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Abstract: The current increase in vector-borne disease worldwide necessitates novel approaches
to vaccine development targeted to pathogens delivered by blood-feeding arthropod vectors into
the host skin. A concept that is gaining traction in recent years is the contribution of the vector
or vector-derived components, like salivary proteins, to host-pathogen interactions. Indeed, the
triad of vector-host-pathogen interactions in the skin microenvironment can influence host innate
and adaptive responses alike, providing an advantage to the pathogen to establish infection.
A better understanding of this “bite site” microenvironment, along with how host and vector
local microbiomes immunomodulate responses to pathogens, is required for future vaccines for
vector-borne diseases. Microneedle administration of such vaccines may more closely mimic vector
deposition of pathogen and saliva into the skin with the added benefit of near painless vaccine
delivery. Focusing on the ‘micro’–from microenvironments to microbiomes to microneedles–may
yield an improved generation of vector-borne disease vaccines in today’s increasingly complex world.
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1. Introduction

Responsible for nearly one million deaths per year [1], vector-borne diseases are on the rise [2].
Vector-borne disease occurs when a pathogen is transmitted by the infected bite of a blood-feeding
arthropod such as a mosquito, fly, mite, flea or tick. Effective vaccines are needed to counter this
global public health threat. At present, research efforts are mostly focused on the pathogen-host
interactions without acknowledging the significant contribution of vector-derived products to disease
development. Yet, as early as the 1940s, physicians observed humans’ variable clinical responses to
mosquito saliva and surmised that it may contain molecules with immunomodulatory capabilities [3].
However, not until the 1970s did scientists recognize the potential role of vector saliva in pathogen
transmission [4]. Now, some attribute the complications of vector-borne disease vaccine development
to the pleiotropic effects of vector saliva on both host and pathogen [5]. Pathogen-host interactions are
complex in any disease setting, but become more nuanced with the addition of the vector, a previously
underappreciated disease determinant that is increasingly recognized as a vaccine target [6–8].

Currently licensed vaccines for vector-borne diseases target the pathogen as is typically done with
vaccines for pathogens transmissible via respiratory secretions, fecal-oral exchange, or other bodily
secretions [9]. However, with the exception of yellow fever virus (YFV) and Japanese encephalitis virus
(JEV), vaccine development for vector-borne diseases has been challenging. The vaccine for yellow
fever virus can be considered one of the most successful vaccines given that a single immunization
confers lifelong protective immunity in over 90% of vaccinated individuals [10]. YFV and JEV are the
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only vaccines on the WHO-approved list of vector-borne vaccines for use without caveat (Table 1).
While vaccine candidates for the two most lethal mosquito-borne diseases, malaria and dengue
(DENV), are not unequivocal successes. A malaria vaccine has now been made available, but requires
3 to 4 doses and yields 36% efficacy that wanes over time [11]. For DENV, a vaccine was recently
approved but with the restriction that it be used only in dengue-experienced persons over the age
of 9 years old in hyperendemic areas [12]. There are several candidates for vector-borne diseases
including chikungunya, for which there are many Phase 1/2 candidates in the WHO pipelines [13],
and leishmaniasis, a disfiguring and often lethal disease caused by the parasite Leishmania spp. carried
by sand flies [14]. For tick-borne pathogens, there is a licensed vaccine for tick-borne encephalitis virus,
but a vaccine targeting Borrelia burgdorferi, the causative agent of Lyme disease, has been removed
from the market [15].

For the few vaccines licensed for arthropod vector-borne disease and for the majority of the
candidates in the pipeline, the focus is exclusively on the pathogen. However, vaccine development for
these diseases may lie at the unique interface of the hematophagous insect vector, the pathogen, and the
human host (Figure 1). Notwithstanding ecological, social, and environmental determinants of health,
successful transmission of vector-borne disease occurs within a triad of (1) pathogen-host interactions,
(2) pathogen-vector interactions, and (3) host-vector interactions [8,15]. The opportunity for vaccine
development to disrupt disease transmission at “the bite site,” where the host, pathogen, and vector
initially intersect, is gaining traction [7,8,16]. Given the growing popularity of this concept, this
review builds upon the existing basic science literature of cutaneous host-pathogen-vector interactions
to present a broader, translational research perspective of vector-derived vaccine opportunities.
Specifically, we will consider how vector delivery of a pathogen into the host skin can modulate
the host immune response by focusing on three critical components: (1) the micro-environment of the
bite site, (2) the local microbiome of both the vector and the host, and (3) the micro-needle for delivery
of vector-borne disease vaccines into the skin.
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Table 1. Status of arthropod vector-borne disease vaccines licensed or in clinical trials 1.

Pathogen Primary Vector(s) Vaccine Name Platform Immunogen Adjuvant Status 2 Sponsor

Dengue virus 2,3

serotypes 1–4
Aedes aegypti mosquito, Aedes
albopictus mosquito

CYD-TDV Recombinant viral vector
(YFV backbone)

PrM+E of DENV1-4 None Registered by WHO in
select populations *

Sanofi-Pasteur

TDV Recombinant viral vector PrM+E None Phase 3 Takeda
TV003/TV005 Recombinant viral vector

(DENV backbone)
Whole virus/PrM+E None Phase 3 NIAID

TDENV-PIV Inactivated whole target
organism

Whole virus Alum or AS03 Phase 2 USAMRMC

V180 Subunit PrM+E Alhydrogel Phase 1 Merck

Zika virus 2 Aedes aegypti mosquito GLS-5700 DNA PrM+E None Phase 1 GeneOne Life
Science/Inovio

MV-Zika Recombinant viral vector PrM+E None Phase 1 Themis Bioscience
AGS-v Synthetic peptide Mosquito saliva peptide IFA-51 Phase 1 NIAID
mRNA-1325 mRNA PrM+E None Phase 2 Moderna Therapeutics
VRC-ZKADNA085-00-VP DNA PrM+E None Phase 1 NIAID
VRC-ZKADNA090-00-VP DNA PrM+E None Phase 2 NIAID
ZIKA PIV Inactivated whole target

organism
Whole virus Alum Phase 1 NIAID

PIZV or TAK-426 Inactivated whole target
organism

Whole virus Alum Phase 1 Takeda

VLA1601 Inactivated whole target
organism

Whole virus Alum Phase 1 Valneva Austria GmbH

Chikungunya virus 2 Aedes aegypti mosquito, Aedes
albopictus mosquito

PXVX0317 CHIKV-VLP Virus-like particle E1, E2 and capsid proteins With and without
Alhydrogel

Phase 2 NIAID now transferred
to PaxVax

MV-CHIK Recombinant viral vector Phase 2 Themis Bioscience
VAL 181388 mRNA N.A. N.A. Phase 1 Moderna Therapeutics
CHIK001 or ChAdOx1 Recombinant viral vector Phase 1 University of Oxford
VLA1533 Live, attenuated virus Whole virus None Phase 1 Valneva SE
BBV87 Inactivated whole target

organism
Phase 1 Bharath Biotech

CHIKV 181/25 Inactivated whole target
organism

Phase 1 USAMRMC transferred
to Indian
Immuno-logicals

Yellow Fever virus Aedes aegypti mosquito Yellow Fever Vaccines
(YFV) sold as YF-VAX in
USA, STAMARIL
elsewhere

Live, attenuated virus of 17D
lineage

Licensed worldwide Sanofi-Pastuer

West Nile Virus Culex spp. mosquito WN/DEN4∆30 Recombinant viral vector Whole live, attenuated virus Phase 1 Johns Hopkins
University

HydroVax-001 Inactivated WNV Alum Phase 1 NIAID
VRC-WNVDNA020-00-VP DNA PrM and E proteins of NY99

strain with CMV/R promoter
Phase 1 NIAID

Japanese Encephalitis
virus

Culex spp. mosquito CD.JEVAX® Primary hamster kidney
cell-derived, live, attenuated
vaccine based on SA 14-14-2
strain

PrM+E Licensed in China since
1988 as JEVAX

Chengdu Institute

IMOJEV®, JE-CV®,
ChimeriVax-JE®

Live, attenuated YFV with SA
14-14-2 live attenuated JEV
produced in Vero cells

PrM+E Licensed as early as
2010 in Australia and
other Asian countries

Sanofi Pasteur

Ixiaro®, JESPECT®, JEEV® Inactivated Vero cell-derived Whole virus Alum Licensed in USA and
Europe since 2009

Valneva Austria GmbH
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Table 1. Cont.

Pathogen Primary Vector(s) Vaccine Name Platform Immunogen Adjuvant Status 2 Sponsor

Equine Encephalitis
Viruses (Eastern,
Western, and
Venezuelan)

Culiseta melanura mosquito
(but human bridge vectors
are likely Aedes, Culex, or
Coquillettidia spp. mosquitos)

TSI-GSD 210, Lot 3-1-92 Inactivated WEE Whole virus

Phase 2 USAMRMC
TSI-GSD 104, Lot 2-1-89 Inactivated EEE Whole virus
C-84, TSI-GSD 205, Lot 7 Inactivated VEE Whole virus
TC-83, NDBR-102 Live, attenuated VEE
pWRG/VEE DNA pWRG/VEE Phase 1 Ichor Medical Systems

Plasmodium
falciparum 2

Anopheles spp. mosquito RTS,S/ASO4
(Mosquirix®)

Recombinant subunit CSP AS01 Approved by EMA for
children 6–17 months
of age

Glaxo-SmithKline Inc.

ChAd63/MVA ME-TRAP Recombinant subunit TRAP + ME epitopes (CS,
LSA1, LSA3, STARP, EXP1,
pb9)

None Phase 2B University of Oxford

ChAd63/-METRAP Recombinant subunit ME+TRAP None Phase 1 University of Oxford
ChAd63 RH5 +/− MVA
RH5

Recombinant subunit RH5 None Phase 1 University of Oxford

PfsSPZ Inactivated whole organism Whole sporozoite None Phase 2 Sanaria
PfCelTOS FMP012 Recombinant subunit CelTOS protein AS01B or GLA-SE Phase 1 USAMRMC
Pfs25-EPA+Pfs230-EPA Pfs25M or Pf230D1M

conjugated to EPA, respectively
Pfs25M, Pfs230D1M AS01 or Alhydrogel Phase 1 NIAID

R21 Recombinant subunit CSP less-HepBsA AS01B or Matrix-M1 Phase 1/2 University of Oxford
GMZ2 Recombinant subunit GLURP, MSP3 Aluminium

hydroxide, GLA-SE
Phase 2b Statens Serum Institute

PRIMVAC (placental
malaria)

Recombinant protein VAR2CSA fragment Alhydrogel or
GLA-SE

Phase 1 INSERM

SE36 Recombinant subunit N-terminal SERA5 Alhydrogel Phase 1 NobelPharma Co Ltd,
Japan

Plasmodium vivax Anopheles spp. mosquito ChAd63/MVA PvDBP Recombinant viral vector PvDBP_RII Phase 1 University of Oxford

Borrelia burgdorferi Ixodes scapularis, blacklegged
or deer tick

Multivalent OspA Lyme
Borreliosis vaccine

Recombinant peptide 6 antigens of rOspA Alum Phase 1/2 Baxalta (Shire)

VLA15 Recombinant peptide Multivalent OspA Alum Phase 1 Valneva Austria GmbH

Tick-borne
Encephalitis

Hard ticks of Ixodidae family FSME-Immun (Junior) Neudorfl strain of European
subtype

Aluminum
hydroxide

Licensed in Europe in
1976

Encepur-Adults
(-Children)

K23 virus strain Aluminum
hydroxide

Licensed in Europe in
1994

TBE-Moscow Sofjin strain of Far-Eastern viral
subtype

Aluminum
hydroxide

Licensed in Russia in
1982 (and in 1999 for
children >3 years)

EnceVir Far-Eastern strain 205 Aluminum
hydroxide

Licensed in Russia

1 Per US Centers of Disease Control and Prevention, World Health Organization Vaccine Trial Tracker for trials open and recruiting or completed updated as of May 2018, in the most
recent position papers referenced in the August 2018 WHO Recommendations for Routine Immunizations, as detailed on clinicaltrials.gov, or as individually referenced; 2 Given some
vaccine candidates have multiple trials ongoing or completed, this reflects the farthest along stage in development; 3 Only tetravalent dengue vaccine candidates are included; * SAGE
recommendations are that this vaccine should only be given to flavivirus-experienced populations in hyperendemic areas; EMA = European Medicines Agency.

clinicaltrials.gov
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2. The Micro-Environment: Why “the Bite Site” Matters

2.1. A Skin-Deep Immunology Review

The skin is a large complex immunoregulatory organ and functions as the main barrier tissue [17].
The skin is made up of three layers–epidermis (where the outermost layer are dead cells known as
the stratum corneum), dermis, and fatty hypodermis. Each layer is complete with its own unique
set of immune cells responsible for both immunosurveillance and host defense (Figure 2). Next to
resident and circulating immune cells populating these tissues, epithelial cells themselves play a role
in immune regulation, for example in the regulation of Th2 differentiation [18]. A detailed description
of the cutaneous immune network falls outside of the scope of this review and excellent recent reviews
on the topic have been published recently [19–21]. Once activated, the immune microenvironment
facilitates rapid transport of peripheral tissue antigen via prenodal lymph and interstitial fluids to
skin-draining lymph nodes so that a systemic adaptive response can be coordinated [22–24].
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Figure 2. Cutaneous immune environment in the setting of mosquito saliva (left) and saliva vaccination
(right). Left panel: The mosquito proboscis deposits saliva antigen into the dermis while also causing
keratinocyte trauma and activation. Saliva antigens lead to mast cell degranulation, increase in
Th2-dominant cytokines, and subsequent transient influx of neutrophils, dendritic cells and monocytes.
Regulatory T-cells in the skin inhibit T cell activation and modulate antigen presenting cell function.
Right panel: Microneedle administration of salivary antigen causes similar keratinocyte trauma and
activation of cytokine release. Supratherapeutic doses of salivary antigen with Th1-promoting adjuvant
are released into the dermis without activating nociceptors. A pro-inflammatory response is initiated
resulting in macrophage activation and Th1 polarization. Theoretically, proliferation of salivary
antigen-specific CD4+ tissue-resident memory (TRM) cells proliferation in the dermis, and possibly
proliferation of CD8+ TRM cells in the epidermis, could allow for rapid, protective TRM responses to
any future antigen encounter.
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When a vector like a mosquito or fly inserts its proboscis, an elongated straw-like appendage,
into the epidermis and dermis, it injects a salivary mix of active ingredients known to modulate
host inflammation, hemostasis, and immunity to help the vector take a blood meal [6]. In most
cases, the host immune response to the saliva is quickly dampened resulting in a small welt as a
function of peripheral tolerance initiated in the skin. However, the immune response can vary as a
result of an individual’s prior exposure to a vector such that pre-sensitized individuals may have
delayed type hypersensitivity responses or no visible response at all [3,25,26]. This host immune
downregulation extends to any antigens co-introduced at the bite site [27,28]. Without these tolerance
mechanisms guided by regulatory T-cells, (Tregs), immature DCs, mast cells and basophils, vector
bites—or any foreign material—would result in life-threatening situations as seen in individuals with
immune dysregulation and anaphylaxis to vector bites [25,27–29]. During Leishmania major infection
CD25+Foxp3+ Tregs have been shown to downregulate parasite-specific immunity, thereby allowing
L. major to establish a chronic infection. This was due to CCR5-dependent homing of naturally
occurring Tregs to the site of infection [25,30,31]. In the case of malaria for example, the majority of skin
immunization trials require administration of mefloquine or chloroquine to induce an antitolerogenic
skin microenvironment [32]. This implicates the immune microenvironment and local inflammatory
status of the “bite site” in determining the outcome of infection and vaccination (Box 1).

Box 1. The skinny on malaria.

In the case of malaria, vaccine failure is highly correlated with the presence of sporozoites in the skin thus
the majority of skin immunization trials require administration of mefloquine or chloroquine to induce an
antitolerogenic skin microenvironment [32]. Other malaria immunization trials bypass the skin completely
by delivering the parasite or vaccine directly into the intravascular space [33,34]. The question arises: why
does natural infection via mosquito bite require only a handful of sporozoites but challenge studies require
inoculation of thousands of isolated sporozoites in order to cause malaria infection [35]? To answer the
question, it is necessary to consider both the tolerogenicity, or rather the host’s perceived need to dampen
inflammation, versus the host immunosuppression induced by the presence of pathogen-infected vector saliva
in the dermis [32].

Consider a mosquito who injects saliva infected with DENV or West Nile virus (WNV) into the
extracellular spaces of the dermis as it probes for a blood vessel [36–38]. The host immune response
begins navigating the delicate balance of inflammation versus tolerance to the mechanical intrusion of
the proboscis with its accompanying saliva. Pathogens delivered via infected bite or co-inoculated
with vector saliva typically cause more rapid pathogen dissemination, pathogenesis, and disease
whereas pre-exposure to vector saliva or vaccination with recombinant salivary proteins reduces
disease burden in animal models [39–44]. This suggests that saliva exerts local immunosuppressive
effects on one hand [40,45–47], but that a likely rapid memory response against saliva antigens is
capable of inducing a pro-inflammatory environment on the other hand, thereby contributing to
the inactivation of co-administered pathogens in the epidermal-dermal microenvironment [41,42,48].
Vector salivary proteins generally appear to create a favorable immunosuppressed microenvironment
for pathogen transmission and establishment of infection in the host, although exceptions exist as more
novel salivary proteins and their functions are uncovered [4,40,49–51]. This provides an opportunity
to identify vector-derived vaccination targets.

Historically, saliva peptides were thought to exclusively perturb the host cutaneous defenses via
a shift from a robust Th1 response to a less effective, allergic Th2-predominant response against the
pathogen in question [52]. A large body of evidence now indicates that vector salivary proteins have
a myriad of impacts on immune cell function in this micro-environment [39–42,47,49,50,53–55]. The
exact mechanisms by which vector-derived factors influence the local immune response are still being
elucidated via systems biology approaches that combine transcriptomic and proteomic analyses of
various vectors’ salivary glands at different developmental stages and in the presence or absence of
pathogen [56]. The combination of innate and adaptive immunomodulation by vector saliva varies
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according to the vector, its species, and its blood-feeding strategy. For example, soft ticks feed rapidly
and frequently with deep dermal penetration whereas hard ticks may feed superficially for weeks to
months via specialized mouthparts [57]. Each approach elicits a different host hemostatic response and
underlines the complexity and redundancy of tick saliva whose pharmacologically active properties
are often species-specific [57,58]. A general overview of saliva-induced immunomodulation will be
briefly reviewed here.

In the presence of mosquito saliva, the cutaneous innate immune response includes the formation
of edema and the breakdown of endothelial barriers [40,49,50]. In the case of arboviruses, the presence
of mosquito saliva-induced edema retains pathogen at the bite site microenvironment, facilitating
ongoing arboviral infection of keratinocytes [50]. Deeper in the dermis, loss of capillary endothelial
barrier integrity occurs from saliva-induced mast cell degranulation and dermal liquefaction by
salivary serine proteases, contributing to disruption of immune traffic and providing the pathogen an
advantage to replicate and disseminate depending upon arboviral-specific tissue tropisms [40–49].

Other early but critical innate responses of inflammation are thwarted by vector saliva.
The presence of Ixodes and Rhipicephalus tick saliva reduces nitric oxide production by activated
macrophages, which in turn reduces killing of pathogens like Borrelia bacteria [59–62]. Many tick saliva
proteins from various species also inhibit human complement pathways allowing pathogens to avoid
complement-dependent killing [8,46]. In mosquitos and flies, saliva predominantly immunomodulates
the host’s production of IFNs and antimicrobial peptides via an increase in anti-inflammatory and Th2,
or allergy-predominant, cytokine responses [45,52,63,64]. This Th2 shift can last up to 7 days after a
mosquito feeding in humanized mice [47]. Decreased release of interferon-γ (IFN-γ) creates a favorable
microenvironment for a pathogen, like an arbovirus or leishmaniasis, to establish infection [6]. Multiple
studies have demonstrated that mosquito saliva suppresses IFNs and the subsequent cascade of
IFN-stimulated gene products, allowing for establishment of arboviral infection resulting in worsened
systemic disease [45,50,65,66]. On the other hand, in recent Semliki Forest Virus (SFV) infection models
in immunocompetent mice, the presence of Aedes aegypti mosquito saliva led to chemokine expression
that recruited a rapid but transient wave of neutrophils [50]. However, these neutrophils recruited
myeloid cells like macrophages, monocytes and monocyte-derived dendritic cells that then served as
viral targets for infection and propagation [50].

Adaptive immune response to vector saliva also impacts the success of a pathogen in establishing
infection in the host. Seminal observations in the 1970s noted that rabbits exposed to tick bites
were resistant to infection by tick-borne Francisella tularensis [4]. Research now suggests that saliva
has the ability to deleteriously impact the function of both dendritic cells and macrophages, thus
rendering their antigen-presenting abilities less effective. The presence of Ae. aegypti salivary gland
extract increases dendritic cell migration to draining lymph nodes, thus hastening viral dissemination
and worsening clinical disease [51,63,66–68]. Mosquito saliva from various species can significantly
reduce T-cell lymphocyte populations via increased caspase-mediated apoptosis and dysregulation of
antiviral signaling causing reduced cellular recruitment [51,63,68]. Conversely, tick saliva facilitates
the pathogen’s ability to thwart effective antigen presentation by slowing the migration of dendritic
cells and macrophages, thus hindering interactions with CD4+ T-cells [60,69].

Pathogens transmitted within vector saliva may more easily initiate host infection by taking
advantage of the host’s innate and adaptive immune responses to saliva. Hence, immunization with
vector salivary protein could confer protection against infection or against development of clinical
symptoms. Antigen-independent mechanisms may include promotion of a more pro-inflammatory
microenvironment to the pathogen, thereby minimizing its ability to establish infection in the host [6].
Humoral protection against B. burgdorferi infection by anti-salivary gland proteins has been well
described: mice immunized with Salp15 are protected from tick-borne B. burgdorferi infection via
an anti-Salp15 antibody-mediated mechanism that more rapidly clears Salp15-coated B. burgdorferi
bacteria by phagocytes than in control mice [48,55]. Extrapolating these data to other possible
vector-derived vaccines, plausible mechanisms of a protective humoral response could involve direct
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interference of anti-salivary antibodies with immunomodulatory function of salivary antigens by
blocking interactions or by the generation of anti-salivary antibodies with a more pro-inflammatory
profile [70]. Antibody-independent protection mediated by tissue-resident memory T cells provides
protection of infection [71–76]. Indeed, the development of anti-salivary immunity via pre-exposure to
vector saliva or immunization with recombinant salivary proteins can decrease disease burden in host
vertebrates in a T-cell dependent manner [7,41]. In the case of Leishmania infection, immunization of
rhesus macaques with the recombinant salivary protein PdSP15 from the sand fly Phlebotomus duboscqi
created a Th1-driven delayed type hypersensitivity response against the parasite, increased IFN-γ
expression, and reduced clinical burden of disease in cutaneous leishmaniasis [7].

The mechanisms of protection and relative contribution of each will vary with every
host-vector-pathogen combination. Defining correlates of protection will be a next necessary step
in vector saliva protein-based vaccine development. Given limitations of this vaccine approach, it
is unlikely that localized “bite site” immunity could protect in the setting of widespread pathogen
dissemination, particularly if the pathogen were introduced by an arthropod (e.g., sexual transmission
ZIKV in seminal fluid) [6]. Further, the magnitude of said protection for each tripartite combination
may also differ. The functional roles of newly discovered salivary and salivary gland proteins will
aid in vaccine development and uncover novel mechanisms of protection that can be exploited in
vaccine design.

2.2. Immunogen Discovery

Transcriptomic and proteomic investigations of vector salivary glands have uncovered an
extraordinarily diverse and complex group of proteins [77,78]. As of 2018, transcriptomes of 49 different
blood-feeding insects have been published [79]. The difference in sequencing technologies and depth
of sequencing makes it difficult conclude how many of these proteins pertain directly to saliva proteins
that are deposited into the host dermis. However, most fleas, mosquitos, and flies likely contain
100–200 proteins in their saliva versus ticks and kissing bugs who have more than 300 proteins in their
saliva [80]. Further, nearly 40% of salivary proteins identified have no similarity to known proteins
and their functions remain to be elucidated [79].

Initial proteomic analyses in the Anopheles gambiae, the mosquito vector of malaria, uncovered
5 saliva proteins and 122 salivary gland proteins [81]. In addition, salivary proteins in both Anopheles
and Aedes mosquitos are differentially expressed in the presence of a pathogen such as DENV virus
or Plasmodium parasites [81–83]. More recently, significant efforts are underway in characterizing the
immunomodulatory functions of mosquito salivary proteins so that they can be appropriately targeted
as prophylactics or therapeutics [84,85]. LTRIN, a 15-kDa protein in Ae. aegypti saliva, was identified
and shown to facilitate ZIKV transmission in the host by interfering with lymphotoxin signaling
and effectively disrupting the communication to lymph nodes [54]. A separate 34-kDa Ae. aegypti
protein increases DENV replication in keratinocytes and is under development as a marker of Aedes
vector exposure in humans [86,87]. However, functional proteomic studies with other identified
salivary proteins revealed that Ae. aegypti collagen-binding aegyptin or certain D7 proteins increase
anti-inflammatory responses or inhibit DENV replication, thus making them poor target candidates as
vaccination with these proteins leads to higher host mortality [53,88,89]. The Anopheles gambiae salivary
protein GILT (gamma interferon inducible thiol reductase), recently identified by mass spectrometry,
negatively influences Plasmodium sporozoite movement in the mammalian host, and recombinant GILT
immunization allows the establishment of an expanded liver infection by the parasite [90]. Salp15
from Ixodes scapularis, the vector of Borrelia burgdorferi, Anaplasma phagocytophilum, and Babesia microti
inhibits activation of CD4 T-cells and downstream production of IL-2 via direct binding of the CD4
co-receptor [91]. While most salivary proteins appear to promote pathogen transmission and survival
in the host, the roles of newly identified salivary and salivary gland proteins are discovered as
functional proteomics tools are developed.
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The discovery of vector microRNA (miRNA) in the host adds a new dimension to the
vector-host-pathogen interaction triad, in that saliva may be modulating post-transcriptional regulation
of host gene expression [92,93]. In the hard tick Ixodes ricinus, ten of 35 newly identified miRNAs were
up to 100 times more represented in salivary glands; and via an in silico analysis of effects on the host
transcriptome, a subset of these tick saliva-specific miRNAs yielded functional changes in inflammation
and pain sensing [92]. Novel miRNAs were also identified in Aedes aegypti and Aedes albopictus
mosquito saliva and these are differentially expressed during infection with chikungunya virus [93].
miRNAs are already being exploited as vaccine targets in neurotropic flavivirus infection via the use
of miRNA response elements to attenuate live viral vaccines [94,95]. There may be an opportunity to
consider the use of these targets to block the role of saliva miRNA in modulating the host immune
response to enhance pathogen infection and establishment in the host.

2.3. Lessons Learned from Other Microenvironments

Vaccine development targeted to other epidermal-dermal microenvironments may offer insight
into vector-borne diseases that are initiated in dermal tissue. Recent observations that tissue-resident
memory T-cells (TRM) provide robust protection to infection, even in the absence of antibodies, is
leading to a broader range of T-cell targets for vaccination [71–76]. TRM in barrier tissues are active at
the portal of pathogen entry and play a critical important role, particularly in non-lymphoid tissues
like the skin or vagina where memory T-cell entry may be limited [96], and tolerance to self is high.
In the skin, infection results in TRM-mediated global skin immunity [97,98]. Skin immunization can
create both skin-resident TRM and an identical population of central memory T-cells in the lymph
nodes [97,98]. Vaccination at mucosal or epithelial surfaces, as opposed to intramuscular, are under
investigation to generate effective TRM responses to influenza and rotavirus [99–101].

TRM reside in the periphery and proliferate locally in response to antigen, without recirculating
like other memory T-cells. Hence, they are more difficult to study [102]. Zeroing in on the skin
microenvironment with the aid of transcriptomics and new three-dimensional imaging modalities can
identify host cell subpopulations responsible for the local and immediate protective immune memory
against vector-borne components and pathogens that enter the host dermis. Given that there are twice
as many T-cells in the skin than in the peripheral blood [103], it is plausible to aim for the generation
of vector saliva protein-specific TRM during vector-borne disease vaccination. They are strategically
positioned where repeat vector challenge will occur by skin-homing receptors and are proximally
located to post-capillary venules and near the dermal-epidermal interface [103]. Further, they react
more quickly to cognate antigen than circulating T-cells, and both CD4 and CD8 TRM are able to more
rapidly produce cytokines such as IFN-γ [104].

It is not yet fully elucidated how CD4 or CD8 TRM are maintained in the tissue [98,99]. We can
only hypothesize that they might contribute to a tissue-resident response to vector saliva antigens,
which may also vary by pathogen. CD4 TRM are located deeper in the dermis, where most mosquito
saliva is deposited. They are also more motile compared to CD8 TRM that more resemble sessile,
dendritic-like cells found in the upper layers of epidermis [71] (Figure 2). Many questions remain: can
we induce the development of vector saliva protein specific TRM? How will they influence the immune
reaction against a non-infected mosquito bite? Does TRM activation change with increasing exposure
to vector saliva and/or immunization with salivary proteins? Will primed skin-resident TRM provide
protection against vector borne pathogens? Hence, further investigations into the mechanisms of how
host TRM interact with vector saliva are needed.

Here, in Box 2, three other cutaneous microenvironments–melanoma, vaccinia scarification, and
herpes simplex virus (HSV) infection–are briefly described in order to understand the role of TRM in
the development of skin tissue-targeted vaccines and consider cross-disciplinary opportunities that
can be translated to vector-borne disease vaccines.
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Box 2. Micro-Lessons on Micro-environments in the Skin.

Melanoma Onco-Vaccines

Melanoma is a malignant disease that begins with the neoplastic transformation of melanocytes in the
epidermis and then spreads systemically. There are several oncologic vaccine candidates for melanoma
based upon extensive pre-clinical and clinical research on the cutaneous immune processes that govern the
spread, or containment, of melanoma. The TRM subset of tumor-infiltrating lymphocytes are a major target of
immune checkpoint blockade, and their presence correlates to positive clinical outcomes [105,106]. Intradermally
administered melanoma vaccines cause the development of tumor-specific TRM to accumulate in both vaccinated
and non-vaccinated skin [106]. The TRM that are vaccine-induced, as opposed to naturally induced, suppressed
tumor growth as they were able to effectively infiltrate the tumors and operate independently of circulating
CD8 T-cells [107]. In lymphopenic murine hosts, tumor-specific CD4 TRM had cytotoxic activity active against
established melanoma tumor [108]. Clinical cancer immunotherapy via anti-melanoma vaccines targeting
skin-resident TRM will provide the basis for other vaccine platforms targeting cutaneous TRM development for
rapid response against pathogen entry.

Vaccinia Vaccination via Skin Scarification

Administration of vaccinia via skin scarification was the main method employed for global smallpox
eradication [109]. Today, vaccinia is often used as a viral vector in vaccine development and a body of research
now demonstrates that scarification, with or without the virus, leads to nonspecific immunoprotection, and
importantly, the development of TRM [99,109–111]. Delivery of vaccinia virus via superficial skin injury resulted
in T-cell mediated immunity, regardless of neutralizing antibody present, and TRM can target and eliminate
virally infected cells shortly after viral skin inoculation challenge [111]. Similar results were also noted with
skin scarification using the clinically safer poxviral vector, a nonreplicating modified vaccinia Ankara virus that
is usually delivered intramuscularly [111]. In the case of mosquito-borne disease vaccines, skin scarification
presents a vaccine delivery method mimicking the mosquito’s natural mode of transmitting a pathogen via
intradermal probing, the phase in which it is releasing saliva and any available pathogens [112]. It is worth
noting that scarification with virus, protein, or hapten can induce T-cell accumulation both at the site and globally
throughout the skin [97,98], suggesting that a vector-derived immunogen delivered via scarification could also
generate an effective TRM population in the skin.

HSV: The Local-Global Phenomenon of TRM

Herpes simplex virus (HSV) infection causes intraepithelial vesicles in the mouth or anogenital regions and
then remains latent in sensory ganglia nerves. The likelihood of HSV-2 reactivation is inversely correlated to
the number of TRM present in genital epithelium [113]. Specifically, CD8 TRM appear after acute HSV infection
and can travel between keratinocytes, similar to Langerhans cells but are not found in the stratum corneum,
and occupy certain epidermal niches [71,75]. TRM are an attractive vaccine target as they migrate in search
of antigen, seemingly without specific attraction to infected cells, and regular killing of virally-infected cells
by TRM is possible, but not routinely observed in the case of HSV and CD8+ TRM [75,114]. Hence, natural or
vaccine-induced protection from HSV infection or reactivation requires a high density of TRM serving in the
role of immunosurveillance. The ability to generate sufficient HSV-specific TRM density is now evident via local
proliferation in response to secondary exposures to HSV without displacing existing TRM [76]. Further, in the
case of HSV, vaccinia virus, and Zika virus (ZIKV), sequential exposures to antigen at distinct sites of epithelial
disruption leads to an increase in pathogen-specific TRM throughout all uninfected skin, including distal sites
like the vaginal epithelium [98,115,116].

Vector-Borne Diseases: Another Possible Target for TRM?

TRM cells are crucial for local immunity and recall responses. Virus-specific skin TRM appear to be long-lasting
and autonomous [75]. As a parallel to repeated laboratory inoculation of a virus into the host skin to induce TRM
immunity, a vector repeatedly disrupts the host epidermis in daily life in an endemic area. This ongoing exposure to
vector-derived antigen could possibly lead to vector-specific TRM generation and replenishment throughout the skin
compartment in individuals immunized with vector-derived salivary proteins. Likewise, vector protein-specific skin
TRM may be able to rapidly produce inflammatory cytokines such as IFN-γ, IL-2 and TNF-α upon stimulation (e.g.,
vector bite) anywhere in the epidermal-dermal environment. One theoretical concern of salivary-based vaccination
is a heightened inflammatory reaction to naturally occurring mosquito bites, resulting in clinically significant
adverse local, or possibly systemic hypersensitivity [117]. Yet, as a counterexample, a lifetime of exposure to a
specific vector antigen may be protective against a specific disease. This concept is invoked in the mystery of partial
Plasmodium immunity in longstanding residents of malaria-endemic areas [118,119] and the phenomenon of tick
immunity, first noted in 1939 in guinea pigs immune to tick-borne diseases if they were previously exposed to
numerous tick bites [120]. However, the question remains how a balanced and protective vector antigen-specific
TRM global skin immunity can be induced via vaccination.
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3. The Microbiome: Impact of Both Host and Vector Flora on the Pathogen

The human intestinal microbiome composition drives host inflammatory and infectious disease
pathogenesis as well as vaccine response, particularly for mucosal vaccines like rotavirus and
polio [121–125]. It is plausible to consider that skin microbiomes may also drive immune response for
vector-borne diseases and their associated vaccines for two reasons: (1) both the vector and vaccine
deliver pathogen or antigen, respectively, via the skin and its commensal bacteria and (2) the gut
microbiome of the vector can influence pathogenesis in the host skin.

Tolerizing mechanisms of skin immunoregulation, such as Tregs, are influenced by skin
microbiota [126–129]. The composition of the skin microbiome can change during inflammation,
but the role of the pathogen–or the vector–is not yet fully understood [130]. For example, protective
immunity to the parasite Leishmania major transmitted by sand fly bite relies upon cutaneous T-cell
dependent release of inflammatory cytokines like IFN-γ and TNF-α, both of which are greatly reduced
in germ-free mice raised in aseptic conditions then challenged intradermally with L. major [126].

In addition to the impact of the host skin microbiome on the host immune response, the gut
microbiome of the vector can drive severity of disease in the host. It is well-known that vector
gut microbiomes drive vector competence, the ability of a particular vector to transmit a particular
pathogen, as seen in Ae. aegypti mosquito midguts where the presence of Wolbachia dictates the
ability to transmit a variety of flaviviruses [131]. Yet, the impact of the vector gut microbiome on the
host-pathogen interaction in the skin was recently demonstrated. In the case of vector-transmitted
Leishmania donovani, the causative agent of visceral leishmaniasis, the sand fly egests gut microbes into
the host skin triggering an IL-1β-driven neutrophil influx [132]. Pre-treating infected sand flies with
antibiotics to reduce gut microbiota impairs the inflammasome response in the host, and subsequently
the parasites’ ability to establish visceral infection. However, a conflicting finding in Anopheles gambiae
mosquitos reveals that their ability to transmit Plasmodium falciparum malaria is augmented when
feeding on antibiotic-positive blood from a child [133]. For vector-borne vaccine deployment or testing
in endemic areas with high antibiotic usage, there may be unintended consequences on both the host
and vector microbiomes that impact disease transmission and vaccine efficacy.

4. The Micro-Needle: Rethinking Delivery

As a less painful alternative to the commonly used hypodermic needle for subcutaneous vaccine
delivery, microneedles are micron-scale needles that provide a minimally invasive method for
transcutaneous delivery of vaccine past the outermost layer of epidermis, the stratum corneum
(SC), without activating the underlying pain receptors like conventional needles [134–136] (Figure 1).
Available as solid, drug-coated, deep, dissolving, and hollow, microneedles may confer an advantage
in vector-borne vaccine development in that they more closely mimic deposition of the pathogen or
antigen into the skin microenvironment. Indeed, bioengineers have now proposed a microneedle
design based on the mosquito fascicle, a collection of six stylets with serrated design and vibration
specialized for painless insertion into the skin [136]. Given the initial goal of all vector-borne pathogens
is to survive the skin’s initial immune assault, a vector-borne disease vaccine delivery model would
also disrupt epithelium and drive antigen presentation within the pathogen’s initial target tissue,
the skin. In order to develop a robust protective skin-resident response, transcutaneous vaccine
delivery via microneedle may have an added advantage over the more traditional vector-borne vaccine
delivered into the subcutaneous space via hypodermic needle.

Intradermal administration may also be a more optimal delivery route for vector-borne disease
vaccine development. However, the risk of adverse events is higher as patients are more prone to
pain, inflammation, or abscesses [135]. Microneedles present advantages over intradermal vaccine
administration as they are non-invasive, causing little to no pain, and requiring little if any technical
training as they can even be self-administered by patients [137]. Although microneedles may be
more expensive to design, the total amount of vaccine administered via microneedle is lower than
other routes and this dose-sparing benefit may offset higher costs of development [138]. Furthermore,
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microneedles themselves are thermostable, while coated or dissolvable microneedle eliminate the
need for complicated cold-chain storage and on-site vaccine resuspension (with the exception of live,
attenuated vaccines) [134,135].

Despite these advantages, microneedles have not been extensively deployed in vector-borne
diseases, and more convincing clinical data is available for microneedle delivery of influenza, measles,
and poliovirus vaccines [134]. For other pathogen-targeted vector-borne disease, an early published
study of the “Nanopatch” microneedle described an inactivated whole chikungunya virus vaccine and
a DNA-delivered WNV vaccine to demonstrate delivery of protein or DNA payloads, respectively,
targeted directly to epidermal and dermal antigen-presenting cells in mice [139]. BALB/c mice
vaccinated via microneedle coated with DNA plasmids of Leishmania infantum histones showed
a Th1 bias compared to subcutaneous and intradermal routes of administration, but none were
successful in controlling Leishmania major infection [140]. Similar to a microneedle, tattoo delivery of an
arboviral SFV-based vaccine targeting human papillomavirus (HPV) resulted in increased HPV-specific
cytotoxic cells and IFN-γ expression in C57BL/6 mice compared to intramuscular injection, pointing
to the intrinsic immunogenic potential of intradermal delivery [141]. Part of these effects may be
due to the mechanical consequences of damaged keratinocytes releasing IL-6, a pro-inflammatory
cytokine, or due to inherent differences in Th1 versus Th2 responses in the chosen mouse model [67].
Regardless, an intradermal or microneedle-delivered vaccine of a vector-derived component, alone
or in combination with a pathogen, may further promote a desired pro-inflammatory, Th1-driven
response in the skin microenvironment.

The current major limitation of microneedle-administered vector-borne disease vaccines is a lack
of clinical data across the entire infectious diseases spectrum. Of the ten registered clinical Phase 1
and 2 trials, the majority of which target influenza, patient safety and tolerability profiles published
thus far are acceptable [134,142]. Still, user acceptability, scale-up from laboratory research, and dose
loading capacity will be obstacles to widespread adoption of microneedle-delivered vaccines for any
disease entity [135]. The role of adjuvants in microneedle-delivered vaccines for vector-borne diseases
is not discussed here, but will also need to be further elucidated in terms of loading, effectiveness, and
potential benefits of Th1-promoting adjuvant selection.

5. Conclusions

Vector-borne disease incidence continues to increase worldwide [1,2]. Innovative, broad,
and integrated research efforts are needed to mitigate vector-borne diseases and their complex
macroecological systems that involve climate, urbanization, and human encroachment among other
factors. Vaccines are the best defense against vector-borne disease. However, it is the combined
complexity of the ‘micro’—the dermal microenvironment and various microbiomes of host and
vector—that challenge the development of highly effective vector-borne disease vaccines. Vaccine
research may initially focus on the two most obvious ‘micro’ factors, namely the identification of
vector-derived salivary components and how they influence the local immune response and the
mechanical or behavioral aspects of vector-delivered pathogen entry into host skin. In order to create
the next generation of successful vector-borne disease vaccines, it will be critical to elucidate the
immunological cascades and key cell subpopulations in these microenvironments where vector, host,
and pathogen collide.
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