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Severe combined immunodeficiencies (SCIDs) correspond to the most severe form of

primary immunodeficiency. Allogeneic hematopoietic stem cell transplantation (HSCT)

and gene therapy are curative treatments, depending on the donor’s availability and

molecular diagnostics. A partially human leukocyte antigen (HLA)-compatible donor used

has been developed for this specific HSCT indication in the absence of a matched

donor. However, the CD34+ selected process induces prolonged post-transplant T-cell

immunodeficiency. The aim here was to investigate a modeling approach to predict the

time course and the extent of CD4+ T-cell immune reconstitution after CD34+ selected

transplantation. We performed a Bayesian approach based on the age-related changes

in thymic output and the cell proliferation/loss model. For that purpose, we defined

specific individual covariates from the data collected from 10 years of clinical practice

and then evaluated the model’s predicted performances and accuracy. We have shown

that this Bayesian modeling approach predicted the time course and extent of CD4+

T-cell immune reconstitution after SCID transplantation.

Keywords: Bayesian prediction algorithm, immune reconstitution, severe combined immunodeficiency (SCID),

hematopoietic stem cell transplantation, CD34+ selection

INTRODUCTION

Severe combined immunodeficiencies (SCIDs) constitute a heterogeneous group of inherited
disorders with a profound T-cell count reduction (1). Graft recipients with a matched
sibling donor are curative and have the best clinical outcomes (2–4). However, in the
absence of matched sibling donors, the optimal alternative donors and cell therapy
strategies are subject to debate. Prolonged T-cell immunodeficiency observed after
conventional T-cell graft depletion by CD34+ cell selection is a troublesome barrier to better
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clinical outcomes (5). Despite their immunodeficiency, SCID
patients may manifest graft rejection or loss, and a small
part of typical SCID will attain poor immune reconstitution
(6). Recently published cohort studies suggest that a CD4+

T-cell count >500/mm3 in patients with SCID at 6 and 12
months after hematopoietic stem cell transplantation (HSCT)
predicts long-term survival sustained immune reconstitution
(7, 8). A challenging problem in this domain is giving value
to interpreting the early time point of T-cell reconstitution.
Therefore, a new approach is needed to make a faster and more
robust analysis of post-transplant immune reconstitution. The
aim here is to investigate a modeling approach to predict the
time course and extent of CD4+ T-cell immune reconstitution
after SCID transplantation. A mixed-effects framework and early
post-HSCT data can usefully obtain the approximate Bayesian
computation for individual children’s long-term reconstitution
trajectories. We will test the algorithm’s performance to compute
faster immune reconstitution analysis.

MATERIALS AND METHODS

Data
In a retrospective study between January 2008 and December
2017, we included 32 consecutive patients with SCID having

FIGURE 1 | Immune reconstitution model. The prediction distribution from the final model. The blue area corresponds to the 95% prediction interval (PI). Blue points

correspond to data for CD4+ T-cell reconstitution after HLA-haploidentical, CD34+ selected HSCT.

received a primary HLA-haploidentical CD34+ selected
graft from a family member. Patients with a diagnosis of
adenosine deaminase deficiency and intrathymic deficiency
were excluded. The dataset used for model building and
covariate analysis was collected during routine clinical practice
in the Immunohematology and Rheumatology Department at
Necker Children’s Hospital (Paris, France). The myeloablative
conditioning regimen (CR, when used) was based on a
combination of busulfan, fludarabine (160 mg/m2), and
serotherapy [5 or 10 mg/kg anti-thymocyte globulin (ATG) or
1 mg/kg alemtuzumab] (9). Only four patients treated before
2010 underwent myeloablative CR with a CY-BU myeloablative
conditioning protocol (10). In the Omenn syndrome, we initiated
a 3-month therapeutic course with cyclosporine for most cases.
All patients and donors gave their written informed consent to
the collection and anonymous analysis of HSCT-related data.

Predicting Reconstitution From Early Data
and Individual Covariates
The mechanistic inference model of the CD4+ T-cell count was
based on naive CD4+ T-cell homeostasis, age-related changes
in the thymic output, and the cell proliferation/loss model
optimized from the Hoare et al. model (11, 12).

Frontiers in Pediatrics | www.frontiersin.org 2 February 2022 | Volume 9 | Article 804912

https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org
https://www.frontiersin.org/journals/pediatrics#articles


Diana et al. Modeling Immune Reconstitution for SCID

The complete model from Hoare et al. can be summarized
as follows:

dX

dt
= λ − dX + pX

3 represents the thymic output of T cells and was coded as
λ (t, τ) = λ0λage1HSCT(t); λ0 corresponds to the theoretical
thymic output (cell/days); λage stands for the age-scaling function
of the thymic output; 1HSCT(t) stands for the sigmoidal function
to recover the thymic output (including both the time to recovery
of the thymic output and the rate of recovery in thymic output
parameters). The parameter p represents the proliferation rate

and was coded as p (X, t, τ) = y (τ ) p0e
(1− X(t)

N(t) ), where p0
stands for the theoretical proliferation rate (/days);X(t) stands for
CD4 T-cell concentration with time t after HSCT; N(τ ) stands
for the expected total CD4 for a healthy child of age τ days;
and y(τ ) is the proportion of CD4 cells expressing Ki67 as a
function of age. The parameter d stands for the cell loss rate and

was coded as d (X, t, τ) = y (τ ) d0e
( X(t)
N(t)−1)

, where d0 stands
for the theoretical cell loss rate (/days). This mechanistic non-
linear mixed-effect model was applied to our data, and model
parameters were estimated using Monolix software (version
2019, Lixoft, Antony, France) (13). TheMonolix code is provided
in the Supplementary Data.

We chose eight specific pre-HSCT covariate parameters that
putatively influence CD4+ T-cell reconstitution after CD34+
selected stem cell transplantation: age at transplantation, the type
of molecular defect, Omen syndrome, pre-HSCT viral diseases,

the ATG dose level (5 or 10 mg/kg), the presence or absence
of a CR, and the CD34+ or CD3+ count of the stem cell
graft. Model parameters were estimated using the stochastic
approximation expectation–maximization and Markov chain
Monte Carlo algorithm. The Fisher information matrix and
the likelihood were computed using stochastic approximation
and importance sampling. We also used the likelihood ratio
test (including the log-likelihood), Akaike information criterion,
and Bayesian information criterion to test different hypotheses
regarding the covariate effects on parameters, the residual error
model (additive, proportional, or combined), and the structure
of the variance–covariance matrix between-subject variability
parameters. A sensitivity analysis was also conducted by
excluding patients with “other” diagnosis, and model parameters
were re-estimated.

The model’s goodness of fit was evaluated by a visual
inspection of the observed–predicted confrontation (population
and individual) scatter plots. Diagnostic graphics and other
statistics (including the visual predictive check and normalized
prediction distribution errors) were generated using R
software (14).

Final Bayesian Model
We simulated different reconstitution profiles with one data
point per month (1,000 Monte Carlo simulations from the
final model) (15). The simulated CD4+ T-cell count at 12
months was predicted (using Bayesian forecasting) from 3- or
6-month truncated simulated trajectories. The probability of a
correctly predicted CD4+ T-cell count <500/mm3 at 12 months

TABLE 1 | Patient characteristics.

IL2RG/ JAK3 deficiency RAG1, ARTEMIS deficiency Other deficiencies*,⋆
⋆
⋆

(n = 17) (n = 11) (n = 4)

Age (years) 0.52 (0.004–1.61) 0.38 (0.25–1.13) 0.62 (0.20–0.95)

Immediate pre-HSCT morbidities*

Omenn syndrome 1 (5.88%) 4 (36.36%) 1

Infectious diseases 3 (17.65%) 3 (27.27%) 2

Conditioning regimen 6 (35.29%) 10 (90.9%) 3

Stem cell transplant

106 CD34+/kg 12.75 (1.89–26.6) 9.63 (4.00– 17.85) 13.67

CD3+/kg 2,630 (690–5,340) 3,587 (196–3,510) 3.850

Outcomes

Death 1 (5.88%) 3 (27.7%) 1

Viral disease 2 (11.76%) 3 (27.7%) 0

BCGitis
‡

1 (5.88%) 1 (9.09%) 0

Acute GvHD 4 (23.53%) 3 (27.7%) 1

Autoimmune disease 0 (0.00%) 1 (9.09%) 1

CD4+ T-cell count (/mm3)

3 months 19 (0–256) 22 (0–576)

6 months 448 (288–1,056) 302 (99–462)

12 months 747 (52–1,386) 444 (60–4,444)

*Clinical status before hematopoietic stem cell transplantation.
‡
Systemic bacillus Calmette–Guérin infection confirmed by bacterial culture.

⋆⋆⋆Other deficiencies: CD3e deficiency, ZAP70 deficiency, and reticular dysgenesis.
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defined the sensitivity. The method’s specificity was defined as
the probability of correctly predicting a CD4+ T-cell count
>500/mm3 at 12 months. Our model’s accuracy was determined
by the overall probability of correctly classifying a patient with a
CD4+ T cell > or <500/mm3 at 12 months.

RESULTS

Characteristics of Patients
A total of 231 data points for the T-cell phenotype of 32
consecutive patients were available for the 2 years following
HSCT and were included in the immune reconstitution model
(Figure 1). We obtained a median of seven samples per patient
(range: 3–23 samples) over a median follow-up period of 20
months (range: 3–24). The patients’ characteristics and outcomes
are summarized in Table 1. Five of the patients (15.6%) died
during the study period: four from infectious diseases and one
from GvHD, followed by an infection. Two patients did not
engraft, and the cumulative incidence of acute grade ≥II GvHD
was 20.5%.

Model Fitting
The one-compartment turnover model appeared to be suitable
for comparing and assessing the time course of CD4+ T-cell
reconstitution after HSCT. The thymic output increased from
2.7 months after HSCT [95%CI: (2.3–3.2)]. After transplantation,
CD4+ T-cell counts had a lower distribution than age-
appropriate reference. Interestingly, the 95th percentile of the
observed values appeared within the normal range.

Observed vs. predicted CD4+ T-cell counts were close with
the median (range) values, respectively, of 35 (0–576) vs. 35 (0–
389) at 3months, 414 (99–1,056) vs. 566 (108–1,059) at 6months,
and 564 (52–4,444) vs. 577 (67–2,661) at 12 months. The model
parameters and diagnostic plots of the model’s performance are
provided in Figure 2.

Pre-HSCT Covariates Parameters
Genetic diagnosis and CR were the two pre-transplant
covariates significantly associated with the time-course of
T-cell reconstitution (p= 0.0047 and 0.01, respectively). Relative
to patients with an IL2RG/JAK3 defect, patients with a RAG1
or ARTEMIS deficiency or another diagnosis had a 36.8%

FIGURE 2 | Diagnostic plots from the final mode. (A) Scatter plot of the observed vs. predicted population CD4 T-cell counts. (B) Observed vs. predicted individual

CD4 T-cell counts. (C) Normalized prediction distribution errors vs. time since transplantation. (D) Prediction-corrected visual predictive check plots. The green lines

correspond to the observed data’s 5th, 50th, and 95th percentiles. The shaded areas represent the 95% confidence interval around the simulated percentiles.

Frontiers in Pediatrics | www.frontiersin.org 4 February 2022 | Volume 9 | Article 804912

https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org
https://www.frontiersin.org/journals/pediatrics#articles


Diana et al. Modeling Immune Reconstitution for SCID

TABLE 2 | Population parameter estimates.

Fixed effects Estimate SE. RSE (%)

Time to recovery thymic output (days) 82.3 7.51 9.12

Rate of recovery in thymic output* 10 Fixed

Theoretical thymic output (cell/days) 0.279 0.0809 29.1

Effect size of no IL2RG/JAK3 defect on thymic output§ −1 0.354 35.4

Theoretical cell loss rate (/days) 2.09 0.562 26.9

Effect size of conditioning regimen on theoretical cell loss§
−0.844 0.33 39.1

Theoretical proliferation rate (/days)* 0.207 Fixed

Standard deviation of the random effects

Omega_theorical thymic output 0.708 0.191 27

Omega_time to recovery thymic output 0.209 0.0825 39.5

Omega_theorical cell loss rate 0.619 0.17 27.5

Error model parameters

a 82.6 8.21 9.93

b 0.482 0.0387 8.03

SE, standard error; RSE%, relative standard error (SE/estimate * 100). Standard deviation of the random effect: omega, between-subject variability estimates on thymic output, time to

recovery of the thymic production, and cell loss rate. Error model parameters: a and b, residual additive and proportional variabilities estimates, respectively.
§Significant categorical covariates are included through the multiplication of the parameter by exp (effect size).

*Rate of recovery in thymic output and theoretical proliferation rate were fixed to Hoare et al. values.

[95%CI: (18.3–73.6)] decrement in their thymic output function.
Otherwise, CR significantly decreased the cell loss rate function
[43% (22.5–82.1)]. The parameter estimates for the T-cell
concentration at the time of HSCT were not influenced by ATG
dosing, immediate pre-HSCT morbidities, or the stem cell graft’s
composition (Table 2). The sensitivity analysis excluding patients
with “other” diagnosis showed that all structural parameters
were very close to the primary analysis, suggesting the model’s
robustness. Furthermore, this sensitivity analysis showed that
genetic diagnosis and CR were still significantly associated
with the time course of T-cell reconstitution (p = 0.0396 and
0.015, respectively), supporting the primary analysis. The model
parameters estimated from this sensitivity analysis are provided
in the Supplementary Data.

Regarding covariate, our model provided four theoretical T-
CD4+ immune reconstitution curves for SCID following HSCT
with CD34+ selection: SCID T-B+ NK- or SCID T-B-NK+ with
or without a CR (Figure 3). In addition, simulated change over
time in the CD4+ T-cell count crossed into the normal reference
range depending on the subgroup, especially for T-B+ SCID
patients who received conditioning.

Predicting Reconstitution From Early Data
and Individual Covariates
The population parameter means and variances found from the
initial model fitting were used as the final Bayesian model’s
priors. For 1,000 simulated individuals, the overall accuracy
in predicting the CD4+ reconstitution at 12 months with
trajectories truncated at 3 and 6 months was 79 and 87%,
respectively. The course truncated at 3 months had a low
estimated sensitivity (41%) but very high specificity (88%). In
contrast, the simulated trajectory truncated at 6 months was
substantially more sensitive (74%) and still highly specific (90%).

DISCUSSION

Bayesian methods are becoming increasingly important in the
biological sciences for inferring cellular networks, modeling
biology systems, and integrating medical data (16, 17). Bayesian
computation may provide significant benefits in terms of
early post-transplant immune reconstitution investigation. For
example, after stem cell transplantation for SCID, competent
and fast immune reconstitution is the primary prognostic
criterion, especially when considering severe pre-transplant
infectious diseases.

The model fitted well with our retrospective data.
Unfortunately, cross-validation was hard to provide in the
case of rare diseases. Nevertheless, our modeling results were
interestingly in line with the data from previous cohort studies
(18). Computation reflected, in part, the physiopathology
of post-HSCT CD4+ T-cell reconstitution for SCID. RAG1
and Artemis deficiencies are characterized by a defect of V(D)J
recombination activity and altered thymic stroma, and T-B-NK+
SCID was associated in the model with a lower thymic output
(19). On the other hand, CR decreased the cell loss rate function,
suggesting better engraftment of a T-cell precursor.

As a prediction model, we decide to use only pretransplant
covariates. Therefore, moderate-to-severe GvHD or post-
transplant immune-suppressive treatment was not considered.
Otherwise, the myeloid engraftment is associated with
improved immune reconstitution, including long-term T-
cell reconstitution. In recent years, there has been significant
interest in exploring busulfan exposures in the sub-myeloablative
range as a compromise between efficacy and safety and a guide
for making treatment decisions. Unfortunately, we could not
recover the data for BU exposure for all patients to implement
our model. In addition, ATG pharmacokinetic studies were not
performed in routine during this time of the study.
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FIGURE 3 | Immune reconstitution profiles. The PI for the simulated change over time in the CD4+ T-cell count time course for a child aged 6 months at the time of

HSCT, as a function of significant covariate effects in the model (i.e., the presence or absence of a molecular defect and the presence or absence of conditioning). The

continuous, dashed, and dotted black lines correspond to the median, 50%PI, and 95%PI, respectively. The green line and green area correspond to the

age-appropriate reference value and the 95% lower and upper bound.

Other modeling strategies, based on multivariate immune
reconstitution patterns, identified variables and described the
correlation between immune system dysfunction and the
occurrence of complications. Principal component analysis
is a performant tool and is valuable for the simultaneous
interpretation of different parameters (20, 21). However, those
models need an exhaustive post-transplant multiparameter
database, which is not adapted to rare diseases. Furthermore, they
do not use single factors, and neither elaborate prediction adjusts
to clinical practice.

A low number of patients, large dataset, and multiparameter
studies do not also fit with conventional statistical methods, in
which problems with mass significance can quickly occur. In
contrast to a comparative statistical test at a single time point, the
model provides a dynamic assessment of immune reconstitution
while increasing substantially (by up to 10-fold) the ability to

detect covariate effects. Our model also counts the variability
in the number of data points per patient. In addition, the
representation and use of the probability theory make Bayesian
computation suitable for combining domain knowledge and
data, avoiding to overfit a model to training data, and learning
from incomplete datasets. The establishment of the model and
parameter allowed us to predict a probability of distribution
of T-CD4+ for each subpopulation. For example, in the T-B-
group, nearly everyone received conditioning. However, only
1/11 patients were unconditioned due to pre-transplant severe
comorbidities and a high risk of toxicity. Therefore, the Bayesian
method did not consider only one patient but interpreted all
data points withmodel and covariate adjustments to compute the
curve of IR for the T-B- group.

However, a larger dataset may have also allowed us to
point out other covariates. It could explain the remaining
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between individual variability and substantially. A larger data
set may also increase the model’s ability to predict personal
CD4+ reconstitution very soon after transplantation. Post-
transplant clinical events had a low incidence in our cohort.
Contrary to other studies, we were not able to report
the different immune reconstitution of T-CD4+ before the
onset of GvHD, post-transplant viral infectious disease, or
BCGitis (22).

The Bayesian inference is a data-driven technique; the
prior probabilities of an event are updated when the new
data are gathered. It was able to identify a relatively high
proportion of satisfactorily simulated trajectories very soon after
transplantation (i.e., within 3 months). A repetitive time point
of phenotyping T cell until 6 months should be required to
increase sensitivity and specificity substantially. CD4+ T-cell
immune reconstitution is widely used and is a strong predictor
of event-free survival (EFS), overall survival (OS), viral diseases,
and reactivation or non-relapse mortality (NRM), depending
on stem cell transplant indications (23–25). Only a few models
attempt to predict T-CD4+ cell reconstitution (12, 26). In the
context of new cell therapy approaches for T-cell depletion or
in vitro thymic maturation, the mechanistic model presented
here could be used to design clinical trials and provide early
assessments of their results. Furthermore, it should be an exciting

model to compare immune reconstitution from a different
group of patients statistically. The Bayesian modeling approach
predicted the time course and extent of CD4+ T-cell immune
reconstitution after SCID transplantation.
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