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Equation learning aims to infer differential equation
models from data. While a number of studies have
shown that differential equation models can be
successfully identified when the data are sufficiently
detailed and corrupted with relatively small amounts
of noise, the relationship between observation noise
and uncertainty in the learned differential equation
models remains unexplored. We demonstrate that for
noisy datasets there exists great variation in both
the structure of the learned differential equation
models and their parameter values. We explore how
to exploit multiple datasets to quantify uncertainty
in the learned models, and at the same time draw
mechanistic conclusions about the target differential
equations. We showcase our results using simulation
data from a relatively straightforward agent-based
model (ABM) which has a well-characterized partial
differential equation description that provides highly
accurate predictions of averaged ABM behaviours in
relevant regions of parameter space. Our approach
combines equation learning methods with Bayesian
inference approaches so that a quantification of
uncertainty can be given by the posterior parameter
distribution of the learned model.

1. Introduction
Many phenomena in Nature arise as a result of complex
interactions between individual agents at the microscale
that give rise to emergent properties at the macroscale.
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Understanding the mechanistic basis for the observed macroscale behaviour, in order to gain
fundamental insights into biological phenomena, is one of the key challenges in biology.

Mathematical models are well placed to help provide such insights, providing a rigorous
framework where hypotheses can be generated, tested and refined. While interactions between
individual agents can be naturally described by agent-based models (ABMs) that prescribe
precise rules for the interactions between agents [1–4], predicting the macroscale behaviour
of ABMs can be a challenging task, since their governing equations are often intractable and
stochastic simulations can be computationally expensive, often prohibitively so in the context
of parameter sensitivity analysis or parameter inference [5–9]. This makes differential equation
models an indispensable tool to describe the expected macroscale properties of the population.
The benefits of differential equation models include the fact that they are relatively fast to solve
numerically, their different terms often carry a physical interpretation and they can be explored
using a range of analytical and numerical approaches. Understanding how such a model can
be parametrized, then, can provide key insights into the system under consideration, and aid in
making quantitative as well as qualitative predictions [10].

Traditional approaches to mathematical modelling use experimentally derived mechanistic
hypotheses to derive differential equation models in which the various terms of a given model are
designed to describe the hypothesized mechanisms for that scenario. Calibration of the model to
data then involves finding the parameters that minimize the discrepancy between the model
output and data. The ensuing, iterative process of testing and refining the model against further
experimental data allows the original hypotheses to be refined, and so new insights gained.

Equation learning (EQL) methods take a different approach to model building, aiming to infer
the dynamical systems model that best describes given time-series data by leveraging statistical
and machine learning tools to learn the appropriate terms of a differential equation model directly
from the data. In particular, the PDE-FIND algorithm [11,12] takes as input quantitative data,
together with a library of candidate terms for a partial differential equation (PDE) model, and
aims to learn which terms to include in the PDE model, as well as their coefficients. Algorithm
hyperparameters can be tuned to enable a balance between the requirement for a good model fit
and the desire for a simple, interpretable model.

EQL methods have rapidly gained popularity, mainly owing to increases in computational
power, and a number of other techniques to establish models from data now exist. For example,
biologically informed neural networks [13], an extension of physically informed neural networks
[14], have been developed to learn the different terms of a PDE model without the need to specify
a library of possible terms. Furthermore, a major advance has come from the use of techniques
such artificial neural networks [15] to accurately recover models from artificially generated noisy
data from PDEs.

The fact that EQL can discover previously undetected mechanisms, discriminate between
competing models or estimate biological quantities of interest that are difficult to measure
experimentally makes EQL attractive to scientists working with real-world data. However,
practitioners wishing to develop models that they can use in real-world settings require, in
addition, a thorough quantification of uncertainty [10,16–19]. This need comes from the fact
that the, often significant, noise in real-world data can impact the models predicted by EQL
methods, and hence the predictive capability of the models for unseen data or scenarios [20,21].
For example, Nardini et al. [8] have recently shown, through the use of several case studies, that
it is possible to infer differential equation models that describe noisy data generated by stochastic
ABMs. However, the stochasticity in the ABM results in variability in the learned macroscale
differential equation. This means that, for a particular realization generated from a stochastic
model, the learned differential equation is a point estimate of the underlying differential equation,
and there is no quantification of uncertainty in the learned equation.

Recently, some authors [12,22] have begun to address this problem by analysing the robustness
of PDE-FIND with noisy or sparse data. For example, Rudy et al. [12] investigate how the learned
PDE varies as the numerical solution of a ground truth PDE is corrupted by additive noise, while
Li et al. [22] investigate how to increase the signal-to-noise ratio of a dataset prior to the use of
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Figure 1. Proposed framework for uncertainty quantification (UQ) in equation learning (EQL). An ensemble of noisy datasets
are used to create an informative prior distribution, which can then be used to obtain a posterior parameter distribution for the
learned PDE. (Online version in colour.)

EQL techniques. While both works show that model parameters can be retrieved to within an
impressive margin of error when the data are corrupted with relatively small amounts of noise,
these approaches give no statistical quantification of the uncertainty in model predictions, nor do
they address how to deal with significant noise levels.

In this work, we demonstrate that noise can significantly impact both the structure and
the values of the parameters of learned differential equation models, rendering uncertainty
quantification a crucial component of the EQL process. As such, our overarching aim is to develop
and showcase a method for uncertainty quantification in the context of EQL, where we harness
the immense computational efficiencies of PDE-FIND in learning point estimates of governing
equations, together with the power of computational Bayesian inference in evaluating the level
uncertainty in the learned equation. Figure 1 shows our proposed framework for uncertainty
quantification. We start from the basis that it is possible to collect an ensemble of spatio-temporal
datasets from a given system, and develop an approach to understand how the data can be used
to learn a governing equation while simultaneously estimating the uncertainty in that learned
equation.

Our motivation is thus: on the one hand, PDE-FIND provides a computationally cheap method
to obtain a point estimate for the governing equation from a single time series. However, when
the data are noisy, the individual predictions are unreliable. This is seen on the left-hand side of
figure 1, where this approach is identified by obtaining a point estimate of the PDE. On the other
hand, the field of computational Bayesian inference provides a number of methods to estimate,
for a given model and data, posterior parameter distributions, i.e. it provides estimates of
model parameters and quantifies the uncertainty in those estimates. In principle, computational
Bayesian inference approaches could be used directly with the candidate library of the PDE-FIND
method to estimate the posterior distribution of the library coefficients. However, owing to the
very large number of candidate terms in the PDE-FIND library, the computational cost associated
with applying methods for computational Bayesian inference on the entire high-dimensional
parameter space is generally prohibitive. Instead, we propose a framework that combines the
strengths of each approach: first, we train the PDE-FIND algorithm on individual datasets from
the ensemble to obtain an informed prior parameter distribution (top row of figure 1). While this
prior distribution will propably be relatively broad and uninformative of the uncertainty in the
model, it can still be used to vastly reduce the dimensionality of the inference problem. Such a
reduction in dimensionality makes it feasible to find an informative posterior distribution using
computational Bayesian approaches (right-most column of figure 1).
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In this work, we demonstrate the potential of this approach using synthetic data generated
from a widely used ABM that describes the behaviour of a motile and proliferative cell population
and can be coarse-grained to a mean-field PDE that accurately describes ABM dynamics in certain
regions of parameter space. In §2, we describe the ABM and discuss in detail its relation with a
governing PDE, as well as the PDE-FIND algorithm. In §3, we demonstrate both that the PDE
models learnt using PDE-FIND are intrinsically variable when the data are noisy and that PDE-
FIND can learn unphysical models. We provide an explanation for this in terms of the objective
function of the PDE-FIND algorithm. In §4, we propose a method to combine methods for
Bayesian inference with PDE-FIND in order to learn the structure of the governing PDE model,
construct a prior parameter distribution for the PDE model and infer the posterior parameter
distribution of the learned PDE model. We conclude in §5 with a discussion of our results,
and avenues for future research. Code for all algorithms can be found at https://github.com/
simonmape/UQ-for-pdefind.

2. Models and equation learning methodology
We begin by describing the ABM and briefly outlining how to derive the corresponding coarse-
grained PDE model, and then we provide details of the PDE-FIND algorithm.

(a) Agent-based model
ABMs allow practitioners to investigate the collective behaviour of a population of individuals
based on a description of the behaviour of individuals within that population. Here, in order
to take into account the interactions between individuals of the population, we follow the
volume-exclusion model presented in [4,23–26] for a population of agents that move and
proliferate according to a discrete random walk model. This is a simple model that can be used
to analyse a range of phenomena, including the collective migration of cells in a tissue, for
example.

We assume that agents occupy sites on a square lattice of spacing �, so that their possible
locations are (i�, j�), where (i, j) are integer coordinates, and volume exclusion entails that at
most one agent can occupy a lattice site at any given time. We have 1≤ i≤ I and 1≤ j≤ J, and
throughout this work we take I= 200 and J= 20. A pseudo-one-dimensional initial condition is
taken by initially populating all lattice sites with 90≤ i≤ 110 and leaving the rest of the lattice
empty. We impose zero flux boundary conditions at all boundaries so that agents cannot leave
the lattice and use time step τ to advance the simulations through time, with T= 1000 time
steps in total for each simulation. Let N(t) denote the number of agents on the lattice at time t.
The parameter pm ∈ [0, 1] specifies the attempted movement probability of each agent in a time
interval of duration τ , and ρ ∈ [−1, 1] the left–right bias in movements. Similarly, the parameter
pp ∈ [0, 1] specifies the attempted proliferation probability of each agent in a time interval of
duration τ .

At each time step, τ , a random sequential updating procedure is carried out: N(t) agents are
selected, one at a time, with replacement, and are allowed to attempt a movement or proliferation
event. When an agent is selected, S1 ∼U(0, 1) is drawn. If S1 ≤ pp then the agent attempts to
proliferate by placing a daughter agent into one of the randomly chosen nearest-neighbour
sites. If the target site is occupied, then the proliferation event is aborted. If pp < S1 ≤ pp + pm

then the agent attempts to move to one of its nearest-neighbour lattice sites. A second random
number S2 ∼U(0, 1) is drawn and the target site is chosen according to the rules in table 1. As
for proliferation, if the target site is occupied then the movement event is aborted. If S1 > pp + pm

then the agent does not attempt to move or proliferate. For convenience, we take �= 1, τ = 1 and
pm = 1 and consider the effects of varying pp and ρ.

Let Ck
ij(t) denote the occupancy of site (i, j) at time t in simulation k, so that Ck

ij(t)= 1 if (i, j) is

occupied by an agent at time t and Ck
ij(t)= 0 if it is empty. We can average the site occupancy over

https://github.com/simonmape/UQ-for-pdefind
https://github.com/simonmape/UQ-for-pdefind
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Table 1. Algorithm by which an agent at site (i, j) selects a target site to move into.

move chosen target site probability where random number S2 falls

vertically up (i, j − 1) 1
4 0≤ S2 ≤ 1

4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

vertically down (i, j + 1) 1
4

1
4 ≤ S2 ≤ 1

2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

horizontally left (i − 1, j) 1−ρ

4
1
2 ≤ S2 ≤ 1

2 + 1−ρ

4
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

horizontally right (i + 1, j) 1+ρ

4
1
2 + 1−ρ

4 ≤ S2 ≤ 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

the columns of the lattice, defining the mean occupancy of column i at time t in simulation k as,
for 1≤ i≤ I,

Ck
i (t)= 1

J

J∑
j=1

Ck
ij(t) (2.1)

to give a one-dimensional averaged agent density profile for simulation k.

(i) Coarse-grained PDE model

To make progress in deriving a coarse-grained PDE equivalent, we first note that the choice of a
pseudo-one-dimensional initial condition means that we can consider deriving a one-dimensional
PDE for c(x, t), the density of agents at position x at time t, without making explicit reference to
the spatial coordinate y. We use 〈Ci(t)〉 to denote the average probability of occupancy of lattice
site i at time t, for 1≤ i≤ I, where the average is taken over K simulations,

〈Ci(t)〉 =
1
K

K∑
k=1

Ck
i (t)= 1

J · K
K∑

k=1

J∑
j=1

Ck
ij(t). (2.2)

We now consider the change in average occupancy of site i over a time step of duration τ to write

〈Ci(t+ τ )〉 − 〈Ci(t)〉 =
(1+ ρ)

4
pm〈Ci−1(t)〉 (1− 〈Ci(t)〉)+

(1− ρ)
4

pm〈Ci+1(t)〉(1− Ci(t))

− (1+ ρ)
4

pm〈Ci(t)〉
(
1− 〈Ci+1(t)〉)− (1− ρ)

4
pm〈Ci(t)〉

(
1− 〈Ci−1(t)〉)

+ 1
2

pp〈Ci−1(t)〉 (1− 〈Ci(t)〉)+
1
2

pp〈Ci+1(t)〉(t) (1− 〈Ci(t)〉) , (2.3)

where the first four terms on the right-hand side correspond to changes in occupancy owing
to agent movement and the final two to agent proliferation. Note that, in writing down this
conservation statement, we have implicitly assumed that lattice site occupancies are independent,
so that, for example, the average probability that site i is occupied and site i± 1 is unoccupied
can be written as 〈Ci(t)〉(1− 〈Ci±1(t)〉). This is a standard assumption called the mean-field
approximation [27–29].

We then identify 〈Ci(t)〉 with the continuous density c(x, t), Taylor expand the resulting
equation and take limits as �, τ→ 0, to arrive at the following PDE:

ct =Dcxx − V[c(1− c)]x + P[c(1− c)], (2.4)

where

D= lim
�,τ→0

pm�2

4τ
, V= lim

�,τ→0

pm�ρ

2τ
and P= lim

τ→0

pp

τ
(2.5)

and the subscripts x and t denote partial derivatives. For the full derivation and details, we refer
the reader to [24–26].

Identification of the ABM with a coarse-grained macroscale PDE model motivates us to
investigate the performance of EQL methods trained on data generated by the ABM, since
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Table 2. Themean-field PDEmodels describing evolution of themean population density over time for the three example cases
used in this work.

case pm ρ pp coarse-grained PDE

I: no bias, no proliferation 1.0 0.0 0.0 ct = 0.25cxx
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

II: bias, no proliferation 1.0 0.075 0.0 ct = 0.25cxx − 0.0375[c(1− c)]x
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

III: proliferation, no bias 1.0 0.0 0.01 ct = 0.25cxx + 0.01[c(1− c)]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

the PDE accurately describes the time evolution of the expected value of the density profile
and so we can evaluate the performance of EQL methods against equation (2.4). Note that,
in order for equation (2.4) to provide an accurate description of the averaged dynamics of the
ABM, we require that the assumption of lattice-site occupancy independence (i.e. the mean-field
assumption) approximately holds. Typically, this requires pp and |ρ| to be small relative to pm

[23,27,30].

(ii) Comparison of the ABM and PDE model predictions

As test cases for learning the governing equations from data, we explore three different parameter
regimes in the model, which each correspond to a biologically relevant setting: in case I, we
consider agents moving without bias and without proliferation (ρ = pp = 0); in case II, we consider
agents moving with bias but without proliferation (ρ = 0.075 and pp = 0); and in case III, we
consider agents moving without bias but with proliferation (ρ = 0 and pp = 0.001). Table 2 outlines
these different cases, along with a statement of the corresponding coarse-grained PDE model.

Figure 2 shows results from simulation of the ABM, averaged over different numbers of
realizations, alongside the solution of the corresponding PDE model. The PDE model is solved
numerically using the PyPDE package [31], which solves the PDE using the method of lines
by discretizing space using the grid on which spatial data for the ABM have been collected.
The resulting ordinary differential equations (ODEs) are solved using a fourth-order Runge–
Kutta method on the domain x ∈ [0, 200] with space discretization �x= 10−3, and constant time
discretization �t= 10−4.

We make two observations. First, we note that the solutions of the PDE models accurately
predict the dynamics of the ABM in the chosen parameter regimes (see also electronic
supplementary material, figure S1), so that we have a ‘ground truth’ PDE against which to
benchmark the EQL methodology. Second, at early times the density profiles are very similar for
the three different cases, but at later times differences due to the effects of bias and proliferation
are clearly discernible. This observation implies that the EQL methodology will require data on
sufficiently long time scales to be able to accurately learn the correct PDE model.

(b) Equation learning: PDE-FIND
In the following, assume that we have time-series data for an unknown function u(x, t) on a grid
of n points in time and m points in space. These data are stored in a matrix U ∈R

n×m. We assume
that the data are a noisy discretization of a function u(x, t), the solution of an unknown PDE,
and the aim is to learn the PDE that best describes the governing equation of the observed data.
Henceforth, and to avoid confusion, we will write U(x, t) for the observed data, u(x, t) for the
learned PDE and c(x, t) for the solution to the coarse-grained PDE defined in equation (2.4). We
follow Rudy et al. [12] in assuming that the PDE governing u(x, t) is given in the following form:

ut =N (u, ux, uxx, . . .), (2.6)



7

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A477:20210426

..........................................................

1.0

0.8

0.6

0.4

0.2

0

c(
x,

 t)

x
0 100 200

1.0

0.8

0.6

0.4

0.2

0

x
0 100 200

1.0

0.8

0.6

0.4

0.2

0

x
0 100 200

case I, noise case I, smooth case I, PDE

1.0

0.8

0.6

0.4

0.2

0

c(
x,

 t)

x
0 100 200

1.0

0.8

0.6

0.4

0.2

0

x
0 100 200

1.0

0.8

0.6

0.4

0.2

0

x
0 100 200

case II, noise case II, smooth case II, PDE

1.0

0.8

0.6

0.4

0.2

0

c(
x,

 t)

x
0 100 200

1.0

0.8

0.6

0.4

0.2

0

x
0 100 200

1.0

0.8

0.6

0.4

0.2

0

x
0 100 200

case III, noise case III, smooth case III, PDE

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2. Typical one-dimensional density profiles. Plots (a,d,g) are from a single realization of themodel (K = 1), plots (b,e,h)
are averaged over 50 simulations (K = 50) and plots (c,f,i) are the solutions of the corresponding coarse-grained PDE. In each
plot, we show the density at times t= 0, 50, 150, 500 (red, blue, black, orange). (Online version in colour.)

where N is a nonlinear function of u(x, t) and its partial derivatives. Furthermore, it is assumed
that N is a linear combination of a finite number of distinct library terms so that we can write

ut =
N�∑
i=1

Ni(u, ux, uxx, . . .) ξi, (2.7)

for coefficients ξi, where i= 1, . . . , N�. By design, we will specify that N has polynomial
nonlinearities, as is common in many equations in the natural sciences, and we note that equation
(2.4) falls within this class of PDEs. The aim of PDE-FIND is then to select, from the large library
of terms Ni, for i= 1, . . . , N�, a small subset of relevant terms.
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The first step of the PDE-FIND pipeline is to numerically approximate both sides of equation
(2.7). This is done by estimating derivatives of the data with respect to space and time. The
standard PDE-FIND implementation in [12] takes finite difference approximations when the data
contain little noise and polynomial differentiation when the data are very noisy. The data and their
derivatives are combined in a matrix Θ(U), where each column of Θ contains all of the values of
a particular candidate function across the entire n×m grid. For example, if the candidate library
consists of all polynomials up to degree 2 and non-mixed derivatives up to second order, N� = 9
and Θ(U) will look like

Θ(U)= [1, U, U2, Ux, UUx, U2Ux, Uxx, UUxx, U2Uxx]. (2.8)

As a result, if there are N� terms in the candidate library, Θ(U) is an n×m×N� matrix.
The left-hand side of equation (2.7) is similarly approximated, and we obtain a linear matrix

equation representing the PDE evaluated at the data points,

Ut =Θ(U)ξ , (2.9)

where ξ = [ξ1, . . . , ξN�
]T. Taking the same example for Θ(U) as in equation (2.8), this matrix

equation is of the form

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ut(x0, t0)
Ut(x1, t0)
Ut(x2, t0)

...
Ut(xn−1, tm)
Ut(xn, tm)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 U(x0, t0) U2(x0, t0) . . . U2Uxx(x0, t0)
1 U(x1, t0) U2(x1, t0) . . . U2Uxx(x1, t0)
1 U(x2, t0) U2(x2, t0) . . . U2Uxx(x2, t0)
...

...
...

. . .
...

1 U(xn−1, tm) U2(xn−1, tm) . . . U2Uxx(xn−1, tm)
1 U(xn, tm) U2(xn, tm) . . . U2Uxx(xn, tm)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ξ1
ξ2
ξ3
...
ξ8
ξ9

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2.10)

Note how this representation shows that each row in the matrix equation represents the governing
dynamics behind the data at one point in time and space. The values of the coefficients ξi
determine the form of the PDE, and so the aim is to learn the coefficients ξi in some sense
‘optimally’.

Following Rudy et al. [12], we will assume Θ to be overspecified, meaning that the dynamics
can be represented as linear combinations of the columns of Θ . However, many PDEs in
the natural sciences contain only a few terms. Therefore, we wish to learn a sparse vector
ξ = [ξ1, . . . , ξN�

]T as a solution of equation (2.7). This is done in PDE-FIND by considering the
optimization criterion

ξ = argminξ

(||Θ(U, Q)ξ −Ut||22 + λ||ξ ||22
)
, (2.11)

for the coefficient vector ξ , where λ ∈R>0 is a free parameter that penalizes large coefficients.
This is the method of ridge regression. We note here that the term ||ξ ||22 can be replaced with ||ξ ||21,
which corresponds to performing LASSO [8,15]. The optimal choice of implementation is largely
problem dependent, and various choices for the regularization method have been compared in
the literature [11,12,32,33], although no method has been proven to be definitively preferred over
another.

The default implementation of PDE-FIND as proposed by Rudy et al. [12] supplements the
ridge regression problem with a sequential thresholding procedure in which a solution to equation
(2.11) is found, and a hard threshold is performed on the regression coefficients by eliminating all
library terms that have coefficients smaller than some pre-specified parameter dtol. This process
is then repeated on the remaining library terms until all coefficients are larger than dtol, or
until a maximum number of iterations has been reached. The sequential thresholding process
is undertaken to enforce sparsity as the solution to the ridge regression problem in equation
(2.11) may contain several small, but non-zero values. The combined algorithm is called sequential
thresholding ridge regression (STRidge). For more details and motivation of the method, we refer to
[12], and for completeness we summarize the PDE-FIND method in algorithm 1.
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Algorithm 1 . STRidge.

Input: Library matrix, Θ(U), time derivative of data, Ut, STRidge parameters, λ and dtol,
and maximum number of iterations, iters.

Output: Sparse vector ξ .
1 Set B= {j : j= 1, . . . , N�};
2 while iters≥ 0 do
3 Set Θ[:, B] to be the matrix consisting of all columns of Θ(U) for which the coefficient

cj has index j ∈ B;
4 Solve the sparse regression problem including only coefficients in B, that is, compute

ξ̂ [B]= argminξ̄‖Θ[:, B]ξ̄ −Ut‖22 + λ‖ξ̄‖22;

5 Update B: set
6 B= {j : entry of ξ̂ [B] corresponding to coefficient cj has magnitude at least dtol};
7 iters← iters− 1;
8 end
9 Update ξ :

for j /∈ B set the jth entry of ξ to be zero;
for j ∈ B set the jth entry of ξ to be the entry of ξ̂ [B] corresponding to coefficient cj.

Table 3. Coefficients of the coarse-grained PDEs describing evolution of the mean population density over time for the three
example cases used in this work. The coefficients correspond to the coarse-grained PDEs described in table 2.

case c1 cu cu2 cux cu·ux cu2·uxx cuxx cu·uxx cu2·uxx
I 0.0 0.0 0.0 0.0 0.0 0.0 0.25 0.0 0.0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

II 0.0 0.0 0.0 −0.0375 0.075 0.0 0.25 0.0 0.0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

III 0.0 0.01 −0.01 0.0 0.0 0.0 0.25 0.0 0.0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(i) Application of PDE-FIND to the ABM data

We first generate ABM data for cases I, II and III. For each, we generate two datasets with
different noise levels, denoting them Di

r where r= I, II, III denotes the case and i= 1, 2 denotes
the dataset/noise level. For dataset 1 (i= 1), the density profiles are generated using single
realizations of the ABM and averaging (so that K= 1 and the data are relatively noisy), whereas
for dataset 2 (i= 2) the density profiles are generated using 50 realizations of the ABM and
averaging (so that K= 50 and the data contain relatively little noise). For each realization of the
ABM, we simulate for T= 1000 time steps and subsample the data at every other time point
so that each dataset contains information for n= 500 time points and m= 200 space points. Each
dataset contains Ns samples, each an average over K realizations of the ABM. We use the standard
implementation of PDE-FIND [12] and use polynomial differentiation at fourth order to evaluate
both the time and space derivatives.

We select a library of candidate terms that includes all polynomial terms up to order 2 and
up to the second derivative. Table 3 shows the values of the coarse-grained PDE coefficients,
according to equation (2.4). These are the values of the coefficients that we would expect the PDE-
FIND algorithm to return for perfect spatio-temporal data. In table 3, and the rest of this work,
we use the notation ci for the coefficient of term i in the learned PDE.

3. Sources of variability and model misspecification
In this section, we showcase three different, but related, directions in the uncertainty
quantification of the learned differential equations. In §3a, we demonstrate the intrinsic variability
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of the learned coefficients in the presence of observation noise. We evaluate how uncertainty
changes as the noise level is varied and suggest that even when using state-of-the-art denoising
approaches a need for uncertainty quantification remains. Although increasing the signal-to-
noise ratio helps, regardless of the method there is still variability that needs to be quantified. In
particular, this is important in biological applications where observations are often very noisy and
practitioners rarely have access to very large amounts of data. In §3b, we investigate the impact
of varying the regularization hyperparameter in PDE-FIND with a view to asking whether this
can be optimized to reduce uncertainty. We find that, while this is possible, parameter estimates
are still uncertain and this uncertainty needs to be quantified. Finally, in §3c, we demonstrate that
a key issue with PDE-FIND is that it aims to fit the time derivative of the solution and does not
take into account the fit of the observed density to the data, leading to unphysical predictions. We
demonstrate how to mitigate these issues in §4 through the use of Bayesian methods where we
can evaluate uncertainty in a framework that optimizes the fit of the model density profile to the
data.

In order to quantify the variability in results from the application of PDE-FIND, we introduce
a statistic which we term the identification ratio. Assume that for each sample, s, in the observed
dataset (which contains Ns averaged density profile samples) we have used PDE-FIND to produce
an estimate of the library coefficients, ξ , using STRidge, and we denote this estimate ξ̂

s
. For each

term i in the library, we define the identification ratio, ai, as

ai =
1

Ns

Ns∑
s=1

I(ξ̂
s
i �= 0), (3.1)

where I represents the indicator function and ξ̂
s
i is the ith entry of ξ̂

s
. Therefore, ai quantifies

how often the term Ni from equation (2.7) is included in the PDE-FIND predictions. When ai is
close to unity, the term is identified across many samples as being relevant for the dynamics and,
conversely, when ai is close to zero, the term is identified in only a small minority of samples as
being relevant.

(a) Variability of relevant PDE-FIND coefficients with noisy observations
We first demonstrate that a naive application of PDE-FIND on noisy synthetic data yields variable
and unreliable parameter estimates. For this application, we do not carry out hyperparameter
tuning, but simply use widely adopted parameter settings to learn the coefficients. For each of
the two datasets associated with each of case I, case II and case III, where dataset 1 averages
over K= 1 realizations and dataset 2 averages over K= 50 simulations, we train the PDE-FIND
algorithm using algorithm 1 (STRidge) with fixed hyperparameter settings1 λ= 10−2 and dtol =
10−3. For each of the resulting datasets, we also compute the corresponding identification ratios
(table 4) to quantify the extent of identification of the different terms in the model, and compare
the performance of PDE-FIND on the different case studies. In this case, Ns = 1000 samples.

(i) Case I

For case I, recall that the true PDE model contains only the term uxx with coefficient 0.25, hence
in noise-free scenarios we anticipate that cuxx should be non-zero and all other coefficients should
be zero. Table 4 shows that the two terms identified regularly by PDE-FIND on D1

I , the high-
noise dataset, are uxx and uuxx, with identification ratios of 0.826 and 0.199, respectively. On D2

I ,
the low-noise dataset, uxx is consistently identified and no other terms are identified. However,
there is significant variability in the learned coefficients between different samples from the same
dataset (figure 3). In addition, for the high-noise dataset, D1

I , the coefficients of uxx and uuxx are
correlated (figure 3c). In some cases, PDE-FIND identifies just one of the two terms, and in others

1These settings were used in the context of estimating the diffusion parameter in a random walk model in the electronic
supplementary material of [12].
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Figure 3. Histograms showing the empirical distribution of relevant PDE-FIND coefficients for case I. (a) Histograms for cuxx
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I (red) comparedwith the trueparameter value (black line). (b) Histogram for cu·uxx generated

usingD1
I compared with the true value (black line). (c) Joint distribution of cuxx and cu·uxx generated usingD1

I compared with
the true parameter (black star). (Online version in colour.)

Table 4. Identification ratios for different datasets. Italic fonts indicate terms that we anticipate in the learned PDEs based
on the results from ABM coarse-graining. Recall that case I includes non-biased motility and no proliferation, case II includes
motility bias but no proliferation and case III includes non-biased motility and proliferation. Dataset 1 contains averages over
K = 1 realizations while dataset 2 contains averages over K = 50 simulations.

experiment c1 cu cu2 cux cu·ux cu2·uxx cuxx cu·uxx cu2·uxx
D1

I 0.001 0.0 0.002 0.0 0.008 0.008 0.826 0.199 0.05
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

D2
I 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

D1
II 0.0 0.0 0.0 0.999 0.0 0.0 0.012 0.002 0.0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

D2
II 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

D1
III 0.013 0.659 0.482 0.002 0.002 0.007 0.571 0.01 0.014

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

D2
III 0.0 1.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

subsamplingD1
I 0.0 0.0 0.003 0.001 0.002 0.007 0.998 0.365 0.063

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

it identifies a combination of the two. This result highlights that potentially the wrong PDE can
be learnt from noisy data, partly because of the fact that different PDEs can give rise to similar
predictions. Since all of the ABM data samples have the same corresponding coarse-grained PDE,
this highlights the inability of PDE-FIND to confidently learn the governing PDE from noisy data.

(ii) Case II

For case II, where motility is biased, table 4 shows that the two terms identified regularly by PDE-
FIND on the high-noise dataset D1

II are ux and uxx, with identification ratios of 0.999 and 0.012,
respectively. Note that the true model should also contain the term uux, but PDE-FIND fails to
identify this term across all the samples of the dataset. This term arises in the coarse-grained PDE
as a result of volume exclusion (incorporated into the ABM through the requirement that at most
one agent can occupy a lattice site at any instant in time). Therefore, we infer in this case that
the data are insufficient to identify the impact of volume exclusion. This is most likely a result
of the initial conditions and/or the time scale over which data are collected since the density is
relatively low across the domain and so crowding is likely to be unimportant.

For the low-noise dataset D2
II only ux is identified, with an identification ratio of 1.0. The

histograms in figure 4 reveal a significant amount of variability in the learned parameters. For
instance, for both D1

II and D2
II, the parameters are distributed far away from the true parameter
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value. The variability appears to decrease with the noise level, and the distribution of estimated
parameters moves towards the true parameter value; however, the uxx coefficient is ‘lost’ in the
process.

(iii) Case III

For case III, which includes proliferation, table 4 shows that the terms identified regularly by PDE-
FIND on the high-noise dataset D1

III are u, u2 and uxx with identification ratios equal to 0.659, 0.482
and 0.571, respectively. Note that this means that all terms we would expect to appear in the PDE
are identified. However, as shown in detail in the electronic supplementary material, figure S6,
there is a correlation between the learned coefficients of u and u2, which points towards non-
identifiability [34,35]. For the low-noise dataset D2

III, the parameters identified are u and uxx, both
with identification ratio equal to 1.0. The histograms in figure 5 reveal that the variability in the
learned coefficients decreases as the noise level in the data is decreased. However, this does not
mean that the model is increasingly well identified as the noise is decreased—the term u2 is not
identified by PDE-FIND for the low-noise dataset D2

III, which contradicts the mean-field analysis.

(iv) Methods to decrease the noise levels

To investigate the impact of noise on PDE-FIND, we carried out two further studies in which
the noise in the data is reduced. First, we investigated whether choosing a more coarse spatial
grid improves the PDE-FIND predictions. Choosing a more coarse spatial discretization results
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in a smoother density profile; however, greater errors are incurred in the approximation of the
spatial derivatives and fewer data points are available. For this experiment, we subsampled
the data along the x-dimension by averaging the occupancy over multiple columns at a time.
Mathematically, from the empirical densities, Ci, at each time point, we subsample over intervals
containing 2B lattice sites, estimating the average occupancies C̃i for 1≤ i≤ I/(2B) as

C̃i =
1

2B

2Bi∑
�=2B(i−1)+1

C�. (3.2)

Table 4 summarizes the identification ratios found for the high-noise dataset D1
I , where motility

is unbiased and there is no proliferation, and we take B= 2. We see that with spatial subsampling
the identification ratio of cuxx increases significantly, although there is no marked improvement
in the identification ratios of other terms in the model. We conclude that, even if this method of
noise reduction allows the correct coefficients to be identified more frequently, there remains a
need to mitigate the fact that many other terms are spuriously identified by PDE-FIND.

Second, we investigated other means to reduce observation noise. In applications of PDE-FIND
to real-life data, practitioners will typically not be able to control for the amount of observation
noise in the way that is done in the numerical experiments of this work, hence methods to smooth
data may be useful in allowing identification of the PDE model. In electronic supplementary
material, §S3, we explore two practically appealing methods, convolution with a Gaussian kernel
and an implementation of principal component analysis for EQL by Li et al. [22]. Our results show
that, even with these well-established techniques for reducing the influence of noise, predictions
remain variable with coefficients highly correlated, and that uncertainty quantification remains
necessary for a reliable application of PDE-FIND to realistic biological data.

(b) Role of the regularization hyperparameter
Recall that, in algorithm 1, a free parameter, λ, controls the level of penalty incurred by choosing
large coefficients in the solution of equation (2.7). It is well known that the choice of regularization
parameter is non-trivial because it modulates the amount of sparsity that is enforced on the
estimated coefficients. The issue of how to choose the optimal value of this hyperparameter in
the context of ABMs was addressed recently by Nardini et al. [8], who discussed cross-validation,
among other options. As a test case to investigate the effects of algorithm hyperparameters on
the uncertainty of learned coefficients, we perform cross-validation on the dataset D1

I and then
apply PDE-FIND using the optimal value of λ found. To do this, we apply the grid search
implementation of cross-validation suggested in [8], as detailed in electronic supplementary
material, §S4, to arrive at an optimal value of λ= 0.5. We note here that this value is problem
dependent, and whenever a new dataset is being investigated a different value of λ will generally
be appropriate.

While the results presented in electronic supplementary material, §S4 show that cross-
validation improves the performance of PDE-FIND dramatically, as the number of misspecified
coefficients decreases sharply when the regularization parameter is optimized, cross-validation
does not provide a sufficient solution to manage the uncertainty associated with variability in
the predicted coefficients. Figure 6 shows that, even with the optimal value of the regularization
coefficient, there is still much uncertainty in the coefficients, as the support of the histogram is
large. While the atom at zero has nearly vanished, uncertainty quantification is still necessary
because the empirical distribution still indicates a large degree of variability. Moreover, figure 6
shows that at the optimal value of the tuning parameter, λ, the coefficients cuxx and cu·uxx still have
a non-trivial joint distribution, implying that, even with an optimal choice of the regularization
parameter, Bayesian methods are needed to analyse the joint behaviour of these two
coefficients.
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Figure 6. Empirical distributions of relevant PDE-FIND coefficients learnt usingD1
I, which consists of unbiased motility only.

(a) Histogram of cuxx coefficients generated using λ= 0.01, compared with the true value 0.25 (black line). (b) Histogram of
cuxx coefficients generated using λ= 0.05, compared with the true value 0.25 (black line). (c) Histogram of cuxx coefficients
generated using the optimal value of λ= 0.5, compared with the true value 0.25 (black line). (d) Empirical joint distribution
of cuxx and cu·uxx coefficients generated using the optimal value ofλ= 0.5, compared with the true parameters (cuxx , cu·uxx )=
(0.25, 0.0) (black star). (Online version in colour.)

(c) Comparison of model predictions
We now provide an explanation for the poor performance of PDE-FIND on the ABM data. The
PDE-FIND algorithm solves a sparse regression problem to fit linear combinations of spatial
derivatives to the time derivative. When data contain little to no noise, the temporal and spatial
derivatives can be accurately estimated, and so the relationship between spatial and temporal
derivatives can be inferred from observed data. In this context, comparing model predictions
by their performance with respect to the L2-loss in the learned temporal derivative retrieves the
ground truth.2 However, when the data are noisy, a number of different linear combinations of
the spatial derivatives can result in an L2-loss comparable to (or better than) those of the ground
truth PDE (figure 7). In electronic supplementary material, §S5 (figures S11–S13), we demonstrate
this by selecting, for each dataset, two instances where the learned equations contain different
terms from the coarse-grained PDE, yet in both cases the temporal derivatives reproduce the
observed temporal derivative qualitatively. However, there is no guarantee that such a match in
the temporal derivative is sufficient to yield solutions that resemble the observed data when the
PDE is numerically evaluated. We illustrate this in figure 8, where, for each of cases I, II and III, we
select two sets of coefficients learned by PDE-FIND: one where the solution of the corresponding
PDE resembles a typical data trace, and one where the solution of the corresponding PDE bears
little resemblance to typical observed data traces.

In summary, what this striking difference in predictive capabilities of the learned PDEs reveals
is that coefficients that optimize equation (2.11) do not necessarily perform well in terms of their
ability to predict the evolution of the spatio-temporal density profiles. We illustrate this in further
detail in figure 7. We take the dataset D1

I , which consists of unbiased motility and no proliferation;
each sample in the dataset consists of an average over K= 1 simulations from the ABM. First, we
average over all Ns = 1000 samples in the dataset to obtain the density profile 〈Ci(t)〉 as in equation
(2.2). The two coefficients consistently identified for dataset D1

I are cuxx and cu·uxx , which give the
PDE

ut = cu·uxx uuxx + cuxx uxx. (3.3)

We integrate this PDE numerically over a grid of values of cuxx and cu·uxx , and then evaluate the
L2-loss between the time derivative of the PDE model and that of the averaged ABM data, 〈Ci(t)〉
(figure 7a), as well as the difference between the density predicted by the PDE model and that
of the averaged ABM data (figure 7b). We estimate the sum of the L2-loss between the PDE and

2For functions f and g, the L2-loss is given by ||f − g||22 =
∫

[f (x)− g(x)]2 dx.
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Figure 7. Heatmaps showing differences between averaged ABM data and the PDE solution in equation (3.3). (a) L2-loss
landscape of the time derivative, estimated using equation (3.4). (b) L2-loss landscape for the density profile, estimated using
equation (3.4). In each plot, the pairs of coefficients estimated by applying PDE-FIND to each of the Ns = 1000 samples of the
dataset are plotted using red dots, and the parameter values used to generated the ABM data are indicated using a black star.
(Online version in colour.)
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Figure 8. Comparison of predictions made by misspecified PDEs that are learned through the application of PDE-FIND to noisy
data. (a) Case I: using cuxx = 0.104, cu·uxx = 0.26 (blue dash) and cu2·uxx = 1.517 (red dots). (b) Case II: using cux =−0.0264,
cuxx = 0.20 (blue dash) and cu·uxx = 0.641 (red dots). (c) Case III: using cuxx = 0.12 (blue dash) and cu = 0.0130 (red dots). All
other coefficients are set to zero. (Online version in colour.)

ABM data at five time points as

d(Xobs, Xsim)=
5∑

j=1

||Xobs
50j − Xsim

50j ||2, (3.4)

where, for example when comparing density profiles,

Xobs
50j =

[〈C1(50j)〉, 〈C2(50j)〉, . . . , 〈C200(50j)〉]T , (3.5)

Xsim
50j = [u(�, 50j), u(2�, 50j), . . . , u(200�, 50j)]T, (3.6)

and when comparing time derivatives,

Xobs
50j =

[〈C1t(50j)〉, 〈C2t(50j)〉, . . . , 〈C200t(50j)〉]T , (3.7)

Xsim
50j = [ut(�, 50j), ut(2�, 50j), . . . , ut(200�, 50j)]T, (3.8)
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with 〈Cit(50j)〉 = (〈Ci(50j)〉 − 〈Ci(50j+ τ )〉)/τ for j= 1, . . . , 5, where τ is the time step of the ABM
simulation algorithm. The blue shading in figure 7 shows the L2-loss in each case, and we also
plot the PDE-FIND-estimated coefficients on the same axes for each of the Ns = 1000 samples of
the dataset.

Figure 7 demonstrates that there are significant differences between the loss landscapes of the
different error metrics. While both loss landscapes show a minimum around the parameter set
used in the ABM simulations (cuxx = 0.25 and cu·uxx = 0.0; black stars in figure 7), the derivative
loss landscape in figure 7 is unable to distinguish different regions of (cuxx , cu·uxx ) parameter
space. For example, there are multiple PDE-FIND parameter sets (red dots) that lie close to the
L2-loss contours of 0.0010 and 0.0012; some of these sit on the horizontal axis (where cuxx is non-
zero and cu·uxx is zero), whereas others sit on the vertical axis of the plot (where cuxx is zero
and cu·uxx is non-zero). On the other hand, the L2-loss for the density profiles provides much
more useful information: as one moves further from the input parameter values (cuxx = 0.25 and
cu·uxx = 0.0; black star in figure 7) there are increasing errors between the density profile predicted
by solution of the PDEs and the averaged ABM data. Electronic supplementary material, figure
S14 demonstrates that this issue is further compounded as the noise in the data increases.

In summary, in this section we have shown that the density profile loss landscape is much
more informative about the underlying PDE model than the derivative loss landscape. We exploit
this observation in the following section, where we propose a method which we term ‘Bayes-
PDE-FIND’ both to tackle the issues relating to the uncertainty in the predictions of PDE-FIND
for noisy data and to quantify the uncertainty in PDE-FIND predictions.

4. Bayes-PDE-FIND
In this section, we propose an approach that harnesses the likelihood-free method of approximate
Bayesian computation to quantify the uncertainty in estimates provided by PDE-FIND. In brief,
our method involves the application of PDE-FIND to multiple datasets in order to define a
prior distribution for the coefficients of the PDE library terms, Ni for i= 1, . . . , N�, followed by
application of Bayesian approaches for estimation of the posterior parameter distribution.

(a) Approximate Bayesian computation
The goal of Bayesian parameter estimation is to update prior beliefs about model parameters θ

encoded in a prior distribution π (θ). In this context, θ constitutes the coefficients, ξi, of the library
terms Ni for i= 1, . . . , N�. The updating process is dependent on observations Dobs, which in this
work are the noisy, averaged data from the ABM, as detailed in §2i. The mathematical model is the
PDE defined in equation (2.7), which then defines a likelihood P(Dobs | θ ). In Bayesian statistics,
the likelihood is combined with the prior distribution to give the posterior distribution,

P(θ |Dobs)∝ P(Dobs | θ )π (θ). (4.1)

Such posterior distributions provide information as to the uncertainty in parameter estimates
that are learned from observed data, and also allow practitioners to understand the range of
realistic parameter values that can produce observed data. The likelihood P(Dobs | θ ) defines
the probability density of the observations Dobs given the model parameters θ . In this context,
the observed data {U(x, t)} at space points x= x1, x2, . . . , xN and time points t= t1, t2, . . . , tN are
obtained from a stochastic ABM. The solution u(x, t; θ ) of the PDE model is an approximation of
the mean of the ABM data, i.e. u(x, t; θ )≈Eθ [U(x, t)]. To define a classical likelihood, one would
need to first assume that the mean of the ABM data is exactly given by the PDE solution and
prescribes the distribution of ABM outputs around the PDE model mean. However, for a general
ABM, the distribution of the deviation from the mean is unknown. In some cases, one might
choose to make a simplifying assumption, such as a Gaussian approximation. However, in the
small data limit considered in EQL applications, such an assumption is unreasonable. It will
depend on the details of the ABM as to the extent to which individual realizations vary from
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their mean, which is, for the purposes of inference, unknown. As we prefer to avoid placing
unnecessary assumptions on the process, we opt instead for a likelihood-free approach. We
provide further mathematical insight and justification for avoiding likelihood-based methods in
electronic supplementary material, §S7.

Approximate Bayesian computation is a popular likelihood-free tool to estimate the posterior
parameter distribution [36,37]. It approximates the likelihood, P(Dobs | θ ), using repeated
simulation of the model, and acceptance of the parameter θ requires that the output of the model,
Dsim(θ), is in some sense close enough to the data, Dobs. The ABC posterior can be written

PABC(θ |Dobs)∝ P(d(Dobs,Dsim) < ε | θ)π (θ), (4.2)

where d is a distance function that quantifies the difference between the data, Dobs, and model
output, Dsim. In this work, our aim is to use ABC to estimate the posterior distribution of the PDE
model coefficients, ξi for i= 1, . . . , N�, for a given dataset.

Despite the apparent simplicity of the ABC method, unless an informative prior is used to
constrain the space of possible parameters and informative summary statistics can be found, the
application of ABC methods to models with high-dimensional parameter space and output space
is generally computationally prohibitive. In particular, this high computational cost means that
the direct application of ABC methods to estimate the coefficients ξi, for i= 1, . . . , N�, in equation
(2.7) is essentially infeasible unless it is possible to construct an informed prior distribution. Here,
we propose a method that uses the predictions of PDE-FIND to construct an informed prior so
that ABC can then be used to estimate the library coefficients ξi.

(b) Using PDE-FIND to define a prior distribution for ABC
Assume that, for each sample, s, in the observed dataset (which contains Ns averaged density
profile samples), we have used PDE-FIND (as defined using algorithm 1) to produce an estimate,
ξ̂

s
, of the parameters ξ . Recall that, for each term i in the library, we have defined the identification

ratio, ai, as

ai =
1

Ns

Ns∑
s=1

I(ξ̂
s
i �= 0)

to quantify how often the term Ni from equation (2.7) is included in the PDE-FIND predictions.
To make progress in specifying a prior distribution for the library coefficients, ξi, we first

threshold, using parameter 0 < δ < 1, so that we can define A= {i : ai > δ} as the set of coefficients
that are identified by PDE-FIND in more than a fraction δ of the Ns samples of the dataset. We then
eliminate from the library all terms for which ai < δ, i.e. we set the marginal prior for coefficient
ξi to be πi ≡ 0. This achieves a first step of coefficient selection by eliminating variables for which
the initial PDE-FIND screen indicates low confidence. On the other hand, for i ∈A, there is still a
need to investigate which coefficients to include in the final model, and a prior must be carefully
chosen to explore which parameters to include and which parameters to eliminate.

Spike-and-slab models are powerful tools to perform variable selection in regression problems
[38–41]. The main idea of a spike-and-slab-type prior is that it defines a two-point mixture
distribution in which coefficients are mutually independent. Each mixture is made up of a flat
distribution with large support (the slab) and a degenerate distribution at zero (the spike). In early
formulations, the slab was modelled as a uniform distribution over some region of parameter
space [39,40], whereas, in more recent work, inference is performed on hyperparameters of the
marginal distributions [38,41]. Samples of the hyperparameters yielding a high variance will lead
to sampling parameters far away from zero, whereas samples of the hyperparameters yielding
a low variance will sample close to zero. In this way, the aim is to explore parameter space by
iteratively sampling over the hyperparameters and the values for the coefficients using Gibbs
sampling. In this work, we wish to exploit the simplicity of the earliest slab-and-spike models,
which use a Dirac measure at zero to enforce sparsity, while using as much information as possible
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from the PDE-FIND screen in defining the prior distribution without violating the likelihood
principle.

We follow the hierarchical Bayesian group LASSO model with an independent spike-and-slab-
type prior for each coefficient [41]. We set the group size in the model of Xu & Ghosh [41] equal
to 1, so that the prior πi(ξi) for each coefficient ξi is given by

ξi|μ, σ 2
i ∼ (1− ai)δ0 + aiN (μi, σ

2
i ),

σ 2
i ∼ IG(αi, βi),

where IG is the inverse-gamma distribution with parameters αi, βi that define the shape of the
prior on σ 2

i . This is the standard choice for modelling the distribution of the hypervariances. In the
approach of Xu & Ghosh [41], μ= 0. In this work, we can use knowledge of the coefficients gained
through our initial PDE-FIND screen to inform the μi. To do so, we randomly divide the ABM
data in half and use one subset in the PDE-FIND screen to inform the prior (exploration subset) and
the other subset to perform inference (inference subset). We first set ai equal to the ith identification
ratio and μi equal to the ith sample mean of the PDE-FIND coefficients trained on the exploration
subset. Since the hyperprior for the variances σ 2

i allows for large values of σ 2
i , this prior is not

overly restrictive, since values far away from the sample mean can be sampled. Second, we tune
αi, βi using the exploration subset so that the variance is on average the same order of magnitude
as the PDE-FIND coefficients. This is crucial: a large (small) variance in parameters that are
typically small (large) will fail to sample from the relevant regions of parameter space. The exact
values of μi, αi, βi are given in electronic supplementary material, §S9.

These considerations now imply that the prior for ξ is given by

π =
N�⊗
i=1

{
I(i ∈A)πiξi + I(i �∈A) · δ0

}
. (4.3)

The key advantage in specifying this prior distribution is that we are now only required to
perform Bayesian inference for a reduced model that has a much lower dimensional parameter
space (equal to |A| �N�) than the original model (with parameter space of dimension N�). This is
because PDE-FIND promotes sparsity and so the majority of coefficients will have identification
ratio, ai, close to zero. Such terms can be confidently eliminated from the model and so not
considered in the ensuing parameter estimation process. On the other hand, if ai ≈ 1 this means
PDE-FIND has consistently identified the ith term as relevant for the dynamics. As such, we can be
confident that Ni should be included in the model; however, uncertainty in estimates of ξi must
still be quantified. Finally, if ai is close to neither zero nor 1, which means that PDE-FIND has
included the ith term in the library for a non-trivial number of samples in the dataset, Bayesian
approaches can be used to investigate the joint posterior distribution of the ith coefficient, ξi,
with the rest of the model terms by considering the performance of models that both include and
exclude the ith term.

(c) The Bayes-PDE-FIND algorithm
We now outline the Bayes-PDE-FIND approach. In essence, we apply the PDE-FIND algorithm
to each sample s= 1, . . . , Ns of the dataset under consideration, and use the results to formulate a
prior distribution for ABC as described in §4b and, in particular, in equations (4.2) and (4.3). We
then apply ABC to estimate the posterior parameter distribution, noting that the computational
cost of ABC is much reduced through the use of PDE-FIND to generate an informed prior
distribution—in effect, we use PDE-FIND to reduce the target PDE in equation (2.7) to

ut =
∑
i∈A

Ni(u, ux, uxx, . . .) ξi, (4.4)

with a prior distribution over the ξi, for i ∈A, given by equation (4.3).
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Importantly, when we apply ABC to estimate the posterior parameter distribution, we use a
low-noise dataset, 〈Ci(t)〉LN for 1≤ i≤ I, created by averaging over the inference subset of the
dataset as the observed data, Dobs, where sample s is calculated as

〈Ci(t)〉s =
K∑

k=1

Ck,s
i (t)= 1

J · K
K∑

k=1

J∑
j=1

Ck,s
ij (t), (4.5)

that is, each sample s consists of column-averaged data from K simulations of the ABM, and so,
for 1≤ i≤ I,

〈Ci(t)〉LN =
S∑

s=1

〈Ci(t)〉s. (4.6)

For the distance function, d, we again use an averaged estimate of the L2-difference between the
ABM data and the PDE solution, here defined as

d(Dobs,Dsim(θ ))=
5∑

j=1

||(Dobs)50j −Dsim(θ )50j||2, (4.7)

where, for j= 1, . . . , 5,

(Dobs)50j =
[〈C1(50j)〉LN, 〈C2(50j)〉LN, . . . , 〈C200(50j)〉LN

]T , (4.8)

Dsim(θ)50j = [u(�, 50j; θ ), u(2�, 50j; θ ), . . . , u(200�, 50j; θ )]T, (4.9)

and u(x, t; θ ) is the solution to equation (4.4) with parameter set θ . Note that we choose in equation
(4.7) to compare the solutions at a wide range of time points to capture the behaviours of the data
over different time scales. We summarize the Bayes-PDE-FIND algorithm in algorithm 2.

Algorithm 2 . Bayes-PDE-FIND.

Input: Time-series dataset consisting of Ns samples; PDE-FIND hyperparameters λ and
dtol; PDE library Ni for i= 1, . . . , N�; minimum identification ratio δ > 0.

Output: Posterior distribution over coefficients ξi, for i= 1, . . . , N�, of library PDE.
1 for s= 1, . . . , Ns do
2 Compute ξ̂

s
using algorithm 1 with sample s from the dataset.

3 end
4 for i ∈ 1, . . . , N� do
5 Compute the identification ratio

ai =
1

Ns

Ns∑
s=1

I

(
ξ̂

s
i �= 0

)
.

6 end
7 Compute A= {i : ai > δ}, and define the prior distribution π as in equation (4.3):
8

π =
N�⊗
i=1

{
I(i ∈A)πiξi + I(i �∈A) · δ0

}
. (4.10)

9 Perform ABC using observed data Dobs = [〈C1(t)〉LN, . . . , 〈C200(t)〉LN] to obtain the
posterior distribution.
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(d) Results
The aim of this section is to showcase how the Bayes-PDE-FIND algorithm can be used to
significantly improve the quality of the learned PDE model. Recall that the aim is to reduce
the uncertainty surrounding which coefficients to include in the model, to reduce uncertainty in
the estimated model parameters and to improve the posterior predictive capability of the model
by finding a posterior parameter distribution that takes into account properties of the observed
density profiles. For each of the noisy-data test cases, that is, datasets D1

I , D1
II and D1

III, we apply
algorithm 2, using the Pakman package [42] for the ABC step.

Recall that for case I, where the ABM contains only unbiased motility, the only two coefficients
regularly identified using PDE-FIND are cuxx and cu·uxx (table 4). This means that all library terms
except for uxx and uuxx can be confidently excluded, and for the ABC process we consider the
PDE model

ut = cuxx uxx + cu·uxx uuxx, (4.11)

and aim to infer the (cuxx , cu·uxx ) posterior parameter distribution. For case II, which contains
biased motility and no proliferation, the only coefficients regularly identified using PDE-FIND
are cux and cuxx (table 4) and so for the ABC process we consider the PDE model

ut = cuxx uxx + cux ux, (4.12)

and aim to infer the (cuxx , cux ) posterior parameter distribution. Note that PDE-FIND failed
to identify one relevant model term in case II, which is uux, most likely because of either
the significant noise in the samples of the dataset and/or the time scale over which the data
are collected. For case III, which contains both unbiased motility and proliferation, the only
coefficients that are regularly identified are cu, cu2 and cuxx (table 4) and so for the ABC process we
consider the PDE model

ut = cuu+ cu2 u2 + cuxx uxx, (4.13)

and aim to infer the (cu, cu2 , cuxx ) posterior parameter distribution.
We explore the results of using Bayes-PDE-FIND with a form of ABC which is known as ABC-

rejection sampling. At each step, θ∗ is sampled from the prior distribution π (θ), and the PDE
given in equation (2.7) is integrated in time using parameters θ∗ to yield simulated data Dsim(θ∗).
The simulated data, Dsim(θ∗), are compared with the observed data, Dobs, according to a distance
function d(Dobs,Dsim(θ∗)) provided by the practitioner. Given a tolerance ε > 0, the sampled θ is
accepted into the posterior distribution whenever d(Dobs,Dsim(θ∗)) < ε. We provide full details of
the ABC-rejection algorithm used in this work in electronic supplementary material, §S8.

We set ε= 0.15 for case I, and ε= 0.25 for casse II and case III and run ABC rejection until a
total of 300 parameters have been sampled in each of the cases. This is equivalent to an acceptance
rate of approximately 15% in each of the cases. The inferred posterior distributions are shown in
figures 9–11 and we refer to electronic supplementary material, §S8 for a full overview of the
inferred pairwise marginal posterior distributions of the parameters in case III. In each of figures
9–11 we also show, for comparison, the posterior obtained by applying ABC rejection sampling
using a broad, uniform prior on the pre-selected coefficients. For case I, we take a uniform prior
where cuxx ∼ U(0, 0.5) and cu·uxx ∼ U(0, 0.8); for case II, cux ∼ U(−0.05, 0) and cuxx ∼ U(0, 0.5); for case
III cu ∼ U(0, 0.005), cu2 ∼ U(−0.005, 0) and cuxx ∼ U(0, 0.5). We note that the choice of uniform prior
in such cases is non-trivial as it requires some prior knowledge on the part of the practitioner
about the relevant parameter ranges.

(i) Case I

In the case of unbiased motility only (case I, dataset D1
I ; figure 9), we see that use of the spike-and-

slab prior distribution (figure 9a) results in a posterior distribution with the true parameter value
contained in the support of the posterior. Moreover, the sparsity enforced by the prior ensures
that the correct PDE structure, with only uxx included, is selected. By contrast, with a uniform
prior on (cuxx , cu·uxx ) (figure 9b), although the true parameter value is contained in the support of
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Figure 9. Posterior distributions obtained using dataset D1
I. (a) Spike-and-slab joint posterior distribution (blue) together

with the true parameter values (black star) and spike-and-slab prior (grey). (b) Joint posterior distribution, using a uniformprior
(red) together with the true parameter values (black star) and uniform prior (grey). (c) Marginal distribution of cuxx generated
using the spike-and-slab prior (blue) and a uniform prior (red) together with the true parameter value (black dashed line).
(Online version in colour.)
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Figure 10. Posterior distributions obtained using datasetD1
II. (a) Joint spike-and-slab posterior distribution (blue) together

with the true parameter values (black star) and spike-and-slab prior (grey). (b) Joint posterior distribution, using a uniformprior
distribution (red) together with the true parameter values (black star) and uniform prior (grey). (c) Marginal distributions of cux
generated using the spike-and-slab prior (blue) and a uniform prior (red) together with the true parameter value (black dashed
line). (d) Marginal distributions of cuxx generated using spike-and-slab prior (blue) and a uniform prior (red) together with the
true parameter value (black dashed line). (Online version in colour.)
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Figure 11. Marginal posterior distributions obtained using datasetD1
III. (a) Marginal posterior distributions of cu generated

using the spike-and-slab prior (blue) and a uniform prior (red) together with the true parameter value (black dashed line).
(b) Marginal posterior distributions of cu2 generated using the spike-and-slab prior (blue) and a uniform prior (red) together
with the true parameter value (black dashed line). (c) Marginal distributions of cuxx generated using the spike-and-slab prior
(blue) and a uniform prior (red) together with the true parameter value (black dashed line). (Online version in colour.)
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the posterior distribution, the correct PDE structure is generally not established, with both uxx

and uuxx terms contained in the PDE model.

(ii) Case II

In the case of biased motility (case II, dataset D1
II; figure 10), both cux and cuxx are non-zero for all

parameter values accepted into the spike-and-slab posterior distribution. This is a striking result
given an identification ratio of just 0.012 for cuxx after the application of PDE-FIND. We remark
that the posteriors in figure 10 show that in the presence of model misspecification—recall that
the term uux was not identified by PDE-FIND—the posterior distribution may be biased. In this
case it entails that the true parameter values are not contained in the support of the posterior
distribution.

(iii) Case III

In the case of unbiased motility and proliferation (case III, dataset D1
III; figure 11), the posterior

obtained using the PDE-FIND prior still contains some accepted parameter samples with either
cu or cu2 equal to zero, demonstrating that there is potential non-identifiability of these terms
given the data. However, all parameter samples in the posterior have non-zero cuxx , a significant
result given an identification ratio of 0.57 for cuxx . We note that the support of the spike-and-slab
posterior contains the true parameter value for cuxx , even though it is not in the support of the
empirical distribution of the PDE-FIND coefficients from the exploration subset.

(iv) Computational performance

To highlight the performance of our method, we compare the computational cost and the accuracy
of our method against alternative options. In addition to the spike-and-slab model and uniform
priors used to generate the posterior distributions (which we call informed spike-and-slab and sparse
uniform), we also consider a spike-and-slab prior with mean 0 in the slab for each coefficient (i.e.
the PDE-FIND screen only informs the prior through the identification ratios), which we call
naive spike-and-slab, as well as a uniform prior on all library coefficients (i.e. the classic Bayesian
scenario, where no variable selection is performed), which we refer to as classic Bayesian. In
each of the experiments, we perform ABC rejection to sample 300 parameters from the ABC
posterior with the same thresholds as used in cases I–III and record the time taken to complete.
Inference is done on a Lenovo desktop computer using six Intel(R) i5-8500T cores with clock
speed 2.10 GHz. Table 5 shows the time taken for each of the experiments alongside with their
acceptance rates. We note that the computational time of the spike-and-slab models is significantly
lower than any of the uniform prior models and that using an informed spike-and-slab prior
offers a substantial speed-up in computational time compared with using a naive spike-and-slab
approach. The approach using a pre-screened uniform implementation failed to yield a sparse set
of coefficients, thus showing unacceptable accuracy in learning the correct equations. The classic
Bayesian analysis did not finish sampling within 1.5× 106 s (approx. two weeks). By calculating
the dimensionality of the space, we estimate that the acceptance probability should be expected
to be of the order of 10−2%, which confirms that performing a classical Bayesian analysis in
such a case is impossible. We highlight that many applications of EQL methods will have even
larger libraries, making the computational time of naive uniform priors exponentially longer. The
posteriors from both naive and informed spike-and-slab models are qualitatively similar across
all cases and both identify the correct regions of parameter space.

(v) Posterior predictive check

In summary, figures 9–11 highlight that the use of PDE-FIND in combination with ABC rejection
can significantly reduce the uncertainty associated with the PDE coefficients. In cases I and II,
uncertainty regarding which parameter to include in the model is completely removed, as the
posterior has support only on the diffusion parameter axis in case I and on a region where both
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Table 5. Comparison of computational time and acceptance probabilities for alternatives to Bayes-PDE-FIND prior. Using an
informed prior significantly outperforms all alternatives.

method case I case II case III

informed spike-and-slab 1657 s, 24.13% 3337 s, 16.93% 2896 s, 19.66%
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

naive spike-and-slab 8523 s, 6.68% 40 867 s, 1.19% 40 128 s, 1.08%
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

sparse uniform 40 658 s, 1.78% 81 975 s, 0.5% 86 213 s, 0.5%
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

classic Bayesian did not converge did not converge did not converge
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

cux and cuxx are non-zero in case II. In contrast, a uniform prior over all coefficients that have
sufficiently large identification ratio (those for which Ai > δ) does not enforce sparsity, which
means that the resulting PDE models can be misspecified and/or contain greater complexity
than is necessary to accurately predict the data. To further assess the quality of the resulting
posterior parameter distributions, we carried out a posterior predictive check (figure 12). For
each parameter sample accepted into the posterior distribution, we used numerical integration,
as detailed in the Methods section, to obtain a prediction for the density at t= 250 to assess how
well the model interpolates the data, and a prediction for the density at t= 1000, which is t= 750
beyond the time horizon used to train PDE-FIND on the inference subset. We then plot the 5%
and 95% quantiles of the output distributions and overlay them with a representative sample
from each of the datasets for cases I, II and III. The results shown in figure 12 demonstrate that the
PDE model predictions can both interpolate and extrapolate the data well. We conclude that even
in the presence of model misspecification, such as in case II, it is possible to obtain a posterior with
reasonable predictive power, although as the time horizon is extended beyond the time horizon
of the training data, the misspecification becomes apparent in the systematic prediction error.
To highlight the increased accuracy, we compare this with the results shown in figure 7, where
the integrated model solutions fail to resemble the empirical data when PDE-FIND is used in
isolation.

5. Discussion and outlook
The aim of this work was to develop and showcase a framework to perform uncertainty
quantification for EQL methods in the context of noisy spatio-temporal data. In essence, our
approach harnesses EQL methodologies to generate an informed prior distribution, which is then
used within a Bayesian framework to estimate both the model structure and posterior parameter
distribution. The framework was developed in the context of the PDE-FIND EQL methodology
and ABC rejection sampling, but it is sufficiently general that it could be extended and applied in
the context of other EQL and Bayesian inference methodologies.

The motivation for developing such a framework stems from the fact that EQL methodologies
such as PDE-FIND typically make variable predictions, in terms of both model structure
and parameters, in the presence of noise, which is common for datasets in the life and
biomedical sciences. Incorporating uncertainty quantification through the use of Bayesian
statistics approaches provides a means to quantify the uncertainty in both model structure and
parameter values, and understand how such uncertainty propagates into model predictions.

We showcased our methodology in the context of noisy spatio-temporal data generated using
a canonical ABM that has seen widespread use in the modelling of motile and proliferative cell
populations, and which has a corresponding PDE model that can make accurate predictions of
averaged ABM output. We used datasets generated in three different parameter regimes (which
incorporate different cellular behaviours) to show how to combine the advantages of the PDE-
FIND algorithm (efficiency and the ability to learn simple, interpretable models) with those of
ABC (ability to quantify uncertainty in parameter estimates and model predictions).
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Figure 12. Posterior predictive check. We plot the 5% and 95% percentiles of the density distribution at each spatial location.
(a–c) Evaluation of the interpolative capability of the PDE model using an average over all samples in the dataset (i.e. using
〈Ci(t)〉LN, for i= 1, . . . , 200, red) at t= 250. (d–f ) Evaluation of the extrapolative capability of the PDE model using an
average over all samples in the dataset at t= 1000 (red). (Online version in colour.)

There are a number of ways in which our approach can be further improved going forward.
For example, we saw that our approach may return models that fail to capture important features
of the ABM, as a result of either learning the structure of the model incorrectly or inaccurate
estimation of model parameter values. In the context of case II, which models biased cell motility,
these inaccuracies arise partly as a result of the data used and stem from the choice of initial
condition and the time scale over which the data are collected. Ultimately, the extensibility and
robustness of any data-driven method are limited by the information contained in the data. Where
the initial PDE-FIND screen fails to identify what are believed to be relevant terms in the PDE, it is
likely that the supplied data do not provide enough information to discriminate between different
forms of the PDE. In such a scenario, different experimental designs, such as a different initial
condition or longer simulation time, might distinguish some of the terms of the system under
consideration. We highlight that the flexibility of ABMs allows one to explore different behaviours
in the model under varying experimental conditions. By analysing the effect of these variations
on the resulting predictions, one can obtain important insights into how much information is
contained in the data about the governing laws. This may be helpful in informing experimental
design in vitro, so that the experimental design can provide as much information as possible.
Nonetheless, the standard choice of PDE-FIND library means that it is possible for the PDE-FIND
algorithm to return PDE models in which the density does not satisfy a conservation equation of
the form

ut =−∇ · F + S(u), (5.1)

where F is the flux and S is the net proliferation rate, and hence for the models to make unphysical
predictions (as occurs in case II). A possible solution to this specific problem could be to encode
the terms in the candidate library in flux form. More generally, however, it is not obvious how
to balance the wish to include constraints in specifying terms in the candidate library while at
the same time avoiding over-constraining the space of possible output PDE models. Bayesian
approaches may prove useful in this respect. In the case of severe model mis-specification due
to incompleteness of the supplied library, Bayes-PDE-FIND offers several possibilities. In some
scenarios, the learned PDE will interpolate the data well and extrapolate to new settings, even
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though it contains library terms that are different from the ground truth. Such a PDE can still be
used for the purposes of simulation and inference, since the benefit of such a PDE model is that
it is fast to solve, which is often crucial when performing inference. When the learned PDE terms
perform poorly in interpolating or extrapolating, Bayes-PDE-FIND returns a quantification of the
error between model solutions and observed data. This may offer real-world insights: the library
terms are usually provided by practitioners to reflect hypothesized mechanisms in the system
under consideration. That those terms fail to explain the data provides a motivation to reconsider
which mechanisms should form part of the model.

Secondly, our approach could be improved through the use of more efficient ABC samplers,
such as ABC sequential Monte Carlo samplers that target the posterior distribution by
evolving the prior distribution through a series of intermediate distributions. This requires
the development of proposal distributions that can maintain the sparsity of PDE coefficients,
as encoded by the PDE-FIND informed prior, so that the learned PDEs retain a simple and
interpretable structure.
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