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Heat capacities of thermally 
manipulated mechanical oscillator 
at strong coupling
Michal Kolář1, Artem Ryabov  2,3 & Radim Filip1

Coherent quantum oscillators are basic physical systems both in quantum statistical physics and 
quantum thermodynamics. their realizations in lab often involve solid-state devices sensitive to 
changes in ambient temperature. We represent states of the solid-state optomechanical oscillator with 
temperature-dependent frequency by equivalent states of the mechanical oscillator with temperature-
dependent energy levels. We interpret the temperature dependence as a consequence of strong 
coupling between the oscillator and the heat bath. We explore parameter regimes corresponding to 
anomalous behavior of mechanical and thermodynamic characteristics as a consequence of the strong 
coupling: (i) The localization and the purification induced by heating, and (ii) the negativity of two 
generalized heat capacities. the capacities can be used to witness non-linearity in the temperature 
dependency of the energy levels. our phenomenological experimentally-oriented approach can 
stimulate development of new optomechanical and thermomechanical experiments exploring basic 
concepts of strong coupling thermodynamics.

Quantum optomechanics and electromechanics become physical bridges between developed atomic, molecular 
and optical physics and emerging quantum thermodynamics. It is due to possibility to operate mechanical and 
electrical oscillators as quantum systems1 as well as to understand them as a part of thermodynamic processes 
and engines2. The solid-state nature of such oscillators simultaneously implies that their basic characteristics 
(such as mode frequencies) can be strongly influenced by ambient temperature3–8. Despite the fact that this sensi-
tive dependence can make them promising temperature sensors9, the oscillators can represent first experimental 
demonstrations of non-linear temperature-driven dynamics10,11. On a more fundamental level, the controllable 
temperature-dependence of oscillator parameters opens doors towards experimental investigation of thermody-
namics of quantum mechanical systems strongly coupled to their environment.

At the same time, thermodynamics of systems at strong coupling has recently attracted a significant attention 
and a number of general theoretical studies has appeared12–20, which generalized classical theoretical works21–27, 
and several particular models with temperature-dependent energy levels have been explored28–32. However, the 
fundamental theoretical approaches encounter severe difficulties already at the level of definitions of basic ther-
modynamic quantities20, where the concepts of heat and entropy production cannot be unambiguously identi-
fied. A promising way out of these theoretical struggles is, in our opinion, to propose and build in lab real-world 
quantum-mechanical thermodynamic devices. Such experiments would inspire an operational theoretical 
approach to thermodynamics at strong coupling. The operationally defined quantities created to describe par-
ticular new effects in individual mechanical systems will not suffer from ambiguities present in general analysis 
and, in turn, they may help to establish a new general paradigm in the field.

In the present work we make first steps in development of the experimentally-oriented approach to stochastic 
thermodynamics at strong coupling inspired by the optomechanical experiments. We start from a typical out-
come of such experiments where measured quantities are spectra and the phonon number distribution of the 
optomechanical mode with the frequency ω = ω(T). The temperature dependence of the mode frequency, natural 
in solid-state oscillators3–8, allows us to explore effects of strong coupling, which are not present in weakly cou-
pled oscillators with a constant frequency. In particular, we discuss the temperature-induced localization (Sec. 4),  
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purification (Sec. 5), and propose two experiments described by corresponding generalized heat capacities (Sec. 6):  
The first utilizes a reconstruction procedure of the system density matrix33, whereas the second one is an analogue 
of the differential scanning calorimetry34.

From the general perspective, the approach adopted here goes along the lines known in the stochastic 
thermodynamics35 where perfectly controllable experiments with optical tweezers are used to simulate and 
verify basic theoretical predictions36. Here, instead of the optical tweezers, the single mode of the solid-state 
optomechanical oscillator is used as an experimental simulator for the mechanical harmonic oscillator with 
temperature-dependent frequency ω(T), see Fig. 1. There are two main reasons why we focus on optomechanical 
platforms in our considerations. Firstly, they exhibit the aforementioned temperature dependence of ω(T), which 
can be understood as a consequence of the strong coupling of the mechanical oscillator (with the bare frequency ω0)  
to the thermal environment, cf. the definition (2). Secondly, the light defining the optical part of the system can be 
conveniently used to measure all the important characteristics of the mechanical part described in this paper37–39. 
This is the sole purpose of the light in our considerations and we do not assume it to affect the discussed mechan-
ical and thermodynamic properties in any sense in the following.

For energies of the optomechanical mode we assume

ω=


 +



 = …E T T n n( ) ( ) 1

2
, 0, 1, 2, ,

(1)n 

with the mode frequency written as

ω ω= + .T f T( ) ( ) (2)2
0
2

Above, ω0 stands for the bare oscillator frequency (a temperature-independent constant) and the function f(T) 
represents a frequency shift because of the strong coupling to the environmental degrees of freedom. We assume 
the polynomial form of this function

∑=
=

Ω
f T a T( ) ,
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k
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with Ω being the maximum order up to which we truncate the series expanding f(T) in T. In modeling optom-
echanical oscillators, frequently only weak linear dependence on temperature is considered5, which is valid for 
small frequency shifts. Yet, for large frequency shifts the dependence of frequency on temperature is usually 
non-linear9,40–43. In the present work, we drop the linearization assumption and focus on effects induced by 
higher order terms in Eq. (3). In discussed examples we assume the maximum order of the temperature depend-
ence in the range 0 < Ω ≤ 3. We show that such non-linear temperature dependence can cause reduction of the 

Figure 1. (i) Mode frequencies of solid-state optomechanical oscillators are sensitive to changes in ambient 
temperature. This temperature-dependence can be utilized to model effects of strong coupling. Using the position 
and momentum X̂ T( ) and P̂ T( ) defined in Eqs (5) and (6), respectively, outcomes of optomechanical experiments 
can be naturally interpreted and physically understood based on the representative mechanical toy model: the 
harmonic oscillator with a structured spring (alternating green/black segments), which stiffness depends on the 
heat bath temperature T. Remarkable physical effects induced by the dependence ω = ω(T) are main topic of the 
present work. The standard harmonic oscillator characterized by a constant frequency is not able to demonstrate 
all effects described in the main text and depicted on panel (ii). (ii) Thermal change of the oscillator potential: (a) 
The oscillator in contact with a heat bath at lower temperature T0 (blue), initially. (b) The temperature of the heat 
bath is increased to T > T0, (red). The spectrum and the oscillator state change, showing the reduction of the 
position variance (localization of the position distribution ρ(X), shaded) with increasing temperature, and the 
spreading of the momentum distribution ρ(P) (dashed), discussed in Sec. 4. Such behavior should not be 
misinterpreted as squeezing of the oscillator thermal state62. The horizontal bars represent populations of energy 
eigenstates showing the reduction of the von Neumann entropy (purification of the state) with increasing 
temperature, cf. Sec. 5. These effects are responsible for the negativity of capacities discussed in Sec. 6.
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position variance, and/or of the von Neumann entropy with increasing T, and the negativity of corresponding 
heat capacities.

The temperature-dependent spectrum (1) can be interpreted as eigenvalues of the so-called Hamiltonian of 
the mean force (HMF), Ĥ T( ), introduced in Secs. 2 and 3. Sec. 4 discusses the mechanical equilibrium properties 
of the system, namely the temperature dependence of the position variance of the oscillator. In Sec. 5, we study the 
temperature dependence of the von Neumann entropy, focusing on its decrease with increasing bath temperature. 
Section 6 analyses the temperature dependence of two thermodynamic coefficients and their mutual connection. 
In Sec. 7, we summarize experimental conditions necessary to observe the predicted results.

equivalent Mechanical oscillator
The spectrum (1) represents eigenvalues of the operator

ω=


 +





ˆ ˆ ˆ†H T T a a( ) ( ) 1
2

,
(4)



with ˆ†a  and â being respectively the creation and the annihilation) operators of the mode ω(T). In optomechanical 
experiments, the mechanical mode statistics is reconstructed from the homodyne detection signal measured on 
the light interacting with the mechanical mode. The result of such measurements can be used to characterize the 
state of a representative mechanical oscillator in terms of linear combinations of ˆ†a  and â called quadratures1,39. 
Two quadratures particularly suitable for our purposes read

ω
= +ˆ ˆ ˆ†X T

T
a a( )
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ω
= − .ˆ ˆ ˆ†P T i T a a( ) ( )

2
( )

(6)

The quadratures X̂ T( ) and P̂ T( ) represent respectively the position and the momentum operators of the quan-
tum linear harmonic oscillator with the mass m = 1 and frequency ω(T). The Hamiltonian of such oscillator fol-
lows directly from Eq. (4). It reads

ω= + + .ˆ ˆ ˆH T P f T X( )
2

1
2

[ ( )] (7)

2

0
2 2

To test the observability of considered phenomena, a simulation where both temperature and frequency are 
tuned in a correlated way can be the first step. Any optomechanical platform can, after proper interpretation, be 
used to simulate the mechanical oscillator just by choosing the proper quadratures.

Some experimental platforms1 and theoretical models43 can also exhibit an effective change of the mass with tem-
perature. In this case, another possibility is to define the mechanical quadratures as  ω= +ˆ ˆ ˆ†x T a a m T T( ) ( ) /2 ( ) ( )eff , 
and  ω= −ˆ ˆ ˆ†p T i a a m T T( ) ( ) ( ) ( )/2eff , with meff(T) being the temperature-dependent effective oscillator mass. In 
practice, the effective mass is always determined indirectly from finite element modeling of the optomechanical plat-
form and using the equality of energy of the cavity elastic vibrations and energy of a 1D harmonic motion1,4,44. However, 
we would like to point out that this cumbersome indirect identification of meff(T) is not necessary, because all equilib-
rium thermodynamic characteristics do not depend on meff(T) but only on ω(T). Therefore, the simple definitions of 
X̂ T( ) and P̂ T( ) in Eqs (5) and (6), respectively, are sufficient to fully explore and interpret all important effects of strong 
coupling in equilibrium. Therefore, we can rescale the position and momentum in such way, that consequent analysis 
is the same as for the case of thermally independent mass.

simulation of strong Coupling thermodynamics
The total Hamiltonian of the bare oscillator interacting with the heat bath reads

λ= + +ˆ ˆ ˆ ˆH H H H , (8)tot 0 I B

where the dimensionless parameter λ reflects the system-bath coupling strength. When the interaction λĤI 
between the bare oscillator and the equilibrium heat bath is weak, the oscillator is known to thermalize into the 
Gibbs canonical state, ρ −ˆ ˆ~T H k T( ) exp[ / ]G 0 B . On the other hand, for a strong coupling, the state of the oscillator 
will depend on parameters of the ambient environment, even in the long-time limit. However, even for the strong 
coupling case, the equilibrium state of the oscillator can still be formally considered in the canonical form deter-
mined by the bath temperature T,

ρ = −ˆ ˆT
Z T

H T k T( ) 1
( )

exp[ ( )/ ],
(9)B

where the operator Ĥ T( ) is known as the Hamiltonian of mean force (HMF)17,19,20, and Z(T) is the partition func-
tion, Z(T) = Tr[exp[−Ĥ T( )/kBT]]. The term HMF is derived from the potential of mean force originally intro-
duced in theory of fluids45,46.

The HMF is obtained after averaging over bath degrees of freedom in the total system as follows17,19,20
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Equation (10) represents a general definition of the exponential operator describing the subsystem of interest. 
It is valid for quantum, as well as for classical systems. Following this definition, application of a logarithm on 
both sides of (10) leads to the result for the quantum HMF

≡ − .−ˆ ˆ
H T k T e( ) ln

(11)B
H k T/

B

Btot

The structure of this operator can be quite complex in the general quantum case, due to the non-commutativity 
of respective terms in Ĥtot, Eq. (8). Significant simplification is possible in situations in which classical description 
of the system is possible, i.e. all terms in Ĥtot, commute and we can split the exponential operator into classical 
parts containing solely H0, HB, and HI. This is the reason why, in the classical (high phonon number) regime, 
where most current optomechanical devices operate1, we can split the HMF in two terms

= − .λ−H T H k T( ) ln e (12)B
H k T

0
/

B
BI

The second term on the right-hand side of Eq. (12) contains all details of the interaction between the sys-
tem and bath and depends on the parameters of the bath itself (e.g., spectrum of its phonon modes). Explicit 
first-principle calculations of thermodynamic functions for a strongly coupled oscillator can be found in the 
literature47–49, as well as discussion of specific heats50,51.

Comparing Eq. (12) with the Hamiltonian (7) we can identify the latter with the HMF of the real mechanical 
oscillator strongly coupled to its environment. The temperature dependent shift of the mode frequency ω(T), 
represented by the function f(T) in the definition (3), can be understood as a consequence of the strong coupling. 
In this way the optomechanical experimental platform can be used to simulate and explore physics of the actual 
oscillator with the HMF (12).

temperature-Induced Localization
Thorough understanding of mechanical characteristics is crucial for a physical insight into different equilibrium 
thermodynamic properties of states (9), discussed in the next section, modified by temperature-dependent fre-
quency shift as given in Eq. (4). In this section we discuss the behavior of such characteristic, namely the variance 
of the quadrature X̂, VarX(T). For different forms of the frequency shift function f(T), defined in Eq. (3), we obtain 
qualitatively different temperature dependencies of the position variance. For certain parameters, we observe the 
position localization when increasing T. In Sec. 5, the localization will be generalized to the purification of the 
state, i.e. the entropy reduction, where its measurement and the thermodynamic consequences will be discussed. 
Interestingly, the localization does not necessary implies the purification of the state.

For the thermal state (9), the quantum mechanical result for the variance of the quadrature X̂ reads

ω
=



〈 〉 +



ˆT

T
nVar ( )

( )
1
2

,
(13)X



where ω〈 〉 = − −n̂ T k T[exp( ( )/ ) 1]B
1 is the Bose-Einstein thermal population of the oscillator mode. Therefore, 

the temperature-dependent frequency enters both the thermal population and the ground state variance for 
〈 〉 =n̂ 0. It makes a localization of the system nonlinear even for linear change of ω(T) over the temperature.

In the current experiments, temperature of environment keeps the oscillator in the equilibrium still far away 
from the ground state1. Therefore we primarily focus on a high-temperature limit ω T k T( )/ 1B . In this limit, 
keeping m = 1 as explained in Sec. 2, variances of position and momentum are given by

ω
≈ ≈T k T

T
T k TVar ( )

( )
, Var ( ) ,

(14)X
B

P B2

respectively. Apparently, the momentum variance VarP(T) does not depend on ω(T) and it behaves just as for the 
system weakly coupled to a bath. It however depends on temperature T and therefore, it will influence other quan-
tities, e.g. entropy, when T changes. If the frequency does not depend on temperature, ω(T) = ω0, the variance 
VarX(T) increases linearly with T, and the oscillator exhibits thermal delocalization.

Eq. (14) are valid in the high-temperature limit ω T k T( )/ 1B . Our system reaches this limit and stays there 
for appropriate parameter values in equation (3): Ω ≤ 3, aΩ < 0, or Ω ≤ 2, aΩ > 0 for almost any T, except the 
region of extremely small bath temperatures (not attainable in current optomechanical and electromechanical 
experiments1). This behavior is clear for aΩ ≤ 0. For aΩ > 0 it is caused by the decrease of the ratio ω(T)/T for 
increasing temperature of the bath. Even-though the energy level separation ℏω(T) increases with T, the average 
thermal energy kBT increases faster, thus still allowing for the average thermal population increase. On contrary, 
in the case a3 > 0 the relative increase of ω(T)/T might bring the oscillator out of Eq. (14) validity regime for 
increasing temperature. Physically, this corresponds to the situation in which ω(T) increases fast enough, so that 
the bath is less able to excite the temperature dependent inter-level energy difference ℏω(T) with the typical ther-
mal energy kBT. Such situation may bring the oscillator effectively closer to the ground state for increasing tem-
peratures. This case, however, does not appear for the experimentally motivated parameters used in the present 
work.
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For Ω ≤ 3, aΩ < 0, the variance (14) diverges at ω≈ | |Ω
ΩT a/d 0

2 , see the dashed line in Fig. 2. Such behavior is 
caused by ω(Td) = 0, meaning the confining potential disappears at T = Td, while the oscillator becomes a free 
particle. Qualitatively different effects can be found for Ω ≤ 2, aΩ > 0.

For Ω = 1, 0 < a1, the variance saturates at VarX(T) = kB/(a1) for large enough temperatures, see the red curve 
in Fig. 2. In this case, the temperature dependence of ω2(T) becomes linear for high enough temperatures satisfy-
ing ωa T1 0

2, canceling exactly the numerator in VarX(T). VarX(T) never exceeds this limiting value.
In the case Ω = < a k2, 0 /B2

2 2 we find VarX(T) decreasing as −~T TVar ( )X
1 for large enough tempera-

tures satisfying ωa T2
2

0
2, see the green line in Fig. 2. This is caused by the quadratic increase of the denomina-

tor of (14) and linear increase of its nominator. Interestingly, this behavior does not oppose the fact that the 
oscillator still remains in the classical domain ω T k T( )/ 1B  due to ω ~T T( )/ 1 for ωa T2

2
0
2. Despite the 

oscillator stays in the classical regime, we observe an anomalous behavior – thermal localization due to strong 
coupling with the heat bath.

The value Ω = 3 reveals yet another qualitatively different behavior. We find again VarX(T)→0, being 
approached as −~T TVar ( )X

2, see the blue line in Fig. 2, due to the cubic increase of the denominator of (14) and 
linear increase of its nominator. On contrary to the previous case Ω = 2, the oscillator aims to the quantum regime 
ℏω(T)/kBT ≈ 1 due to the dependence ω ~T T T( )/ 1/2 for ωa T3

3
0
2.

By inspection, VarX(T) is an increasing function of T for low temperatures, meaning

∂
∂

> .
T

Var (0) 0 (15)
X

Eq. (15) and the oscillator localization (in certain cases) for large enough temperatures predicts the existence 
of a local maximum for the oscillator variance. By definition the maximum variance can not be overcome, in 
contrast to the common thermal delocalization. The derivative of the position variance in the classical limit (14) 
with respect to temperature T reads

ω
ω

∂
∂

=
− −T

T
k a T a T

T
Var ( ) ( 2 )

( )
,

(16)
X B 0

2
2

2
3

3

4

where we have used the notation from Eq. (3). Looking for existence of the VarX(T) extreme amounts to finding 
the roots of the polynomial in the nominator of Eq. (16).

We note that for Ω = 1 the coefficient a1 does not appear in the nominator of Eq. (16), thus it can only saturate 
for a1 > 0 as T increases and can not affect the existence of the extrema. This means the extreme does not exist in 
this case, see Fig. 2. For a1 < 0, Eq. (16) is always positive and VarX(T) diverges for ω= | |T a/d 0

2
1 , the temperature 

for which ω(Td) = 0, i.e., the confining potential disappears.
For Ω = 2 the positive root Tmax > 0 of Eq. (16) nominator exists only for a2 > 0 and reads ω=T a/max 0

2
2 . The 

maximum value of VarX(T) is then

ω
=

+
T k

a a
Var ( )

2
,

(17)
X

B
max

1 2 0
2

Figure 2. The semi-logarithmic plot of the normalized variance of the oscillator position, VarX(T)/VarX(0) Eq. 
(13), for different values of the parameters in Eq. (3). For all curves the parameters plotted correspond to the 
deep classical regime, ω T k T( )/ 1B  (parameters inspired by recent experiments52). For negative coefficients 
aΩ < 0 the variances diverge for large enough T, as illustrated by the blue-dashed curve for typical example 
a3 < 0. The behavior for aΩ > 0 is shown by full lines. The red and green curves correspond asymptotically (for 
large enough T) to the deep classical regime of the oscillator, ω T k T( )/ 1B , while having different 
asymptotics. The red curve saturates, while the green decreases as −~T 1. It witnesses thermal steady-state 
localization. The blue-full curve corresponds to Ω = 3, a3 > 0. In the regime plotted, the variance decreases as 

−~T TVar ( )X
2. The parameters values used in these plots are ω0 ≈ 106 rad/s, ω| | ≈Ω

Ωa T 0
2 for all cases.
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meaning that in this regime the position variance can not globally exceed the value of Eq. (17). Notice, Tmax 
increases linearly with frequency, therefore such maximum may be found at high temperature for current 
high-frequency oscillators52,53. Simultaneously, with increasing frequency the maximum variance (17) decreases, 
therefore, for its determination the ability to measure small fluctuations of the mechanical oscillator is required.

In the case Ω = 3 finding the roots of Eq. (16) nominator is straightforward but cumbersome. We use here the 
result for a simplified situation a a T2 3 , yielding positive root ω≈ | |T a/2max 0

2
3

3 . This result is approximately 
valid if the maximum is reached still in the classical region of parameters. For a3 < 0 the maximum does not exist, 
VarX(T) increases monotonically, and diverges for such Td for which ω(Td) = 0, see the blue-dashed line in Fig. 2.

For the last two cases we encounter the aforementioned effect of the thermal localization of the oscillator, i.e. 
the reduction of its position variance, with increasing the bath temperature T. The results of this paragraph sug-
gest that for Ω = 3, a3 > 0, the maximum of the position variance scales with the system frequency as 

ω −~TVar ( )X max 0
4/3. It is thus preferable to work with higher frequency oscillators if lower values of position 

variance are the figure of merit.

Temperature-Induced Purification
In this section we focus on the parallels and remarkable differences between the behavior of the VarX(T), reflect-
ing the position localization, and the reduction of von Neumann entropy, S(T) (denoted simply as the entropy 
from now on), of the state (9). The entropy defined in the standard way reads

ρ ρ= − .ˆ ˆS T k T T( ) Tr[ ( )ln ( )] (18)B

The value of S(T) reflects the purity of the oscillator state54,55. Contrary to the position uncertainty quantified 
solely by VarX(T), the state purity depends on both VarX(T) and VarP(T). To observe the temperature-induced 
purification (the decrease of S(T) with T), the decrease of uncertainty in the position has to be faster than the 
increase of momentum uncertainty in the product VarX(T)VarP(T), completely determining the entropy S(T). To 
observe such an unusual effect, a more strict condition on ω(T) must be satisfied compared to the thermally 
induced localization. In experiment, it requires a precise estimation of the density matrix ρ̂ T( ), which can be done 
with the help of the homodyne detection56.

The approximate result obtained from Eq. (18) using the state (9)

ω
≈









−


















S T k T
k T

( ) 1 ln ( ) ,
(19)

B
B

is valid in the classical limit ω T k T( )/ 1B . The entropy of the oscillator is determined solely by the ratio 
ℏω(T)/kBT, as opposed to the behavior of VarX(T), Eq. (14). The temperature dependence of ω(T)/T dictates the 
behavior of the entropy, i.e., if ω(T) grows faster (slower) than linear with T the entropy decreases (increases) with 
increasing temperature. Due to the monotonic character of the logarithmic function, the local extremes of ω(T)/T 
determine the extremes of S(T). The derivative of the approximate result (19)

ω
ω

∂
∂

=
+ −S T

T
k a T a T

T T
( ) (2 )

2 ( )
,

(20)
B 0

2
1 3

3

2

yields a relatively simple sufficient condition for existence of entropy extreme with respect to the temperature T.
For Ω = 1, the entropy S(T) has no local extreme, it monotonically increases, meaning the entropy is 

unbounded from above, see the dashed line in Fig. 3. This is a similar situation as the absence of position variance 
extreme, discussed in Sec. 4. For a1 > 0 the derivative (20) is positive for all T. It is qualitatively similar to the 
standard case of the thermalized linear oscillator coupled weakly to the heat bath. For the negative leading-term 
coefficient a1 < 0 the maximum does not exist in the S(T) domain.

For Ω = 2, the entropy has no local extreme, as well. The coefficient a2 does not appear in Eq. (20), thus in the 
case a2 > 0 the entropy S(T) monotonically increases with the temperature T and eventually saturates at the value

≈








−

















.S k

a
k

1 ln
(21)

B
B

2

Remarkably, this value depends only on the ω(T) leading term coefficient a2 and not on ω0. This behavior 
should be compared to the localization of the oscillator position X, Eq. (17). Contrary to VarX(T) the entropy S(T) 
saturates, meaning that there is no purification of the state for the corresponding parameters, although there exists 
an upper bound on the oscillator entropy, Eq. (21). For a negative leading-term coefficient a2 < 0 the entropy 
diverges at the temperature Td at which the frequency vanishes, ω(Td) = 0. In such case the energy level spacing of 
the oscillator becomes negligible, causing flat-like population of the levels.

Finally, if Ω = 3 and we assume negative leading-term coefficient a3 < 0 there exist no Tmax > 0 for which the 
numerator of Eq. (20) vanishes, thus the entropy monotonically increases similarly to the position variance, see 
Fig. 2. Of course, the increase is faster compared to the standard oscillator with a constant frequency. For a posi-
tive leading-term coefficient a3 > 0 the possible points of local extremes are the positive real roots of the cubic 
polynomial in Eq. (20). In the simplified case a a T1 3

2, the extreme appears at ω≈T a2 /max 0
2

3
3 , yielding the 

value according to Eq. (19)
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 ω
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S T k a
k

( ) 1 ln ,
(22)

B
B

max
3
1/3

0
1/3

approximately valid assuming the argument of the logarithm being large enough in accordance with Eq. (19). In 
this regime, we observe purification of the oscillator state with increasing temperature, even more unusual phe-
nomena of strong coupling regime. Thus, in this case the thermal localization and purification appears in parallel. 
It is the best regime to jointly demonstrate both these counter-intuitive phenomena. For higher ω0 the maximum 
appears at higher temperatures and S(Tmax) is reduced, see Eq. (22).

Heat Capacities
The counter-intuitive phenomena of thermal purification for the von Neumann entropy brought us close to ther-
modynamic analysis of strong coupling effects. In the classical macroscopic thermodynamics heat capacities yield 
the amount of heat exchanged between a system and the heat bath when temperature changes during a specific 
thermodynamic process. For microscopic mechanical oscillator the heat exchange between the oscillator and its 
environment is hard to measure. In the present work we focus on two capacities (thermodynamic coefficients)

=
∂
∂

C T T S
T

( ) , (23)S

=
∂
∂

.C T
T

( ) (24)




The measurement of the capacities (23) and (24) can provide us information about thermally activated micro-
scopic processes in the system. In the weak coupling limit (λ→0, cf. Eq. (12)), ω(T) = ω0 and these quantities are 
identical. For the oscillator strongly coupled to the bath, each quantity provides a different information and each 
is a result of different type of possible (at least in principle) measurement.

First, the entropic capacity, CS(T), is obtained provided we can reconstruct the equilibrium state ρ̂ T( ), Eq. (9), 
of the oscillator strongly coupled to the bath and calculate the von Neumann entropy. It is experimentally acces-
sible for many optomechanical and electromechanical experiments using the homodyne tomography56. In the 
case of an oscillator, different approach relying on the VarX(T) measurement is as well possible, being described at 
the end of this subsection.

Second, the heat capacity C T( ) is defined through the internal energy function T( ) , given by the 
difference20

= 〈 〉 − 〈 〉ˆ ˆT H H( ) , (25)ott B B

related to the Hamiltonian of mean force as20

= 〈 〉 −
∂
∂

.ˆ ˆ
T H T T H

T
( ) ( )

(26)


Figure 3. The entropy Eq. (18) as the function of the temperature for the respective leading-term coefficients 
aΩ. For the negative coefficient a3 < 0 (blue-dashed) the entropy diverges at points of vanishing ω(T), ω(Td) = 0. 
For positive leading-term coefficients aΩ the behavior depends on the aΩ value. In the case Ω = 1 (red) the 
entropy diverges as ∝S T k T( ) lnB , for Ω = 2 (green) the entropy saturates for large T at the value (21). For 
Ω = 3 and positive leading term coefficients a3 > 0 (blue-full), there exists a local maximum at the temperature 

ω≈T a2 /max 0
2

3
3  with the maximum value S(Tmax), Eq. (22). In this regime we observe thermal purification of 

the oscillator and the entropy decreases logarithmically. In all plotted cases ω| | ≈Ωa T 0
2, ω0 ≈ 106 rad/s52.
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According to Eq. (25), the heat capacity C T( )  is an outcome of the differential calorimetric measurement. To 
see this, we note that the right hand side of Eq. (25) contains the energy difference between two independent 
systems: (i) the oscillator together with the bath, characterized by the total Hamiltonian Ĥtot, cf. Eq. (8), and (ii) 
the plain bath without the oscillator with the Hamiltonian ĤB. Because the quantity T( )  is given by the difference 
of the average energies of the systems (i) and (ii), its change with temperature, ∂ ∂T T( / )d , equals to the differ-
ence of energy flows into (i) and (ii). Hence, the capacity C T( )  can be obtained measuring the difference of 
energy flows into these two systems during temperature changes. It is not necessary to measure the state ρ̂ T( ) 
directly, however, it requires energy measurement with a rather high precision which is stimulating for further 
technological development57–59.

The two capacities CS(T) and C T( ) , can witness the fact that the interaction strength between the oscillator 
and the bath is beyond the weak-coupling limit. In this limit, both these capacities are strictly positive. The nega-
tivity of the capacities reflects strong oscillator-bath coupling. We can formulate the following strong-coupling 
witness: If the respective capacity is negative, then, definitely, the system is strongly coupled to its surrounding. 
Moreover, the capacities can clearly identify the cases when the function f(T), cf. Eq. (3), is a nonlinear function 
of T.

the capacity CS(T)Cs(t). The behavior of the entropic capacity CS(T) = T∂S/∂T is rather complex and 
interesting, cf. Fig. 4, and follows directly from Eq. (20). For the negative values of the leading-term coefficients 
aΩ < 0 the capacity diverges at same temperature Td as the entropy. Figure 4 shows the capacity for the positive 
leading-term coefficients, aΩ > 0. For Ω ≤ 2, the capacity does not attain negative values as opposed to Ω = 3. 
For larger temperatures, the three plotted curves approach the asymptotic values CS ≈ kB(1 − Ω/2). The capacity 
CS(T) reaches its lowest values for the highest order of the nonlinearity in T, Ω = 3. For smaller ω0, while other 
parameters are kept constant, the value CS(T) = 0 is crossed at lower temperatures, allowing for easier observa-
tion of CS(T) < 0. Negative capacity CS(T) means that the entropy of our system decreases with the increasing 
temperature.

In the classical regime, when both variances are far from the ground-state variance, the equilibrium probabil-
ity density function factorizes, ρ(X,P) = ρ(X)ρ(P). Then the von Neumann entropy can be decomposed into the 
position and momentum parts, S(T) = SX(T) + SP(T), where ∫ ρ ρ= −S T k X X X( ) d ( )ln[ ( )]X B , expresses the 
uncertainty of the probability density ρ(X), and similarly for SP(T). The entropy SX(T) can be understood as a 
counterpart of the position variance VarX(T). Using S(T) = SX(T) + SP(T), we obtain = +C T C T C T( ) ( ) ( )S S SX P

, 
cf. Eq. (23). The momentum part contributes by the constant only, =C T k( ) /2S BP

.
In analogy to the entropic capacity C T( )SX

 we can define the mechanical position-uncertainty coefficient 
= ∂ ∂C T T T( ) ( Var / )XVarX

. From a mechanical viewpoint, it determines a variance which can be reached by heat-
ing the oscillator up to a temperature T, if that variance constantly increases from T = 0 with a slope given by its 
local value ∂VarX/∂T. Its properties are different from C T( )SX

. They are related as =C T C T T( ) ( )/Var ( )S XVarX X
, 

thus C T( )VarX
 can be used to determine CS(T), without the necessity of estimating the state ρ̂ T( ). In this way, local-

ization of the particle can be directly measured and used to determine the main features of the capacity CS(T). In 
turn, this capacity can be used, in our case of an oscillator, to describe the properties of C T( ), discussed in the 
next subsection.

the capacity C T( ) Cu(t). It turns out that the respective capacities CS(T) and C T( ) can be related to each 
other. For instance, we obtain the relation

= −
∂

∂
<

∂
∂

>C T C T T
T

H
T

( ) ( ) , (27)S

yielding another useful result valid for our HMF (4)

Figure 4. The entropic capacity (23), for different values of Ω. For Ω ≤ 2, (red, green), CS(T) approach their 
asymptotic values CS(T) ≈ kB(1 − Ω/2) according to Eq. (20). For Ω ≥ 2, CS(T) may become negative. In all 
plotted cases ω≈Ωa T 0

2, ω0 ≈ 106 rad/s52. The parameters used are the same as in Fig. 3.
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 =
∂

∂
.C T

T
TC T( ) [ ( )] (28)S

Clearly, in the weak-coupling limit C T( )  and CS(T) are identical.
Eq. (28) allows for determination of C T( ) from CS(T), achievable by homodyne tomography33, or even from 

the knowledge of VarX(T), see Sec. 6.1. The behavior of C T( ) for different values of Ω is shown in Fig. 5, for the 
same parameter values as used in Fig. 4.

Figure 5 illustrates that C T( )  can serve for an even more interesting purpose. Surprisingly, it can witness the 
order Ω of the temperature dependence ω(T) in a more effective way compared to CS(T), due to the relation 

≤C T C T( ) ( )S . Thus from the behavior of C T( ) we can determine whether the temperature dependence in (3) 
is linear or of a higher order in T. It simultaneously implies, that to reach a strong coupling proved by negative 
capacity C T( ), ω(T) with Ω ≥ 2, Eq. (3), is required.

Finally, note that we have studied60,61 the HMF, where the temperature dependence was in the linear additive 
term ˆf T X( ) , in contrast to the quadratic term ˆf T X( )

2
 in the present Eq. (4). Such linear term does not lead to 

 <C T( ) 0 or CS(T) < 0 for any Ω ≤ 3, assuming we adopt the same form of ω(T) as in Eq. (3). The behavior of the 
capacity does strongly depend on the particular form of the HMF.

In analogy with classical weak-coupling thermodynamics, one can be tempted to define the third capacity as 
= ∂〈 〉 ∂ˆC T H T( ) /H , with 〈 〉Ĥ  being the mean value of the HMF, Eq. (4). This quantity is not related to a heat flow 

between the bath and the oscillator and has no abilities to witness localization and/or purification of the oscillator 
when the surrounding temperature is changed. However, this quantity resembles the textbook results for the 
harmonic oscillator heat capacity CH(T) = kB, valid in the weak coupling limit. Only in this limit, 〈 〉Ĥ  has the 
meaning of the average energy of the system and CH(T) coincides with the capacities defined in Eqs (23) and (24).

Route to experiment
We have analyzed mechanical and thermodynamic characteristics of a mechanical oscillator with 
temperature-dependent energy levels En(T) = ℏω(T)(n + 1/2). Such model can be interpreted as representing a sin-
gle light-addressed effective mode of a solid-state part (e.g., membrane or microresonator) of an optomechanical 
device. Such-solid state structures have typically their basic characteristics (like frequency) dependent on the tem-
perature of its surroundings, ω = ω(T). We used this link with our model and together with interpretation of such 
temperature-dependence as a consequence of strong coupling of the mode to the ambient heat bath, we have dis-
cussed the aforementioned mechanical and thermodynamic properties stemming from such dependence. For dif-
ferent functional forms of this dependence we show that in a high-temperature regime, we encounter a wide variety 
of qualitatively different behaviors regarding the oscillator localization (reduction of its position variance), Sec. 4, the 
purification (reduction of its von Neumann entropy), Sec. 5, or ability to witness strong oscillator-bath coupling, Sec. 
6. The main result of our paper is that for the linear temperature dependence of the square of the oscillator frequency 
we can not observe any of these effects. On contrary, for the cubic temperature dependence of the squared frequency, 
both effects appear simultaneously and are more pronounced with increasing temperature, cf. Figs 2 and 3.

Regarding the frequency ranges suitable for the observation of interesting effects described in this paper, we 
conclude the following. When localization, state purification, and/or witnessing strong coupling to the bath are 
in the focus of interest, it is preferable to use oscillators with lower bare frequencies. On the other hand, if the 
figure of merit is to keep the oscillator in the low-entropy regime, one should preferably work with a higher bare 
frequency oscillators.

As the first step towards experimental observation of the predicted strong coupling effects can be design of 
a simulator where both temperature and frequency are tuned in a correlated way. This simulator can be practi-
cally realized in a similar way as the classical squeezing of a thermal state of levitating nanoparticle out of the 
equilibrium was done62, if the frequency change would be correlated with heating of the nanoparticle. To test the 
quantum non-equilibrium version of this effect, mechanical state of trapped ion with uncertainty squeezed below 

Figure 5. The heat capacity (24) for different values of Ω. For Ω ≥ 2, C T( ) becomes negative and in all cases 
 ≤C T C T( ) ( )S , cf. Fig. 4. In all plotted cases ω≈Ωa T 0

2, ω0 ≈ 106 rad/s52. The parameters used are the same as 
in Fig. 4.
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the ground state can be used63. Alternatively, a transient time-dependent squeezing of light can be considered64. 
Such simulator will allow not only to verify our current results, but also to simulate further topics of stochastic 
and quantum thermodynamics, such as the performance of quantum heat engines at strong coupling65–69, includ-
ing impact of fluctuations on their efficiencies70, and the effects of thermally induced coherence71. The result of 
these simulations will explore the possibility to measure such effect in different experimental regimes. Next step 
is technological, looking for a design of mechanical oscillator with maximized temperature-dependent frequency 
at a thermal equilibrium and minimal noise and anharmonicity.
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