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The hypothalamic-spinal dopaminergic system: 
a target for pain modulation

Introduction
Noxious stimuli are detected and transduced into electrical 
signals by the peripheral terminals of primary nociceptors 
(pain-sensing neurons) whose cell body is located in the 
dorsal root ganglia (DRG) (Caterina and Julius, 1999; Julius 
and Basbaum, 2001; Woolf and Ma, 2007; Basbaum et al., 
2009). This initial pain signal is then conveyed by primary 
nociceptors to the dorsal horn of the spinal cord (DHSC), 
the first relay station in the pain pathway where pain sig-
nals are modulated and integrated by local neurons and by 
descending pathways from supraspinal nuclei before being 
relayed to higher brain centers by dorsal horn projection 
neurons (Basbaum and Fields, 1984; Millan, 2002; Todd, 
2010). There is strong consensus that after the initial activa-
tion of nociceptors, the final experience of pain is the result 
of complex interactions between the dorsal horn neuronal 
circuits engaged to transduce and transmit the pain signals 
and the modulatory actions from higher brain centers whose 
activity can be influenced by emotion, motivation, anxiety, 
and other cognitive states that can ultimately exacerbate or 
mitigate the overall pain experience associated with specific 
noxious stimuli.

Neuronal pathways involved in the descending modula-
tion of pain originate mainly from the hypothalamus, the 
amygdala, and the anterior cingulate cortex with projections 
to the midbrain periaqueductal gray and to brainstem nuclei 
such as the locus coeruleus and the rostral ventral medulla. 
Descending pathways projecting to the spinal cord include, 

among others, noradrenergic, serotonergic, γ-aminobutyric 
acid (GABA)ergic, and dopaminergic fibers. For the con-
tributions of descending noradrenergic, serotonergic, and 
GABAergic pathways to pain modulation I refer to some 
excellent and extensive papers and reviews (Basbaum and 
Fields, 1984; Fields et al., 1991; Porreca et al., 2001; Millan, 
2002; Benarroch, 2008; Ossipov et al., 2010, 2014; Bannis-
ter and Dickenson, 2016; Chen et al., 2017; Francois et al., 
2017). Here I will focus on the contribution of the descend-
ing dopaminergic pathway to pain modulation in the DHSC.
The A11 nucleus located in the periventricular, posterior re-
gion of the hypothalamus contains at least three neurochem-
ical-distinct types of neurons: neurons expressing tyrosine 
hydroxylase (TH), the rate limiting enzyme in the synthesis 
of catecholamines, necessary to synthetize L-3,4-dihydroxy-
phenylalanine; neurons expressing calbindin; and neurons 
expressing both TH and calbindin (Ozawa et al., 2017). 
TH-expressing neurons in the A11 nucleus also express the 
aromatic L-amino acid decarboxylase, the enzyme that con-
verts L-3,4-dihydroxyphenylalanine to dopamine, and the 
vesicular monoamine transporter 2 which is necessary for 
packaging dopamine into vesicles, strongly supporting the 
dopaminergic phenotype of the TH-expressing neurons in 
the A11 nucleus. In contrast, TH-expressing neurons in the 
A11 nucleus lack the dopamine transporter and D2 recep-
tors (Pappas et al., 2008; Barraud et al., 2010; Koblinger et 
al., 2014). Hypothalamic A11 dopaminergic neurons project 
to all levels of the spinal cord and provide the main source 
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of spinal dopamine (Bjorklund and Skagerberg, 1979; Swan-
son and Kuypers, 1980; Skagerberg et al., 1982; Skagerberg 
and Lindvall, 1985; Holstege and Kuypers, 1987; Mouchet 
et al., 1992; Ridet et al., 1992; Holstege et al., 1996; Qu et al., 
2006; Benarroch, 2008; Koblinger et al., 2014). Descending 
fibers from the A11 nucleus terminate both in the dorsal and 
ventral horn of the spinal cord and establish axodendritic 
synapses or terminate sparsely, suggesting, in addition to the 
classical synaptic transmission, also the possibility of volume 
transmission (Ridet et al., 1992). In turn, the hypothalamic 
A11 nucleus receives innervation from midbrain and brain-
stem nuclei involved in pain modulation, such as the periaq-
ueductal gray and the parabrachial nucleus, and from corti-
cal areas, including the cingulate cortex, infralimbic cortex, 
and striata terminalis (Abrahamson and Moore, 2001; Qu et 
al., 2006), involved in the affective and emotional aspects of 
pain and the behavioral responses to aversive or threatening 
stimuli (Rainville et al., 1997; Johansen et al., 2001; Oertel 
et al., 2008; King et al., 2009; Qu et al., 2011; Hayes and 
Northoff, 2012; Thibault et al., 2014). Although beyond the 
focus of this review, it should be noted that different popula-
tions of DRG neurons, including the C low threshold mech-
anoreceptors specialized in detecting low-threshold mecha-
nosensory stimuli (Seal et al., 2009; Olausson et al., 2010; Li 
et al., 2011) and those innervating pelvic organs (Price and 
Mudge, 1983; Philippe et al., 1993; Brumovsky et al., 2006, 
2012), as well as some spinal interneurons (Hou et al., 2016), 
express TH and thus might provide an additional source of 
spinal dopamine. Nonetheless, it remains to be determined 
which catecholamine(s) are synthetized and released from 
these TH-expressing neurons (Lackovic and Neff, 1980; 
Philippe et al., 1993; Weil-Fugazza et al., 1993). The author 
has performed a PubMed literature search of articles pub-
lished in the period 1970-2018 with the key words: descend-
ing pain modulation; neuropathic pain; inflammatory pain; 
chronic pain; dopamine; hypothalamus; A11 nucleus; spinal 
cord; dorsal horn; dorsal root ganglia; D1 receptors; D2 re-
ceptors; D3 receptors; D4 receptors; nociceptors.

Dopamine Receptors  
Two families of dopamine receptors mediate the function 
of dopamine: D1-like receptors (comprising D1 and D5 re-
ceptors) and D2-like receptors (comprising D2, D3, and D4 
receptors). D1 and D5 receptors are coupled to Gαs proteins 
which stimulate the activity of adenylyl cyclase and the pro-
duction of 3′,5′-cyclic adenosine monophosphate; D2, D3, 
and D4 receptors are coupled to Gαi/o proteins which inhibit 
the activity of adenylyl cyclase and the production of 3′,5′-cy-
clic adenosine monophosphate (Missale et al., 1998; Vallone 
et al., 2000; Beaulieu et al., 2015). All dopamine receptors 
are expressed in the spinal cord and in the mesencephalic 
trigeminal nucleus (a structure functionally equivalent to 
the DHSC), with the density and the level of expression that 
may change in different laminae (Dubois et al., 1986; Bhar-
gava and Gulati, 1990; Yokoyama et al., 1994; Matsumoto et 
al., 1996; van Dijken et al., 1996; Lazarov and Pilgrim, 1997; 
Ciliax et al., 2000; Levant and McCarson, 2001; Bergerot et 

al., 2007; Zhu et al., 2007; Charbit et al., 2009). In addition to 
the spinal cord and the mesencephalic trigeminal nucleus, it 
has been shown that dopamine receptors are expressed also 
in DRG neurons (Xie et al., 1998; Galbavy et al., 2013) and 
in the trigeminal ganglion neurons (functionally equivalent 
to DRG neurons) (Peterfreund et al., 1995), suggesting the 
possibility that they are also expressed on primary afferent 
fibers making synaptic contacts in the dorsal horn of the spi-
nal cord. The expression of dopamine receptors on primary 
afferent fibers is of particular significance because it suggests 
that dopamine exerts its effects not only at postsynaptic 
sites, but also at presynaptic sites. 

Effects of Dopamine on Dorsal Root Ganglia 
Neurons and Spinal Neurons  
In vitro studies have provided compelling evidence that 
dopamine can modulate the intrinsic excitability and the 
synaptic transmission of DRG neurons and spinal neurons 
involved in pain signaling. In the dorsal root ganglia, do-
pamine regulates the intrinsic excitability of DRG neurons 
(Gallagher et al., 1980; Abramets and Samoilovich, 1991; 
Molokanova and Tamarova, 1995; Galbavy et al., 2013), the 
activity of calcium channels (Marchetti et al., 1986; Formen-
ti et al., 1993, 1998), tetrodotoxin-sensitive sodium chan-
nels (Galbavy et al., 2013), and transient receptor potential 
vanilloid type 1 receptors (Lee et al., 2015; Chakraborty et 
al., 2016). In the DHSC, dopamine inhibits the excitatory 
postsynaptic potential (Garraway and Hochman, 2001) and 
the extracellular field potential (Garcia-Ramirez et al., 2014) 
recorded from deep dorsal horn neurons, as well as the 
action potentials evoked in substantia gelatinosa neurons 
upon stimulation of the dorsal root (Tamae et al., 2005). 
Inhibitory effects of dopamine have been also reported on 
spinal reflexes using the intact spinal cord preparation in 
vitro. Electrical stimulation of the dorsal root elicits a mono-
synaptic stretch reflex potential (MSR) followed by a slow 
ventral root potential at the corresponding ventral root. The 
MSR is an A fiber-(group I muscle spindle afferents) evoked 
response. On the other hand, the slow ventral root potential 
is a C fiber-evoked polysynaptic response believed to reflect 
nociceptive transmission in the spinal cord. In one study, 
low doses of dopamine (1 µM) decreased the MSR ampli-
tude in wild-type mice and increased it in D3 knockout mice 
(Clemens and Hochman, 2004). The D3 receptor agonists 
pergolide and PD 128907 reduced the MSR amplitude in 
wild-type but not D3 knockout mice, while the D3 receptor 
antagonists GR 103691 and nafadotride increased the MSR 
in wild-type but not in D3 knockout mice. In comparison, 
the D2 agonists bromocriptine and quinpirole depressed 
the MSR in both groups (Clemens and Hochman, 2004). In 
another study, low doses of dopamine (1 µM or less) were 
found to depress the slow ventral root potential, while no 
effects were reported on the MSR. The inhibitory effects of 
dopamine on the slow ventral root potential were attenuated 
in the presence of D1-like receptor antagonists (SCH23390 
and LE300) and mimicked by D1-like receptor agonists 
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(SKF83959 and SKF81297) (Kawamoto et al., 2012), sug-
gesting an anti-nociceptive effect upon activation of D1-
like receptors in the ventral root. These observations raise 
the intriguing possibility that activation of D1-like receptors 
may have opposite effects according to their localization, 
with pro-nociceptive effects in the DHSC versus anti-noci-
ceptive effects in the ventral horn. In a recent study carried 
out in horizontal spinal cord slices in vitro (Lu et al., 2018), 
dopamine was found to inhibit the excitatory postsynaptic 
currents recorded from lamina I projection neurons upon 
stimulation of the L4–5 dorsal root. This study provided 
three additional pieces of evidence to support a role for do-
pamine in the modulation of pain signaling in the DHSC. 
First, dopamine was found to inhibit the excitatory postsyn-
aptic currents elicited by stimulation of high threshold Aδ- 
and C-fiber nociceptors, both at baseline and after peripher-
al inflammation induced by injection of complete Freund’s 
adjuvant in the ipsilateral hindpaw. Second, it was shown 
that dopamine can inhibit the synaptic transmission from 
primary nociceptors to lamina I projection neurons ascend-
ing to the parabrachial nucleus, a well-established spinal 
cord circuit for pain transmission from the spinal cord to 
supraspinal nuclei (Marshall et al., 1996; Todd et al., 2000; 
Spike et al., 2003; Li et al., 2015). Third, this study provided 
the first clear demonstration that dopamine can modulate 
pain signals by acting on presynaptic targets (D3 and D4 re-
ceptors) in addition to postsynaptic targets. The findings of 
the above in vitro studies are well complemented by electro-
physiological recordings in vivo. Electrical or pharmacologi-
cal stimulation of the A11 nucleus were found to inhibit the 
nociceptive responses recorded from spinal dorsal neurons 
or trigeminocervical complex neurons (Fleetwood-Walker et 
al., 1988; Bergerot et al., 2007; Charbit et al., 2009; Taniguchi 
et al., 2011). Similarly, C-fiber-evoked action potential firing 
of trigeminal wide dynamic range neurons was inhibited 
or enhanced by D2-like receptor agonists or antagonists, 
respectively (Lapirot et al., 2011). In addition, the levels of 
dopamine in the lumbar spinal cord are decreased following 
lesion of A11 nuclei with 6-hydroxydopamine (Zhao et al., 
2007). Taken together, these studies well support a role for 
the A11 nucleus and the descending dopaminergic pathway 
to modulation of pain signaling in the DHSC.

Functional Studies In Vivo 
Several behavioral studies in vivo support the anti-nocicep-
tive effects of dopamine in the DHSC, and there is consensus 
that these effects are mediated by activation of postsynaptic 
D2-like receptors, in line with their coupling to inhibition 
of adenylyl cyclase and subsequent reduction in 3′,5′-cyclic 
adenosine monophosphate levels. These studies include: 1) 
electrical stimulation of the A11 nucleus selectively inhibited 
the nociceptive response of spinothalamic and spinomes-
encephalic neurons located in laminae III-V of the dorsal 
horn, and this effect could be mimicked by D2 agonists and 
blocked by D2 antagonists (Fleetwood-Walker et al., 1988). 
2) Intrathecal administration of apomorphine increased 
the hot plate response latency and the tail flick latency, an 

effect that was reversed by prior intrathecal administration 
of cis-flupenthixol (D2 antagonist) (Jensen and Smith, 1982; 
Jensen and Yaksh, 1984). 3) Intrathecal administration 
of apomorphine increased the tail flick latency, an effect 
that was mimicked by LY171555 (D2 agonist), but not by 
SKF38393 (D1/D5 agonist), and blocked by D2 antagonists 
(Barasi and Duggal, 1985; Barasi et al., 1987). 4) A similar 
increase in the tail flick latency was observed upon intrathe-
cal administration of dopamine, an effect that was reversed 
by sulpiride (D2 antagonist), but not SCH23390 (D1/D5 
antagonist) (Liu et al., 1992). 5) Intrathecal administration 
of dopamine or quinpirole (D2 agonist), but not SKF38393 
(D1/D5 agonist), increased the mechanical threshold 
measured with the von Frey anesthesiometer (Tamae et 
al., 2005). 6) Intrathecal administration of LY171555 (D2 
agonist), but not SKF38393 (D1/D5 agonist), rescued the 
thermal withdrawal latency measured with the Hargreaves 
apparatus in a model of carrageenan-induced peripheral in-
flammation (Gao et al., 2001). 7) Intrathecal administration 
of quinpirole (D2 agonist) increased the mechanical thresh-
old measured with the von Frey anesthesiometer, while no 
effects were observed on the thermal withdraw latency mea-
sured with the Hargreaves apparatus, and the effect was re-
versed by a mix of D2, D3, and D4 antagonists (Almanza et 
al., 2015). These findings point to a contribution of D3 and 
D4 receptors, in addition to D2 receptors, in mediating the 
effects of dopamine in the DHSC, and are consistent with 
recent findings in spinal cord slices in vitro (Lu et al., 2018). 
8) A decreased thermal withdraw latency was reported in 
two studies carried out in D3 knockout mice, suggesting 
a contribution of D3 receptors to thermal stimuli as well 
(Keeler et al., 2012; Meneely et al., 2018), in addition to me-
chanical stimuli reported by Alamnza et al. (2015). None-
theless, these results in the global D3 knockout mice need to 
be confirmed in conditional D3 knockout mice to exclude 
possible developmental changes of dopamine receptors. 9) 
Activation of D2-like receptors with quinpirole inhibited, 
whereas blocking D2-like receptors with sulpiride enhanced 
both facial formalin- and capsaicin-evoked pain behavior 
and C-fiber-evoked action potential firing of trigeminal wide 
dynamic range neurons (Lapirot et al., 2011). 

Behavioral studies in vivo also support a role for dopamine 
and D2-like receptors in the modulation of neuropathic 
pain. These studies include: 1) intrathecal administration of 
levodopa produced a decrease in tactile and cold allodynia 
measured with the von Frey anesthesiometer and acetone 
drop, respectively, in the chronic constriction injury model 
of the sciatic nerve, an effect that was blocked by sulpiride 
(D2 antagonist) (Cobacho et al., 2010). 2) In a follow up 
study from the same group, quinpirole (D2 agonist) de-
creased both tactile and cold allodynia in the chronic con-
striction injury model of the sciatic nerve (Cobacho et al., 
2014). 3) In a recent paper, using a trigeminal neuropathic 
pain model in mice, it was shown that stimulation of A11 
dopaminergic neurons with designer receptor exclusively 
activated by designer drug was able to attenuate trigeminal 
neuropathic pain via activation of D2 receptors (Liu et al., 
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2018). Nonetheless, the authors used a dopamine transport-
er-Cre mouse to express designer receptor exclusively acti-
vated by designer drugs in A11 dopaminergic neurons and 
did not provide any data to support the selectivity of this ap-
proach. This may raise some concerns considering that oth-
er groups have provided evidence for the lack of dopamine 
transporter expression in TH-expressing neurons in the A11 
nucleus (Barraud et al., 2010; Koblinger et al., 2014).

There are also studies that have reported pro-nocicep-
tive effects of dopamine mediated by postsynaptic D1/
D5 receptors, consistent with their coupling to activation 
of adenylyl cyclase and subsequent increase in 3′,5′-cyclic 
adenosine monophosphate levels. These studies include: 1) 
intrathecal administration of SCH23390 (D1/D5 antago-
nist) was shown to reduce the thermal hyperalgesia induced 
by intra plantar injection of carrageenan (Gao et al., 2001), 
consistent with the interpretation that activation of D1/D5 
receptor by dopamine promotes a pro-nociceptive effect. 2) 
Activation of D1/D5 receptors with SKF38393 was shown 
to induce long term potentiation of C-fibers evoked field 
potentials in the DHSC in vivo, and the effect was abolished 
by pretreatment with SCH23390 (D1/D5 antagonist) (Yang 
et al., 2005). 3) In two recent publications from the same 
group, it was suggested that activation of postsynaptic D1/
D5 receptors may promote the transition to chronic pain in 
a model of hyperalgesic priming (Kim et al., 2015; Megat et 
al., 2018). 

Conclusions 
A11 dopaminergic neurons project to all levels of the spinal 
cord and provide the main source of spinal dopamine. A11 
dopaminergic neurons are predominantly sensory driven, 
responding to tactile and visual sensory modalities (Rein-
ig et al., 2017). Like other midbrain and brainstem nuclei 
involved in the descending modulation of pain, the A11 
nucleus is interconnected with higher cortical areas devoted 
to encoding the affective and emotional aspects of pain, pro-
viding a mechanistic basis to explain how exogenous factors 
can act on the dopaminergic, noradrenergic, and serotoner-
gic systems to influence the overall experience of pain.

Based on the data reported in the literature, there is a con-
sensus that dopamine can exert both anti-nociceptive and 
pro-nociceptive effects, with activation of D2-like receptors 
mediating the anti-nociceptive effects, and activation of 
D1-like receptors mediating the pro-nociceptive effects. Al-
though some recent studies have suggested that activation of 
D3 and D4 receptors, in addition to D2 receptors, may me-
diate the anti-nociceptive effects of dopamine in the DHSC 
(Almanza et al., 2015; Lu et al., 2018), additional pharma-
cological studies, possibly combined with genetic tools, are 
needed to determine the contributions of specific dopamine 
receptors to pain modulation. For future translational as-
pects, it will be beneficial to fully characterize the expression 
of dopamine receptors in specific cell types in the DHSC and 
DRG neurons, and establish how different dopamine recep-
tors will modulate the activity of specific neurons and dorsal 
horn neuronal circuits involved in pain signaling. 

Dysregulation or disengagement of the descending in-
hibitory pain modulatory systems may be responsible for 
promoting and/or maintaining chronic pain. A better un-
derstanding of the mechanisms by which dopamine mod-
ulates pain can provide novel therapeutic targets to treat or 
ameliorate chronic pain. 
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