements of RBCs. 
Without including RBC-specific interactions, our results are likely 

applicable to other soft discoids in confined flow. However, we only 
examine highly confined capillaries for dilute volume fractions that 
correspond to specific physiological flows in microvessels. We expect 
that, at higher volume fractions in larger vessels, the flow-induced mi-
crostructural evolution of large RBC rouleaux becomes the key contributor 
to complex rheological response such as shear thinning. Our future 
investigations will examine how including more rigid cells (white 
blood cells) and smaller cells (platelets) would affect the HI-induced 
collective structure and dynamics.

METHODS
Fluid solver and RBC model
We apply the lattice Boltzmann method coupled with the immersed 
boundary method to solve this suspension flow (42). RBCs are con-
fined in a channel with a height of around 1.5 L, where L is the RBC’s 
diameter. Simple shear flow in the x direction is induced by two 
parallel moving walls along the y axis. We apply periodic boundary 
conditions in both the x and z directions. The model setup is shown 
in the schematic in Fig. 1A.

We closely follow a coarse-grained elastic spring network model 
to simulate the RBC membrane (54). For simplicity, the fluid vis-
cosities inside and outside the cell are the same in this study. The 
biconcave shape of an RBC is parameterized by

	​​ y  =  ± L ​√ 

____________

  1 − ​ 4(​x​​ 2​ + ​z​​ 2​) ─ 
​L​​ 2​

 ​ ​​ [​​ ​a​ 0​​ + ​a​ 1​​ ​ ​x​​ 2​ + ​z​​ 2​ ─ 
​L​​ 2​

 ​  + ​a​ 2​​ ​ ​(​x​​ 2​ + ​z​​ 2​)​​ 
2
​ ─ 

​L​​ 4​
 ​​ ]​​​​	 (1)

where L  =  7.82 m, a typical RBC diameter. The coefficients are 
a0 = 0.0581, a1 = 2.0026, and a2 = −4.491. A spring network of 
642 nodes and 1280 triangular faces is used to discretize the cell mem-
brane. To capture the in-plane elasticity of the RBC membrane, we 
model each spring of the network by the worm-like chain (WLC) 
model combined with a repulsive potential given by

	​​​ U​ in−plane​​  = ​  ∑ j=1​ 
​
N

​ 
s
​​
 ​​​[​​ ​ 

​k​ B​​ T ​l​ m​​(3 ​x​j​ 2​ − 2 ​x​j​ 3​)
  ───────────  4p(1 − ​x​ j​​)

 ​  + ​ 
​k​ p​​

 ─ ​l​ j​​
 ​​]​​​​	 (2)

where p is the persistent length, kBT/p is the entropic force that 
determines the WLC strength; lj is the length of j-th spring, lm ≡ l0/x0 
is the allowed maximum spring length determined by the parameter 
x0, l0 is the initial length of each spring, xj = lj /lm; and kp is the spring 
constant of the repulsive power potential. The discretized bending 
energy of the cell membrane can be written as (54)

	​​ U​ out−of−plane​​ = ​  ∑ j=1​ 
​
N

​ 
s
​​
 ​​ ​k​ b​​ [ 1 − cos(​​ j​​ − ​​ 0​​ ) ]​	 (3)

where kb is the bending constant, j is the instantaneous dihedral angle 
between two adjacent triangular membrane patches, and 0 corresponds 
to the spontaneous curvature of the membrane, which is defined by the 
initial biconcave shape. Because the lipid bilayer is nearly incompressible, 
we enforce membrane area conservation by applying a harmonic 
potential defined as

	​​ U​ area​​  = ​ k​ ag​​ ​ ​(A − ​A​ t​​)​​ 2​ ─ 2 ​A​ t​​
 ​​	  (4)

where kag is the strength of the area constraint and At and A are the 
initial and instantaneous total membrane area, respectively. A volume 
constraint given by

Table 1. Parameters matched to real RBC values in Système 
International units.  

Parameters Physical values

L 7.82 × 10−6 m

x0 1/2.2

G 4.81 × 10−6 N/m

kb 3 × 10−19 J

kag 2.41 × 10−4 J

kv 2.48 × 102 J

Y 18.9 × 10−6 N/m

 kBT (T = 300 K)

r0 0.4 m
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	​​ U​ volume​​  = ​ k​ v​​ ​ ​(V − ​V​ 0​​)​​ 2​ ─ 2 ​V​ 0​​ ​​	  (5)

is also used to prevent a drift in the cell volume, where kv is the con-
straint strength, V0 denotes the initial RBC volume, and V is the 
instantaneous cell volume. To prevent particles from interpenetra-
tion, a short-range repulsive force is commonly applied to particles. 
The Lenard-Jones potential with a cutoff at the zero-force distance 
r0 is used in this study

	​​ U​ WCA​​  =  4 [ ​​(​​ ​  ─ r ​​)​​​​ 
12

​ − ​​(​​ ​  ─ r ​​)​​​​ 
6
​] for r  ≤ ​ r​ 0​​​	 (6)

where  is the potential strength, r is the distance between two mem-
brane nodes that are on different RBCs, and  = 21/6 r0.

The shear (G), area compression (K), and Young’s (Y) moduli 
can be estimated from the RBC model parameters as given by

	​​ G  = ​  ​√ 
_

 3 ​ ​k​ B​​ T ─ 4p ​l​ m​​ ​x​ 0​​ ​​(​​ ​  ​x​ 0​​ ─ 
2 ​(1 − ​x​ 0​​)​​ 3​

 ​ − ​  1 ─ 
4 ​(1 − ​x​ 0​​)​​ 2​

 ​ + ​ 1 ─ 4 ​​)​​ + ​ 
3 ​√ 

_
 3 ​ ​k​ p​​
 ─ 

4 ​l​0​ 3​
 ​​​	  (7)

	​ K  =  2G + ​k​ ag​​​	 (8)

	​ Y  = ​  4KG ─ K + G ​​	 (9)

The parameter values for this study are listed in Table 1.

Fluid stress and viscosity
We estimate the averaged shear stress <yx> by the momentum ex-
change between the fluid and the wall (55, 56). By means of the simple 
bounce-back boundary condition, one can easily compute ​〈 ​​ yx​​ 〉  = ​
∑ k​ ​​  ​p​x​ k ​ / (t ​A​ k​​)​, where the area of a unit wall patch Ak = (x)2, of 
which x is the lattice spacing, t is the integration time step, and 
the momentum exchange is denoted by ​ ​p​x​ k ​​. The suspension viscosity 
 then can be obtained by ​  =  〈 ​​ yx​​ 〉 / ​ ̇ ​​. To look into the relation-
ship between the suspension viscosity and the particle dynamics, we 
also calculate the intrinsic viscosity, defined as ​[ ] = ( − ​​ 0​​ ) / (​​ 0​​  ) =  
〈 ​​yx​ p ​ 〉 / (​ ̇ ​ ​​ 0​​ )​, where 0 is the ambient fluid viscosity and ​​​yx​ p ​​ de-
notes the particle stress. Chosen time trajectories of fluid stress and 
viscosity are provided in the Supplementary Materials.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abq5248
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