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Terminal Alkyne Coupling Reactions Through a Ring: Effect of
Ring Size on Rate and Regioselectivity

Caroline M. Storey, Matthew R. Gyton, Rhiann E. Andrew, and Adrian B. Chaplin*[a]

Abstract: Terminal alkyne coupling reactions promoted by
rhodium(I) complexes of macrocyclic NHC-based pincer li-
gands—which feature dodecamethylene, tetradecameth-
ylene or hexadecamethylene wingtip linkers viz. [Rh(CNC-
n)(C2H4)][BArF

4] (n = 12, 14, 16; ArF = 3,5-(CF3)2C6H3)—have

been investigated, using the bulky alkynes HC/CtBu and
HC/CAr’ (Ar’ = 3,5-tBu2C6H3) as substrates. These stoichio-

metric reactions proceed with formation of rhodium(III) al-

kynyl alkenyl derivatives and produce rhodium(I) complexes
of conjugated 1,3-enynes by C@C bond reductive elimination

through the annulus of the ancillary ligand. The intermedi-
ates are formed with orthogonal regioselectivity, with E-al-

kenyl complexes derived from HC/CtBu and gem-alkenyl
complexes derived from HC/CAr’, and the reductive elimina-

tion step is appreciably affected by the ring size of the mac-

rocycle. For the homocoupling of HC/CtBu, E-tBuC/CCH=

CHtBu is produced via direct reductive elimination from the

corresponding rhodium(III) alkynyl E-alkenyl derivatives with
increasing efficacy as the ring is expanded. In contrast, direct
reductive elimination of Ar’C/CC(= CH2)Ar’ is encumbered
relative to head-to-head coupling of HC/CAr’ and it is only

with the largest macrocyclic ligand studied that the two pro-

cesses are competitive. These results showcase how macro-
cyclic ligands can be used to interrogate the mechanism

and tune the outcome of terminal alkyne coupling reactions,
and are discussed with reference to catalytic reactions medi-

ated by the acyclic homologue [Rh(CNC-Me)(C2H4)][BArF
4]

and solvent effects.

Introduction

Intermolecular carbon-carbon bond forming reactions are
amongst the most coveted disconnections in synthetic organic

chemistry. As a conceptually straightforward and atom eco-
nomical method for the preparation of conjugated 1,3-enynes,

the transition metal catalysed dimerisation of terminal alkynes
is an example of growing importance.[1, 2] These enynes are ver-

satile unsaturated synthons and key subunits of biologically

active compounds and functional materials, however, their se-
lective formation remains difficult to realise. In addition to
competing metal-catalysed reactions of terminal alkynes, that
can lead to a range of alternative unsaturated products,[3, 4] the
formal addition of the C(sp)@H bond of one alkyne across the
C/C bond of another is a process that can result in three dif-

ferent 1,3-enyne isomers by virtue of head-to-tail (gem-) or
head-to-head coupling (E- and Z-) as depicted in Scheme 1.[1]

Indeed, although a wide variety of catalysts—based on transi-

tion metals, lanthanides, actinides, and main group elements—

have been shown to promote these reactions, few are capable

of producing single enyne isomers with high fidelity ; the ma-
jority lead to mixtures of regio- or stereo- isomers.[1] Greater

mechanistic understanding of these reactions is therefore re-
quired to enable rational design of more effective catalysts

Scheme 1. Metal catalysed reactions of terminal alkynes. Mes = 2,4,6-
Me3C6H2.
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and promote further application of terminal alkyne coupling
reactions in organic synthesis.

Rigid mer-tridentate “pincer” ligands are attractive ancillaries
for homogenous catalysis, conferring high thermal stability

and supporting a broad range of metal-based reactivity.[5, 6] Ap-
plication of these ligands in transition metal promoted termi-

nal alkyne coupling reactions is of contemporary interest, with
examples A–C showcasing the capacity of this ligand class to
enforce high product selectivity.[7, 8, 9] Along with advances
made employing other ancillary ligands,[10, 11] a number of rho-
dium pincers have emerged as state of the art catalysts. Meso-
ionic carbene-based Rh(CNC) complex A, for instance, is note-
worthy for the efficient gem-selective homocoupling of termi-

nal alkynes (1 mol %, 80 8C).[7] Using this precatalyst, 1-hexyne
and a series of heteroatom functionalised alkyl alkynes were

converted exclusively to the corresponding gem-enynes, while

a mixture of gem- (89 %) and E- (11 %) products was obtained
with phenyl acetylene. Conversely, phosphine-based Rh(PNP)

complex B principally afforded E-enyne products (>90 %)
under similar conditions (0.5 mol %, 100 8C) for a range of alkyl

and aryl alkynes, although tert-butyl acetylene was notably as-
sociated with lower fidelity for this isomer (58 %).[8] Closely re-

lated Rh(PNP) and Rh(PCP) catalysts demonstrate reduced se-

lectivity, giving mixtures composed predominately of gem- and
E-products.[8, 12] Recently a range of Fe(PNP) complexes have

been shown to promote Z-selective homocoupling reactions,
with C the formative example.[9, 13]

Commonly accepted mechanisms for the formation of
enynes from terminal alkynes typically invoke distinct path-

ways involving either alkyne insertion into a M@H bond (“hy-

drometallation”), alkyne insertion into a M@C bond (“carbome-
tallation”), or formation of a metal vinylidene intermediate (“vi-

nylidene”).[1] Head-to-tail coupling of alkynes can be accounted
for using the first two scenarios, while the third is required to

reconcile the formation of Z-isomers. In the context of homo-
coupling reactions promoted by rhodium pincer complexes

such as A and B, where reactive three-coordinate rhodium(I)

14 VE species are inferred as the active catalysts, the hydrome-
tallation pathways depicted in Scheme 2 are most likely opera-
tive.[12] Both involve initial C(sp)@H bond oxidative addition,
but bifurcate on coordination of the second alkyne to afford

the gem- or E- regioisomers. This assertion is supported by the
absence of Z-enyne products, organometallic chemistry of re-

lated rhodium complexes,[4, 11] and stoichiometric alkyne dimer-
isation reactions of an Ir(PCP) pincer complex.[14] Formation of
rhodium vinylidene complexes from the reaction between rho-

dium(I) precursors and terminal alkynes is, however, not un-
common suggesting that a vinylidene mechanism (Scheme 2)

should not be discounted without experimental evidence to
the contrary.[15]

As part of our work investigating the organometallic chemis-

try of NHC-based pincer complexes,[16, 17, 18] we have previously
shown that [Rh(CNC-Me)(C2H4)][BArF

4] (1-Me, ArF = 3,5-

(CF3)2C6H3 ; Scheme 3 ) catalyses the homocoupling of HC/CtBu
and HC/CAr’ (Ar’ = 3,5-tBu2C6H3) with orthogonal regioselectiv-

ity: proceeding with exclusive formation of E-enyne and gem-
enyne products, respectively.[19, 20] The regioselectivity of the

latter is remarkably reversed with the macrocyclic variant 1-12.
The stoichiometric C@C bond coupling occurring through the

annulus of the ancillary ligand, where the head-to-head prod-
uct E-Ar’C/CCH=CHAr’ becomes mechanically entrapped. Fol-

lowing communication of this initial finding,[19] we now detail a

systematic exploration of the capacity of macrocyclic CNC li-
gands to impart reaction control of terminal alkyne coupling

reactions: using HC/CtBu and HC/CAr’ as substrates, and mac-
rocyclic ligands with different ring sizes, viz. [Rh(CNC-n)(C2H4)]

[BArF
4] (1-n, n = 12, 14, 16; Scheme 3).

Results and discussion

Substrate and solvent dependence of homocoupling
reactions promoted by 1-12

As a starting point, reactions between 1-12 (20 mmolL@1) and
the terminal alkynes (2.1 equiv) were studied in situ using the

weakly coordinating solvents CD2Cl2 and 1,2-difluorobenzene
(DFB) at RT.[21] Quantitative spectroscopic conversion to rhodi-

um(III) alkynyl alkenyl derivatives E-2-12 and gem-3-12 was ob-
served for HC/CtBu and HC/CAr’, respectively, within 5 min

(Figure 1). Formation of these complexes can be reconciled by

a common hydrometallation mechanism and the orthogonal
regioselectivity is consistent with that observed in the corre-

sponding homocoupling reactions catalysed by 1-Me : it is
therefore ascribed to the electronic and steric characteristics of

the Rh(CNC) core alone.[20] The presence of the dodecameth-
ylene wingtip linker, however, attenuates onward product

Scheme 2. Selected pathways for the catalytic homocoupling of terminal al-
kynes into 1,3-conjugated enynes.

Scheme 3. Rh(CNC) pincers 1-Me and 1-n (n = 12, 14, 16).
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forming C@C bond reductive elimination and both aforemen-
tioned rhodium(III) derivatives are sufficiently persistent at RT

to be isolated in high yield on a larger scale. The former, E-2-
12 was obtained as an authentically five-coordinate complex

by recrystallisation from DFB solution (93 % yield) and the cor-

responding dichloromethane adduct E-2-12·CH2Cl2 when this
more coordinating solvent was used (73 % yield, Figure 1). Pre-

viously gem-3-12 was isolated from CH2Cl2 solution in 47 %
yield,[19] but a higher yield can be obtained when DFB is em-

ployed (73 %).
The structure of E-2-12 in the solid state is notable for the

adoption of a square-pyramidal coordination geometry, with

the E-alkenyl in the apical position and the alkynyl trans
to the pyridyl donor. This configuration is also observed for
E-2-12·CH2Cl2, but interaction with dichloromethane confers
an 18 VE configuration; the associated Rh1-Cl14 contact

(2.7027(13) a) is in line with known rhodium(III) precedents
(2.49–2.76 a).[16, 22] Solvent coordination is associated with

slight elongation of the metal-ligand bonds as expected for
the change in metal coordination geometry, with perturbation
of the alkynyl Rh1@C2 bond [1.978(4) cf. 1.958(3) a] the most

notable, and straightening of the N101-Rh1-C2 angle [171.9(2)
cf. 167.27(9)8] . In the case of previously reported gem-3-12, it

is the alkynyl which is found in the apical position [Rh1-C2,
2.939(6) a] , with the gem-alkenyl located trans to the pyridyl

donor [Rh1-C4, 1.983(5) a, cf. 1.995(2)/2.003(4) a for E-2-12/E-
2-12·CH2Cl2] , enabling adoption of a p-interaction with the Ar’
substituent [Rh1-Cnt(C=C), 2.467(4) a] and conferring an 18 VE

configuration.[19] Crystallographically characterised rhodium(III)
alkynyl alkenyl precedents are limited to a single coordinatively

saturated example featuring a dienyl ligand [Rh-C/C, 1.937(8) ;
Rh-C=C, 2.015(9) a] .[4]

In CD2Cl2 solution at 298 K, the coupled 1H resonances of
the E-alkenyl in E-2-12 can be observed at d 6.53 (RhCH=CH)

and 3.55 (RhCH=CH). The magnitude of the coupling constant
(3JHH = 13.5 Hz) is consistent with the structural formulation as

are the characteristics of the associated 13C resonances, which

are located at d 119.7 (RhCH=CH) and 144.3 (RhCH=CH); the
former exhibiting appreciable coupling to 103Rh (1JRhC = 37 Hz).

The alkynyl 13C signals can also be identified at d 120.0
(RhC/C, 2JRhC = 12 Hz) and 82.8 (RhC/C, 1JRhC = 57 Hz). The
1H NMR spectrum at this temperature is noteworthy for higher
than expected symmetry and extensive line broadening of the
pyCH2 and NCH2 resonances, indicating rapid atropisomerism

of the pincer backbone on the NMR timescale (500 MHz). This
process was qualitatively probed by variable temperature
1H NMR spectroscopy, with the C1 symmetric slow exchange
regime reached upon cooling to 225 K (see ESI). Similar struc-

tural dynamics were observed for gem-3-12 in CD2Cl2 solution,
but the gem-alkenyl [d1H 5.57, 5.76; d13C 157.7 (RhC=CH2, 1JRhC =

27 Hz), 114.6 (RhC=CH2)] and alkynyl [d13C 104.7 (RhC/C, 2JRhC =

15 Hz), 85.0 (RhC/C, 1JRhC = 72 Hz)] ligands can be readily iden-
tified by NMR spectroscopy.[19] Cooling gem-3-12 to 225 K re-

sulted in decoalescence of the pincer 1H resonances and, con-
sistent with p-coordination of the alkenyl Ar’ substituent, one

set of the 3,5-tBu2C6H3 signals (500 MHz). These data fully cor-
roborate the structures of E-2-12 and gem-3-12 observed in

the solid state, with the magnitudes of the 1JRhC coupling con-

stants consistent with the different s-organyl configurations.
Similar spectroscopic signatures are observed in DFB solution.

Heating E-2-12 in 1,2-C2D4Cl2 or DFB solution (20 mmolL@1)
resulted in C@C bond reductive elimination through the annu-

lus of the bound CNC-12 ligand and formation of the corre-
sponding E-enyne complex E-4-12, completing the formal

Figure 1. Reactions of 1-12 with HC/CtBu and HC/CAr’. Solid-state structures of E-2-12, E-2-12·CH2Cl2 and E-4-12 : thermal ellipsoids drawn at 50 %, 30 % and
50 % probability, respectively; anions, solvent molecules, and most hydrogen atoms omitted for clarity. Selected bond lengths (a) and angles (deg): E-2-12 :
Rh1-C2, 1.958(3) ; C2-C3, 1.208(4) ; Rh1-C2-C3, 169.2(2) ; Rh1-C4, 1.995(2) ; C4-C5, 1.322(4) ; Rh1-C4-C5, 126.3(2) ; Rh1-N101, 2.174(2) ; Rh1-C109, 2.090(2); Rh1-
C115, 2.018(2) ; N101-Rh1-C2, 167.27(9); E-2-12·CH2Cl2 : Rh1-C2, 1.978(4) ; C2-C3, 1.204(6) ; Rh1-C2-C3, 171.0(4) ; Rh1-C4, 2.003(4) ; C4-C5, 1.324(6) ; Rh1-C4-C5,
125.0(3) ; Rh1-Cl14, 2.7027(13); Rh1-N101, 2.182(4) ; Rh1-C109, 2.103(5) ; Rh1-C115, 2.038(5) ; N101-Rh1-C2, 171.9(2); E-4-12 : Rh1-Cnt(C2,C3), 2.019(3) ; C2-C3,
1.243(6) ; C2-C4, 1.452(5) ; C4-C5, 1.333(5) ; C2-C4-C5, 122.1(3) ; Rh1-N101, 2.103(3) ; Rh1-C109, 2.071(3) ; Rh1-C115, 2.038(3) ; N101-Rh1-Cnt(C2,C3), 178.37(12); py-
Rh-C/C twist, 31.9(2).
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head-to-head coupling of HC/CtBu [t1/2(328 K) = 210 min, 1,2-

C2D4Cl2 ; 22 min, DFB]. This reaction was followed in situ by
1H NMR spectroscopy and found to follow first order kinetics

across a wide temperature range (328–348 K, 1,2-C2D4Cl2 ; 313–

333 K, DFB). The associated activation parameters were deter-
mined by Eyring analysis and highlight a large solvent depend-

ence. The reaction is characterised by a 32 kJ mol@1 higher acti-
vation enthalpy and positive activation entropy, when carried

out in 1,2-C2D4Cl2 compared to DFB (DDS* = + 79 J K@1 mol@1,
Table 1). These differences are fully consistent with appreciable

coordination of the chlorocarbon solvent to E-2-12 : an inter-

pretation in line with the relative donor ability and explicitly
evidenced by isolation of E-2-12·CH2Cl2 (vide supra). The prod-

uct E-4-12 was isolated in 85 % yield and fully characterised in
solution and the solid state (Figure 1 and vide infra).

We have previously communicated that thermolysis of gem-
3-12 in 1,2-C2D4Cl2 does not yield the gem-enyne complex

gem-5-12 expected for a single reaction step and through ex-

trapolation of the reactivity established for 1-Me : instead the
mechanically interlocked E-enyne complex E-5-12 is pro-

duced.[19] The same outcome was observed when this reaction
was reanalysed in DFB, proceeding with first order kinetics on

a similar timescale [20 mmolL@1; t1/2(328 K) = 92 min, 1,2-
C2D4Cl2 ; 125 min, DFB; Table 1]. A multistep mechanism, start-
ing with b-H abstraction and terminating with C@C bond re-

ductive elimination from E-3-12, is proposed to reconcile the
formation E-5-12 from gem-3-12 and a similar sequence has
been established for the stoichiometric homocoupling of HC/
CPh into E-PhC/CCH=CHPh by an Ir(PCP) complex.[14] The
proposition is also supported experimentally by isotope label-
ling experiments, which involved heating gem-3-12 in 1,2-

C2D4Cl2 or DFB in the presence of excess DC/CAr’ and resulted
in significant deuterium incorporation into both positions of
the enyne core. For comparison, no significant isotope scram-

bling was observed when a 1:1 mixture of E-2-12 and the d2-
isotopologue [Rh(CNC-12)(C/CtBu)(E-CD = CDtBu)][BArF

4] was

heated in 1,2-C2D4Cl2 or DFB, indicating that formation of E-2-
12 (from 1-12 and HC/CtBu) is irreversible with respect to its

onward reactivity.[23] On this basis—along with the small sol-

vent dependence—we (now) ascribe formation of E-3-12 by
1,2-migratory insertion as the rate-determining step for gem-3-
12!E-5-12 ; rather than reductive elimination from E-3-12.[24]

The turnover-limiting step in the homocoupling of HC/CAr’

into Ar’C/CC(= CH2)Ar’ catalysed by 1-Me is associated with
C@C bond formation, viz. gem-3-Me!gem-5-Me. By reference

to the associated activation parameters we conclude that in-

corporation of the dodecamethylene wingtip linker destabilises
direct reductive elimination from gem-3-12 by at least

DG*
298K = 13 kJ mol@1: presumably a direct consequence of pro-

nounced steric buttressing between the bulky a-aryl substitut-
ed alkenyl ligand and the wingtip linker.

Larger macrocyclic proligands and their rhodium complexes

To interrogate the impact of the methylene chain on the rate
and regioselectivity of terminal alkyne homocoupling reac-

tions, attention turned to the organometallic chemistry of rho-
dium complexes of larger macrocyclic CNC ligands. To this end,

the new proligands CNC-14·2 HBr and CNC-16·2 HBr were pre-
pared using high dilution versions of procedures developed in

our lab for the synthesis of CNC-n·2 HBr (n = 8, 10, 12).[18] For-

mation of these hygroscopic bis(imidazolium) macrocycles was
confirmed in solution through a combination of NMR spectros-

copy and ESI-MS. The latter notably enabled alternative formu-
lation as higher order oligomers to be discounted, where

[M-Br]+ ion peaks with the expected integer isotope pattern
were observed [n = 14, 514.2557 (calcd 514.2540); 16, 542.2848

(calcd 542.2853) m/z] . As further structural corroboration, neu-

tral imidazole-2-thione and cationic palladium(II) chloride deriv-
atives of both new proligands were prepared enabling con-

struction of homologous series of the form CNC-Me·S2 and
CNC-n·S2 (n = 12, 14, 16), and [Pd(CNC-Me)Cl]+ (6-Me)[25] and

[Pd(CNC-n)Cl]+ (6-n ; n = 8, 10, 12,[18] 14, 16): full details are pro-
vided in the ESI.

Using an analogous three-step copper transmetalation pro-
cedure to that described for 1-Me and 1-12,[19] the rhodium

ethylene derivatives 1-14 (78 %) and 1-16 (67 %) were isolated
as analytically pure materials in good overall yield and fully
characterised (Figure 2). These complexes are extremely air-

sensitive, but can be stored for prolonged periods in the solid
state under an inert atmosphere without appreciable decom-

position. As for the other Rh(CNC) congeners, 1-14 and 1-16
are appreciably fluxional in CD2Cl2 solution at ambient temper-

ature, exhibiting broadened pyCH2, NCH2 and C2H4 signals con-

sistent with atropisomerism of the pincer backbone on the
1H NMR timescale (500 MHz). The 13C resonance of coordinated

ethylene can be located at ca. d 50 by HSQC experiments for
1-14 and 1-16 in agreement with that observed for 1-12 (d

47), but noting this signal could not be located for 1-Me.[19]

The carbene resonances for 1 range from d 181.9–184.8, in-

Table 1. Activation parameters for C@C bond reductive elimination reactions.

Reaction Solvent DH* [kJ mol@1] DS* [J K@1 mol@1] DG*
298K [kJ mol@1] t1/2 (328 K)

E-2-12!E-4-12 1,2-C2D4Cl2 125:1 + 55:4 109:3 210 min
E-2-12!E-4-12 DFB 93:1 @24:4 101:5 22 min
gem-3-12!E-5-12[a] 1,2-C2D4Cl2 119:1 + 44:4 106:3 92 min
gem-3-12!E-5-12 DFB 109:3 + 8:9 106:6 125 min
gem-3-Me!gem-5-Me[a] CD2Cl2 97:1 + 15:5 93:3 51 s[b]

gem-3-Me!gem-5-Me[c] DFB 95:3 + 28:10 87:6 5 s[b]

[a] From ref. [19] . [b] Extrapolated using the activation parameters. [c] Determined as part of this work for comparison.
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creasing in the order 1-12<1-14<1-16<1-Me, consistent

with that observed for 6, and are strongly coupled to 103Rh
(1JRhC = 40–41 Hz).

The donor properties of the CNC ligands have been assessed

systematically using rhodium carbonyl derivatives [Rh(CNC-
Me)(CO)][BArF

4] (7-Me) and [Rh(CNC-n)(CO)][BArF
4] (7-n ; n = 12,

14, 16), exploiting the n(CO) stretching band as a convenient
spectroscopic handle (Table 2).[26] These carbonyl complexes

were obtained in quantitative spectroscopic yield by reaction
of 1 with carbon monoxide and the complete series has been

characterised in the solid state by X-ray diffraction. The IR data

of 7 in CH2Cl2 solution indicate the net donor strengths are
equivalent within error (Table 2) and this interpretation is rein-

forced by location of all the 13C carbonyl resonances at d 194
with 1JRhC = 80 Hz (CD2Cl2). Pertinent to the onward reactivity of

1-n, inspection of the space-filling diagrams and observation
of solution phase C2 confirms the carbonyl ligand is readily ac-
commodated within the cavity defined by the tethered wing-

tip substituents (Figure 2).

Effect of increasing the ring size on the homocoupling of
HC/CtBu

With the new rhodium ethylene precursors in hand, the effect
of increasing the ring size was first investigated for the homo-

coupling of HC/CtBu in DFB. Reactions of 1-14 and 1-16
(20 mmolL@1) with HC/CtBu (5 equiv) were monitored in situ

by NMR spectroscopy at RT, revealing quantitative spectro-
scopic conversion to the corresponding rhodium(I) E-enyne

complexes E-4-14 and E-4-16 within 2 h; with the latter

considerably faster than the former (Figure 3). The products
were subsequently isolated in excellent yield on a larger scale

(81 and 94 %, respectively) and extensively characterised in so-

lution and the solid state.
In CD2Cl2 solution the three new E-enyne complexes E-4-n

(n = 12, 14, 16) are characterised by C1 symmetry, downfield
shifted E-alkene 1H resonances (CH=CHtBu, d 6.60–7.44, cf.

6.05; CH=CHtBu, d 6.00–6.05, cf. 5.39) with 3JHH = 15 Hz and
103Rh coupled alkyne 13C resonances (C/CtBu, d 89.5–95.4,
1JRhC = 14–16 Hz; C/CtBu, d 72.8–75.6, 1JRhC = 10–12 Hz). These

data are fully consistent with the structural formulations, in
agreement with those previously reported for E-4-Me,[20] and

supported by elucidation in the solid state by single crystal X-
ray diffraction (Figures 1 and 3). The solid-state structures of E-
4-n unequivocally evidence the interpenetrated coordination
mode of the enyne, which is bound to the metal with contacts

of 2.019(3), 2.040(14) and 2.019(2) a, for n = 12, 14, 16

respectively; marginally elongated compared with E-4-Me
[2.006(3) a] .[20]

Analysis of reactions of 1-14 and 1-16 with HC/CtBu in DFB
at 278 K in situ by NMR spectroscopy enabled E-2-14 and E-2-
16 to be established as intermediates in the formation of E-4-
14 and E-4-16, respectively, with b-alkenyl 1H signals the most

diagnostic (E-4-14, d 3.61, 3JHH = 12.1 Hz; E-4-16, d 3.63, 3JHH =

12.1 Hz; cf. E-4-12 at 298 K, d 3.65, 3JHH = 12.6 Hz). Conversion
to the rhodium(III) intermediates is fast relative to the onward

formation of the corresponding E-enyne complex and the de-
termination of the associated rates enable increasingly facile

C@C bond reductive elimination to be quantified at 278 K in
the order E-2-16 (t1/2 = 33 min)>E-2-14 (t1/2 = 280 min) > > E-
2-12 (t1/2>9 days). Having established that the donor proper-

ties of CNC-n are equivalent, electronic explanations can be
ruled out and instead we attribute the increase in rate to re-

duced intercalation of the methylene chain between the ap-
proaching s-organyls : steric buttressing that would hinder

adoption of the distorted trigonal bipyramidal transition state
geometry required for C@C bond reductive elimination.

Figure 2. Synthesis of rhodium(I) complexes of CNC-14 and CNC-16. Solid-state structures of 7-12,[19] 7-14, 7-16, and 7-Me[19] in spacefill format: only one
unique cation is shown for 7-14 and 7-16 (Z’ = 2). Anions and minor disordered components (methylene chain in 7-14) omitted for clarity.

Table 2. Carbonyl stretching frequencies of 7 (CH2Cl2).

n(CO) [cm@1] Source

7-12 1978 ref. [19]
7-14 1978 this work
7-16 1978 this work
7-Me 1980 ref. [19]
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Effect of increasing the ring size on the homocoupling of
HC/CAr’

On turning to reactions of 1-14 and 1-16 with a twofold

excess of HC/CAr’ in DFB, it quickly became apparent from
analysis in situ by NMR spectroscopy that rhodium(III) alkynyl

alkenyl derivatives gem-3-14 and gem-3-16 are formed rapidly,
in quantitative spectroscopic yield, and are considerably more

thermally robust than gem-3-12. Both new complexes were

subsequently isolated in excellent yield on a larger scale (73
and 90 %, respectively) and extensively characterised, including

gem-3-16 in the solid state by single crystal X-ray diffraction
(Figure 4).

As for the dodecamethylene variant, gem-3-14 and gem-3-
16 are structurally fluxional in CD2Cl2 solution at 298 K, exhibit-
ing very broad pincer 1H resonances consistent with rapid

atropisomerism of the ancillary ligand on the NMR timescale
(500 MHz). Nevertheless, the gem-alkenyl [gem-3-14, d 5.66,
5.74; gem-3-16, d 5.67, 5.70; cf. gem-3-12, d 5.57, 5.76] and
two sharp 18H 3,5-tBu2C6H3 resonances are readily discerned
from the 1H NMR spectrum of each complex at this tempera-
ture. The structural dynamics of the pincer ligand are arrested

upon cooling to 225 K and restricted rotation of one of the Ar’
groups becomes apparent. The latter is consistent with p-coor-
dination of the alkenyl Ar’ substituent observed in the solid for
gem-3-12 [Rh1-Cnt(C=C), 2.467(4) a] and gem-3-16 [Rh1-
Cnt(C=C), 2.579(4) a] . The 13C NMR spectroscopic characteris-

tics of the s-organyl ligands in gem-3-14 [d 156.8 (RhC=CH2,
1JRhC = 25 Hz), 114.5 (RhC=CH2), 104.8 (RhC/C, 2JRhC = 16 Hz),

85.8 (RhC/C, located by HMBC)] and gem-3-16 [d 155.6 (RhC=

CH2, located by HMBC), 115.3 (RhC=CH2), 105.4 (RhC/C, 2JRhC =

15 Hz), 87.2 (RhC/C, located by HMBC)] are fully consistent

with their structural formulations and, moreover, congruent
with those determined for gem-3-12 [d 157.7 (RhC=CH2, 1JRhC =

27 Hz), 114.6 (RhC=CH2), 104.7 (RhC/C, 2JRhC = 15 Hz), 85.0
(RhC/C, 1JRhC = 72 Hz)] . The key solid-state metrics of gem-3-16

[e.g. , Rh1-C2, 1.920(5) ; Rh1-C4, 1.971(5) a] are only slightly per-

turbed from those of gem-3-12 [Rh1-C2, 1.940(5) ; Rh1-C4,

1.983(5) a] , with the more prominent contraction of the alken-
yl contact consistent with reduced p-coordination of the Ar’

substituent (vide supra).
Prolonged heating of gem-3-14 and gem-3-16 at elevated

temperature was required to induce onward reactivity in DFB.
The former proceeded smoothly to afford E-5-14, with t1/2 =

91 min at 353 K and was isolated from solution in 84 % yield.

This exclusive switch in regioselectivity mirrors that observed
for the dodecamethylene variant (t1/2<10 min at 353 K) but is

not maintained for gem-3-16, where instead a &1:1 mixture of
gem-5-16 and E-5-16 results at 353 K (t1/2 = 66 min). The forma-

tion of gem-5-16 indicates that the associated single step C@C
bond reductive elimination is competitive with production of
E-Ar’C/CCH=CHAr’ within the macrocycle. Successive recrystal-

lisation enabled separation of the two regioisomers of 5-16,
which were obtained as analytically pure materials and exten-
sively characterised; including in the solid state by single crys-
tal X-ray diffraction (Figure 4). As reflected in the reactivity of

E-2-n and on the basis of reduced buttressing with the bulky
a-aryl substituted alkenyl ligand, the logical consequence of

lengthening of the wingtip linker is a reduced activation barri-

er for direct C@C bond reductive elimination from gem-3-n
and formation of gem-5-n, i.e. , the reactivity tends toward that

of gem-3-Me. In the homologous series studied, the tipping
point is clearly reached for the hexadecamethylene congener,

as shown by the reaction outcome : the rates for the smaller
ring systems instead reflect changes in the activation barrier

for the competitive head-to-head coupling process and are

clearly nuanced.
The structures of E-5-n (n = 12,[19] 14, 16) were corroborated

in CD2Cl2 solution by NMR spectroscopy at 298 K and are char-
acterised by C1 symmetry, pairs of alkene 1H resonances with

large 3JHH coupling of 15 Hz (CH=CHAr’, d 7.81–8.05; CH=

CHAr’, d 6.95–7.01), and 103Rh coupled alkyne 13C resonances

Figure 3. Reactions of 1-n with HC/CtBu. Solid-state structures of E-4-14 and E-4-16 : thermal ellipsoids drawn at 30 % and 50 % probability, respectively;
anions, solvent molecules, and most hydrogen atoms omitted for clarity. Selected bond lengths (a) and angles (deg): E-4-14 : Rh1-Cnt(C2,C3), 2.040(14); C2-
C3, 1.22(2) ; C2-C4, 1.38(2) ; C4-C5, 1.31(2) ; C2-C4-C5, 128(2) ; Rh1-N101, 2.119(13) ; Rh1-C109, 2.07(2) ; Rh1-C115, 2.01(2) ; N101-Rh1-Cnt(C2,C3), 170.7(6) ; py-Rh-
C/C twist, 28.0(12) ; E-4-16 : Rh1-Cnt(C2,C3), 2.019(2) ; C2-C3, 1.245(3) ; C2-C4, 1.441(3) ; C4-C5, 1.323(3) ; C2-C4-C5, 123.5(2) ; Rh1-N101, 2.107(2) ; Rh1-C109,
2.060(2) ; Rh1-C115, 2.016(2) ; N101-Rh1-Cnt(C2,C3), 175.67(7) ; py-Rh-C/C twist, 31.96(15).
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(C/CAr’, d 88.9–92.3, 1JRhC = 14 Hz; C/CAr’, d 83.6–84.0, 1JRhC =

13–14 Hz). In addition to verifying the interpenetrated coordi-
nation of the enyne, the solid-state structures of E-5-12 and E-
5-16 are notable for shorter Rh1-Cnt(C2,C3) and longer C2-C3
contacts [1.981(3)–1.996(2) and 1.255(4)–1.265 a, respectively]

compared to the alkyl E-enyne congeners E-4 [2.006(3)–
2.040(14) and 1.22(3)–1.245(6) a, respectively] . The formulation

of gem-5-16 was likewise confirmed, with the most pertinent

spectroscopic marker the geminal alkene 1H resonances at d

5.73 and 6.13 [d(RhC=CH2) 122.0] . There is no statistically sig-

nificant difference in metal-alkyne contact for the regioisomers
[gem-5-16, 1.990(2) a; E-5-16, 1.996(2) a] .

Summary and perspectives

The terminal alkyne homocoupling reactions promoted by
[Rh(CNC-n)(C2H4)][BArF

4] (1-n ; n = 12, 14, 16) discussed herein

showcase a uncommon approach for tuning the organometal-
lic reactivity of pincer complexes.[5] In particular, through com-

parison to the acyclic homologue [Rh(CNC-Me)(C2H4)][BArF
4] (1-

Me) and systematic variation of the wingtip linker length, we

have been able to deconvolute the impact of the macrocyclic

composition from the donor properties of the ligand, with the
latter verified by spectroscopic analysis of rhodium(I) carbonyl

derivatives (7).
The reactions of 1 with alkynes can be reconciled by a hy-

drometallation mechanism, which bifurcates to afford head-to-
head or head-to-tail homocoupling products depending on

the regiochemical outcome of 1,2-migratory insertion reactions

of rhodium(III) alkynyl hydride derivatives (Scheme 4). This step
is selectivity determining for 1-Me and consequently principal-

ly controlled by the electronic and steric characteristics of the
Rh(CNC) core. For instance, whilst rhodium(III) alkynyl gem-al-

kenyls are formed with HC/CAr’, the head-to-tail pathway is
disfavoured for HC/CtBu as a consequence of steric buttress-

ing between the pincer backbone and the tert-butyl substitu-

ent of the p-bound alkyne leading to rhodium(III) alkynyl E-al-
kenyl derivatives.[20] Conjugated 1,3-enynes are produced by

C@C bond reductive elimination, but this step is encumbered
when performed through the annulus of macrocyclic CNC li-

gands. For the homocoupling of HC/CtBu, E-tBuC/CCH=CHtBu

Figure 4. Reactions of 1-n with HC/CAr’. Solid-state structures of gem-3-16, E-5-16 and gem-5-16 : thermal ellipsoids drawn at 30 %, 50 % and 50 % probabili-
ty, respectively; anions, solvent molecules, minor disordered components (2 V tBu and methylene chain, E-5-16 ; 1 V tBu, gem-5-16), and most hydrogen atoms
omitted for clarity. Selected bond lengths (a) and angles (deg): gem-3-16 : Rh1-C2, 1.920(5) ; C2-C3, 1.212(7) ; Rh1-C2-C3, 171.0(4) ; Rh1-C4, 1.971(5) ; C4-C5,
1.328(8) ; Rh1-C4-C5, 140.2(4); C2-Rh1-C4, 91.6(2) ; Rh1-C6, 2.508(5) ; Rh1-N101, 2.232(4) ; Rh1-C109, 2.068(5) ; Rh1-C115, 2.072(5) ; E-5-16 : Rh1-Cnt(C2,C3),
1.996(2) ; C2-C3, 1.265(4) ; C2-C4, 1.426(4) ; C4-C5, 1.340(4) ; C2-C4-C5, 123.9(3); Rh1-N101, 2.118(3) ; Rh1-C109, 2.053(4) ; Rh1-C115, 2.035(3) ; N101-Rh1-
Cnt(C2,C3), 175.25(13); py-Rh-C/C twist, 35.7(2) ; gem-5-16 : Rh1-Cnt(C2,C3), 1.990(2) ; C2-C3, 1.255(4) ; C2-C4, 1.442(3) ; C4-C5, 1.334(4) ; C2-C4-C5, 120.6(2); Rh1-
N101, 2.121(2) ; Rh1-C109, 2.061(2) ; Rh1-C115, 2.059(3) ; N101-Rh1-Cnt(C2,C3), 176.98(7); py-Rh-C/C twist, 31.7(2).

Scheme 4. Overview of terminal alkyne homocoupling reactions promoted
by [Rh] = Rh(CNC)+ pincer complexes.
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is produced via direct reductive elimination from the corre-
sponding rhodium(III) alkynyl E-alkenyl derivatives E-2-n with

increasing efficacy as the ring is expanded. In contrast, direct
reductive elimination of Ar’C/CC(= CH2)Ar’ from the corre-

sponding rhodium(III) alkynyl gem-alkenyl derivatives gem-3-n
is encumbered relative to b-H abstraction and production of E-

Ar’C/CCH=CHAr’. Indeed, whilst 1-Me is a highly effective pre-
catalyst for the homocoupling of HC/CAr’ into Ar’C/CC-

(= CH2)Ar’ (TOF= 26 h@1 in DFB at 298 K), it is only with the

hexadecamethylene-based CNC-16 that the two processes are
competitive.

Attenuation of the reductive elimination step in terminal
alkyne homocoupling reactions is useful from a mechanistic
perspective, enabling otherwise fleeting rhodium(III) alkynyl al-
kenyl derivatives to be isolated (e.g. E-2-12, gem-3-12, gem-3-
14, gem-3-16) or spectroscopically characterised in situ (e.g. E-
2-14, E-2-16). In terms of practical applications, the net organic
transformation is of prospective interest as an “active metal

template” method for the construction of mechanically inter-
locked hydrocarbon molecules.[27] However given the impor-

tance of C@C bond coupling reactions in organic and organo-
metallic chemistry, the ability to enforce a change in regiose-

lectivity through use of a macrocyclic ligand has potentially

more generalisable practical applications.
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