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Abstract

Spontaneously hypertensive rat (SHR) is a suitable model for studies of the complications of hypertension. It is known that
activation of poly(ADP-ribose) polymerase enzyme (PARP) plays an important role in the development of postinfarction as
well as long-term hypertension induced heart failure. In this study, we examined whether PARP-inhibitor (L-2286) treatment
could prevent the development of hypertensive cardiopathy in SHRs. 6-week-old SHR animals were treated with L-2286
(SHR-L group) or placebo (SHR-C group) for 24 weeks. Wistar-Kyoto rats were used as aged-matched, normotensive controls
(WKY group). Echocardiography was performed, brain-derived natriuretic peptide (BNP) activity and blood pressure were
determined at the end of the study. We detected the extent of fibrotic areas. The amount of heat-shock proteins (Hsps) and
the phosphorylation state of Akt-1Ser473, glycogen synthase kinase (GSK)-3bSer9, forkhead transcription factor (FKHR)Ser256,
mitogen activated protein kinases (MAPKs), and protein kinase C (PKC) isoenzymes were monitored. The elevated blood
pressure in SHRs was not influenced by PARP-inhibitor treatment. Systolic left ventricular function and BNP activity did not
differ among the three groups. L-2286 treatment decreased the marked left ventricular (LV) hypertrophy which was
developed in SHRs. Interstitial collagen deposition was also decreased by L-2286 treatment. The phosphorylation of
extracellular signal-regulated kinase (ERK)1/2Thr183-Tyr185, Akt-1Ser473, GSK-3bSer9, FKHRSer256, and PKC eSer729 and the level of
Hsp90 were increased, while the activity of PKC a/bIIThr638/641, f/l410/403 were mitigated by L-2286 administration. We could
detect signs of LV hypertrophy without congestive heart failure in SHR groups. This alteration was prevented by PARP
inhibition. Our results suggest that PARP-inhibitor treatment has protective effect already in the early stage of hypertensive
myocardial remodeling.
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Introduction

Left ventricular hypertrophy (LVH) represents the heart’s

response to increased biomechanical stress such as arterial

hypertension or valvular heart disease. Cardiac hypertrophy has

traditionally been considered a compensatory mechanism required

to normalize wall tension and to maintain cardiac output.

However, recent clinical studies as well as several animal models

have shown that cardiac hypertrophy is rather a maladaptive

process, ultimately leading to heart failure (HF) and sudden

cardiac death independent of the underlying cause of hypertrophy

[1].

Both physiologic and pathologic stimulation-induced cellular

adaptations of the heart are typically initiated by stress-responsive

signaling pathways, which serve as central transducers of cardiac

hypertrophic growth and/or ventricular dilation. These signaling

pathways include extracellular signal-regulated protein kinases

(ERK), p38 mitogen-activated protein kinases (p38-MAPK), c-Jun

NH2-terminal kinases (JNK) and several protein kinase C (PKC)

isoforms [2]. These pathways and the Akt-1/glycogen synthase

kinase-3b (GSK-3b) signaling cascade have all been demonstrated

to alter their activation state in response to hypertrophic stimuli,

and may therefore contribute to myocardial remodeling [3].

The poly(ADP-ribose) polymerase (PARP) enzyme becomes

activated in response to DNA single-strand breaks that can be

excessive as a response to free radicals and oxidative cell damage.

PARP is an energy-consuming enzyme that transfers ADP-ribose

to nuclear proteins. As a result of this process, the intracellular
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NAD+ and ATP levels decrease remarkably resulting in cell

dysfunction and cell death via the necrotic route. Therefore,

PARP-activation contributes to the pathogenesis of various

cardiovascular diseases including endothelial dysfunction, ische-

mia-reperfusion injury and myocardial infarction, as well as HF.

Several studies reported that endothelial dysfunction associated

with hypertension also depends on PARP activity and can be

prevented by its pharmacological inhibition [4,5].

It has been shown previously that our experimental agent, an

isoquinoline derivative PARP-inhibitor, L-2286 (Fig. 1) had a

beneficial effect against oxidative cell damage, against ischemia-

reperfusion injury and the development of postinfarction or long-

term high blood pressure-induced heart failure. Although the

molecule have a slight scavenger characteristic, its forementioned

effects were mediated mainly by influencing the Akt-1/GSK-3b,

MAPK and PKC signal transduction factors [3,6,7].

Hypertension in spontaneously hypertensive rat (SHR) is similar

to that of human in numerous ways such as the occurence of long-

term, stable LVH followed by a transition to HF [8,9,10]. It makes

SHR a useful tool for studying the development of LVH [9] and

HF, well separated from each other in time. Therefore, our

present study aimed to clarify whether pharmacological PARP-

inhibition has protective effect in an SHR model against the

development of the early stage of hypertensive cardiac remodeling.

Materials and Methods

Ethics Statement
The investigation conforms to the Guide for the Care and Use

of Laboratory Animals published by the U.S. National Insitutes of

Health (NIH Publication No. 85-23, revised 1996), and was

approved by the Animal Research Review Committee of the

University of Pecs, Medical School.

Experimental protocol
Six weeks old male WKY-strain Wistar Kyoto and spontane-

ously hypertensive rats (Charles River Laboratories, Budapest,

Hungary) were used. Animals were kept under standard conditions

throughout the experiment; 12 h light-dark cycle, water and rat

chow provided ad libitum. SHRs were randomly divided into two

groups; SHR-L and SHR-C. SHR-L group was treated with L-

2286 (2-[(2-piperidin-1-ylethyl)thio]quinazolin-4(3H)-one), a wa-

ter-soluble PARP-inhibitor (5 mg/b.w. in kg/day, n = 12), while

SHR-C group received only placebo (n = 11, SHR-C) p. os for 24

weeks [11,12]. WKY rats were used as age-matched controls

(n = 10). Dosage of L-2286 administered in drinking water was

based on preliminary data about the volume of daily consumption

[3,6]. At the beginning and at the end of the 24-week-long period,

echocardiographic measurements were performed. Invasive blood

pressure measurements were carried out on 3 rats of each group at

the end of the study. These rats were anesthetized with ketamine

hydrochloride (Richter Gedeon Ltd., Budapest, Hungary) intra-

peritoneally and a polyethylene catheter (Portex, London, UK)

was inserted into their left femoral artery. Systolic, diastolic and

mean arterial blood pressure was determined by CardioMed

System CM-2005 (Medi-Stim AS, Oslo, Norway). Animals were

euthanized with an overdose of ketamine hydrochloride intraper-

itoneally and heparinized with sodium heparin (100 IU/rat i.p.,

Biochemie GmbH, Kundl, Austria). After the sacrifice, blood was

collected to determine the concentration of plasma brain-derived

natriuretic peptide (BNP), and hearts were removed, the atria and

great vessels were trimmed from the ventricles and weight of the

ventricles was measured, which was then normalized to body mass

(index of cardiac hypertrophy). The lung wet weight-to-dry weight

ratio (an index of pulmonary congestion) was also measured in 7–9

experimental animals [3]. Hearts were freeze-clamped and were

stored at 270uC or fixed in 10% formalin. In order to detect the

extent of fibrotic areas, histologic samples were stained with

Masson’s trichrome. The phosphorylation state of Akt-1/GSK-3b,

MAPK and PKC signaling molecules were monitored by Western

blotting.

Determination of plasma B-type natriuretic peptide
Blood samples were collected into Lavender Vacutainer tubes

containing EDTA and aprotinin (0.6 IU/ml of blood), and were

centrifuged at 1600 g for 15 minutes at 4uC to separate the

plasma. Supernatants were collected and kept at 270uC. BNP-45

were determined by enzyme immunoassay method as the

manufacturer proposed (BNP-45, Rat EIA Kit, Phoenix Pharma-

ceuticals Inc., CA, USA).

Histology
Ventricles fixed in formalin were embedded in paraffin, and

5 mm thick sections were cut from base to apex. Sectiones were

stained with Masson’s trichrome staining to detect the interstitial

fibrosis, and quantified by the NIH ImageJ image processing

program as described previously [3].

Western blot analysis
Fifty milligrams of heart samples were homogenized in ice-cold

50 mM Tris buffer, pH 8.0 containing protease inhibitor cocktail

1:100, and 50 mM sodium vanadate (Sigma-Aldrich Co.,

Budapest, Hungary), and were harvested in 2x concentrated

sodium dodecyl sulphate (SDS)-polyacrylamide gel electrophoresis

sample buffer. Proteins were separated on 10% or 12% SDS-

polyacrylamide gel and transferred to nitrocellulose membranes.

After blocking (2 h with 3% nonfat milk in Tris-buffered saline),

membranes were probed overnight at 4uC with primary antibodies

recognizing the following antigenes: phospho-specific Akt-1/

protein kinase B-a Ser473 (1:1000), Actin (1:10000), phospho-

specific glycogen synthase kinase (GSK)-3b Ser9 (1:1000),

phospho-specific extracellular signal-regulated kinase (ERK 1/2)

Thr202-Tyr204 (1:1000), phospho-specific p38 mitogen-activated

protein kinase (p38-MAPK) Thr180-Gly-Tyr182 (1:1000), phospho-

specific c-Jun N-terminal kinase (JNK) Thr183-Tyr185 (1:1000),

phospho-specific protein kinase C (PKC) (pan) bII Ser660 (1:1000),

phospho-specific protein kinase C a/bII (PKC a/bII) Thr638/641

(1:1000), phospho-specific protein kinase C d (PKC d) Thr505

(1:1000), phospho-specific protein kinase C f/l (PKC f/l)

Thr410/403 (1:1000), phospho-specific protein kinase C e (PKC e)
Ser729 (1:1000), anti-poly(ADP-ribose) (anti-PAR, 1:5000), phos-

pho-Foxo1A (forkhead transcription factor, FKHR Ser256,

1:1000), Heat shock protein 72 (Hsp72, 1:20000), Heat shock

protein 90 (Hsp90, 1:1000). Antibodies were purchased from Cell

Signaling Technology (Beverly, MA, USA) except from actin,

which was bought from Sigma-Aldrich Co, (Budapest, Hungary),

phospho-specific PKC e, which was purchased from Upstate

(London, UK), anti-PAR, which was purchased from Alexis

Figure 1. Chemical structure of L-2286 (2-[(2-Piperidine-1-
ylethyl)thio]quinazolin-4(3H)-one).
doi:10.1371/journal.pone.0102148.g001
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Biotechnology (London, UK), Hsp90, which was bought from

Santa Cruz Biotechnology (Wembley, UK), Hsp72, which was

purchased from StressGene Biomol GmbH (Hamburg, Germany).

Membranes were washed six times for 5 min in Tris-buffered

saline, pH 7.5 containing 0.2% Tween before addition of goat

anti-rabbit horseradish peroxidase-conjugated secondary antibody

(1:3000 dilution, Bio-Rad, Budapest, Hungary). The antibody-

antigen complexes were visualized by means of enhanced

Table 1. Effect of L-2286 treatment on gravimetric parameters and on plasma BNP in SHR.

WKY SHR-C SHR-L

SAP30w, (mmHg) 12967 19269b 18665b

DAP30w, (mmHg) 8965 12768b 12564b

MAP30w, (mmHg) 10367 14965b 14667b

BW6w (g) 71.0161.89 72.0262.36 69.963.21

BW (g) 393614.01 323.8611.27a 321.8666.8a,c

WV (g) 1.1660.17 1.4560.18b 1.2460.24b,c

WV/BW (mg/g) 2.9560.17 4.4860.12b 3.8560.15b,c

Lung wet weight/dry weight 4.8460.92 4.7960.84 4.7760.99

p-BNP (ng/ml) 2.1960.011 2.3360.034 2.3160.031

WKY: normotensive age-matched control rats, n = 7, SHR-C: SHR age-matched control rats, n = 8, SHR-L: SHR treated with L-2286 for 24 weeks, n = 9. SAP, DAP, MAP30w:
systolic, diastolic and mean arterial blood pressure at 30-week-old age (n = 3 from each group). BW6w: body weight of 6-week-old rats, BW: body weight, WV: weights of
ventricles, BNP: plasma b-type natriuretic peptide. Values are means6S.E.M.
a,0.01 (vs. WKY group),
b,0.05 (vs. WKY group),
c,0.05 (vs. SHR-C).
doi:10.1371/journal.pone.0102148.t001

Figure 2. L-2286 treatment decreased the deposition of interstitial collagen. Sections stained with Masson’s trichrome (n = 5). Scale bars
mean 200 mm. Magnifications 10-fold. WKY (A): normotensive age-matched control rats. SHR-C (B): 30 week-old spontaneously hypertensive rats,
SHR-L (C): 30 week-old spontaneously hypertensive rats treated with L-2286 for 24 week. D: Denzitometric evaluation of the sections is shown. *p,
0.01 vs. WKY, 1p,0.05 vs. WKY, $p,0.05 vs. SHR-C.
doi:10.1371/journal.pone.0102148.g002

PARP Inhibition in Cardiac Remodeling

PLOS ONE | www.plosone.org 3 July 2014 | Volume 9 | Issue 7 | e102148



chemiluminescence. After scanning, results were quantified by

NIH ImageJ program. Pixel densities of bands were normalized to

that of the loading controls.

Noninvasive evaluation of cardiac functions and
dimensions

At the start of the experiment, all animals were examined by

echocardiography to exclude rats with any heart abnormalities.

Transthoracic two-dimensional echocardiography was performed

under inhalation anesthesia at the beginning of the experiment

and on the day of sacrifice. Rats were lightly anesthetized with a

mixture of 1.5% isoflurane (Forane, Abbott Laboratories,

Hungary) and 98.5% oxygen. The chest of animals was shaved,

acoustic coupling gel was applied and warming pad was used to

maintain normothermia. Rats were imaged in the left lateral

decubitus position. Cardiac dimensions and functions were

measured from short- and long-axis views at the mid-papillary

level by a VEVO 770 high-resolution ultrasound imaging system

(VisualSonics, Toronto, Canada) equipped with a 25 MHz

transducer. LV fractional shortening (FS), ejection fraction (EF),

LV end-diastolic volume (LVEDV), LV end-systolic volume

(LVESV), and the thickness of septum and posterior wall were

determined. FS (%) was calculated by 100x((LVIDd-LVIDs)/

LVIDd) (LVID: LV inside dimension; d: diastolic; s: systolic), EF

(%) was calculated by 100x((LVEDV-LVESV)/LVEDV), relative

wall thickness (RWT) was calculated by (PW thickness +
interventricular septal thickness)/LVIDd.

Statistical analysis
All data are expressed as mean6SEM. First of all the

homogeneity of the groups was tested by F-test (Levene’s test).

There were no significant differences among the groups.

Comparisons among groups were made using one-way ANOVA

(SPSS for Windows 11.0). For post hoc comparison Bonferroni test

was chosen. Values of p,0.05 were considered statistically

significant.

Results

Effect of L-2286 on normotensive WKY rats was also examined,

but the investigated parameters did not differ significantly from the

non-treated WKY animals. Therefore, data of L-2286 treated

WKY rats were not shown to avoid unnecessary redundancies.

Effect of PARP inhibition on gravimetric parameters of
spontaneously hypertensive rats

Body weights did not differ significantly among the three groups

(WKY: 71.0160.11 g, SHR-C: 72.0362.36 g, SHR-L:

Table 2. L-2286 treatment moderately influenced the echocardiographic parameters in 6 weeks old SHRs.

WKY SHR-C SHR-L

EF (%)6w 67.2660.525 68.461.77 68.2361.81

FS6w 38.6364.47 38.0365.52 39.3564.15

LVEDV6w (ml) 147.27613.88 149.56616.78 149.11614.43

LVESV6w (ml) 46.6364.47 48.0365.52 47.3565.45

Septum6w (mm) 1.260.07 1.1860.05 1.1760.12

PW6w (mm) 1.1960.07 1.1660.067 1.1460.04

LV mass6w (uncorrected) 344.14635.49 351.66636.23 354.77633.23

WKY: normotensive age-matched control rats, n = 7, SHR-C: SHR age-matched control rats, n = 8, SHR-L: n = 9, SHR treated with L-2286 for 24 weeks.EF6w: ejection
fraction, FS6w: fractional shortening, LVEDV6w: left ventricular (LV) end-diastolic volume, LVESV6w: LV end-systolic volume, Septum6w: thickness of septum, PW6w:
thickness of posterior wall, LV mass6w: weights of LVs.
doi:10.1371/journal.pone.0102148.t002

Table 3. L-2286 treatment moderately influenced the echocardiographic parameters in 30 weeks old SHRs.

WKY SHR-C SHR-L

EF (%)30w 69.162.4 68.7262.1 69.0163.2

FS30w 39.861.9 39.0461.85 40.5762.66

LVEDV30w (ml) 279.18618.18 335.87610.36a 326.9469.18a

LVESV30w (ml) 85.7768.56 96.85610.36a 99.81611.85a

Septum30w (mm) 1.4360.04 1.9360.04a 1.7960.05a,b

PW30w (mm) 1.5460.08 2.1560.12a 1.8760.03a,b

RWT30w 0.3860.05 0.50460.02a 0.44560.012a,b

LV mass30w (uncorrected) 1002.81659.5 1370.35679.87a 1121.13653.23a,b

LV mass30/BW30 (mg/g) 2.7360.7 4.2360.8a 3.7060.3a,b

WKY: normotensive age-matched control rats, n = 7, SHR-C: SHR age-matched control rats, n = 8, SHR-L: n = 9, SHR treated with L-2286 for 24 weeks.EF30w: ejection
fraction, F30w: fractional shortening, LVEDV30w: left ventricular (LV) end-diastolic volume, LVESV30w: LV end-systolic volume, Septum30w: thickness of septum, PW30w:
thickness of posterior wall, RWT30w: relative wall thickness, LV mass30w: weights of LVs. Values are mean6S.E.M.
ap,0.05 (vs. WKY group),
bp,0.05 (vs. SHR-C group).
doi:10.1371/journal.pone.0102148.t003
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69.9263.21 g, 6-week-old rats) at the beginning of our study.

However, at the end of the 24-week-long treatment period, body

weights of WKY group were significantly higher than those of

SHR-C and SHR-L groups (WKY: 392.7614.01 g, SHR-C:

323.8611.27 g, SHR-L: 321.966.84 g, p,0.01 WKY vs. SHR

groups, 30-week-old rats). The degree of myocardial hypertrophy

was determined by ventricular weight to body weight ratio (WV/

BW, mg/g). This parameter was significantly increased in SHR

groups compared to the WKY group (WV/BW: WKY:

2.9560.17, SHR-C: 4.4860.12, SHR-L: 3.8560.15, p,0.05

WKY vs. SHR groups). Similar results were obtained in case of

weights of ventricles (WV, WKY: 1.1660.17 g, SHR-C:

1.4560.18 g, SHR-L: 1.2460.24 g, p,0.05 WKY vs. SHR

groups). The WV and WV/BW ratios were significantly decreased

by L-2286 treatment (p,0.05 SHR-L vs. SHR-C). The lung wet

weight-to-dry weight ratio was not elevated significantly in SHR-C

and SHR-L compared to WKY groups (Table 1). All these results

indicate the presence of cardiac hypertrophy without congestive

heart failure in the SHR-C group that was ameliorated in the

SHR-L group.

L-2286 treatment did not influence the levels of plasma
BNP and blood pressure

Slightly elevated plasma BNP levels were found both in SHR-C

and SHR-L groups (not significant vs. WKY group). Although

plasma BNP level was a little higher in SHR-C group than in

SHR-L group, this difference was also not statistically significant

(Table 1). In both SHR groups, blood pressure was significantly

elevated compared to the WKY group (p,0.05). L-2286

treatment did not decrease significantly the elevated blood

pressure (Table 1).

L-2286 decreased the interstitial collagen deposition in
the myocardium

Histological analysis revealed slight interstitial collagen deposi-

tion in the WKY group. Chronic high blood pressure caused

significantly higher collagen deposition in SHR-C rats that was

significantly diminished (p,0.05) in the SHR-L group (Fig. 2).

PARP inhibition decreased the left ventricular
hypertrophy in spontaneously hypertensive rats

At the beginning of the study the echocardiographic parameters

of the three groups did not differ significantly from each other

(Table 2). At the age of 30 weeks there was no significant

difference in LV systolic functions (EF and FS) between the WKY

and SHR groups. Heart rate did not differ significantly during the

anesthesia among the groups. LVESV and LVEDV were

increased significantly in SHRs (p,0.05 WKY vs. SHR-C and

SHR-L), and these unfavorable alterations were not reduced by L-

2286 treatment. The thickness of the septum, and the posterior

Figure 3. Effect of L-2286 treatment on Akt-1Ser473/GSK-3bSer9, FKHRSer256 pathway. Representative Western blot analysis of Akt-1Ser473,
GSK-3bSer9, FKHRSer256 phosphorylation and densitometric evaluation is shown (n = 4). Actin was used as loading control. Values are means6S.E.M.
WKY: normotensive age-matched control rats. SHR-C: 30 week-old spontaneously hypertensive rats, SHR-L: 30 week-old spontaneously hypertensive
rats treated with L-2286 for 24 weeks. *p,0.01 vs. WKY, {p,0.01 vs. SHR-C, 1p,0.05 vs. WKY.
doi:10.1371/journal.pone.0102148.g003
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wall and the relative wall thickness were also increased in SHR

groups (indicating the presence of ventricular hypertrophy)

comparing to the WKY group (p,0.05), and these parameters

could be significantly reduced by the administration of L-2286 (p,

0.05 SHR-C vs. SHR-L group) (Table 3).

Effect of L-2286 treatment on poly-ADP-ribosylation as
well as on the phosphorylation state of Akt-1Ser473/GSK-
3bSer9 and FKHRSer256

Akt-1Ser473 was moderately phosphorylated in WKY group. In

SHR-C group, the phosphorylation of Akt-1Ser473 was more

pronounced (p,0.01 vs. WKY). Moreover, in SHR-L rats the L-

2286 treatment caused further elevation in Akt-1Ser473 phosphor-

ylation (p,0.01 vs. WKY and SHR-C groups) (Fig. 3). The same

result was obtained in the case of GSK-3bSer9 phosphorylation

(Fig. 3).

Another target protein of Akt-1Ser473 (besides GSK3bSer9) is

FKHRSer256. Consistently with the result of Akt-1Ser473 phosphor-

ylation, the strongest phosphorylation (therefore inhibition) could

be observed in SHR-L group (p,0.01 vs. SHR-C and WKY). The

lowest phosphorylation and therefore the highest activity of

FKHR was seen in SHR-C group (p,0.05 vs. WKY, Fig. 3).

To detect the effectivity of L-2286, the ADP-ribosylation of the

samples were analysed by Western-blot. The lowest degree of

ADP-ribosylation was present in SHR-L group, and the most

pronounced ADP-ribosylation was seen in SHR-C group (p,0.05

vs. WKY) (Fig. 4).

Effect of L-2286 on the amount of Hsp72 and 90
There was no significant difference among the three groups in

the level of Hsp72. On the other hand, the level of Hsp90 was

elevated in SHR-L group compared to WKY and SHR-C groups

(p,0.01 SHR-L vs. WKY or SHR-C groups), and the lowest

amount of this protein was present in WKY samples (Fig. 4).

Effect of L-2286 administration on MAPKs
Phosphorylation of p38-MAPKThr180-Gly-Tyr182, ERK 1/

2Thr183-Tyr185 and JNK was the lowest in the WKY group

compared to SHR-C and SHR-L groups (p38-MAPKThr180-Gly-

Tyr182: p,0.01 vs. SHR groups, ERK 1/2: p,0.05 vs. SHR

groups, JNK: p,0.05 vs. SHR groups). In the case of p38-

MAPKThr180-Gly-Tyr182, ERK 1/2Thr183-Tyr185 and JNK, their

phosphorylation was elevated in both SHR-C and SHR-L groups,

but there were no significant differences between the two SHR

groups (Fig. 5, JNK: data not shown).

Figure 4. Effect of L-2286 treatment on the level of Hsp72, 90 and poly(ADP-ribos)ylation. Representative Western-blot analysis of Hsp72,
90, anti-PAR and densitometric evaluations are shown (n = 4). Actin was used as loading control. Values are means6S.E.M. WKY: normotensive age-
matched control rats. SHR-C: 30 week-old spontaneously hypertensive rats, SHR-L: 30 week-old spontaneously hypertensive rats treated with L-2286
for 24 weeks. *p,0.01 vs. WKY, {p,0.01 v.s SHR-C, 1p,0.05 vs. WKY, $p,0.05 vs. SHR-C.
doi:10.1371/journal.pone.0102148.g004
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Influence of L-2286 treatment on the phosphorylation
state of several PKC isoforms

The overall (pan) phosphorylation of PKC (pan bIISer660) was

low in the WKY group and became significantly higher in SHR-C

and SHR-L groups (p,0.01 WKY vs. SHR groups). Administra-

tion of L-2286 could not affect the phosphorylation state of PKC

pan bII Ser660 in SHR-L group compared to the SHR-C group

(Fig. 6).

The lowest phosphorylation could be observed in the WKY

group in case of PKC a/bIIThr638/641, dThr505, f/lThr410/403 and

eSer729 (p,0.01 vs. SHR groups). As PKC f antibody, we used a

combined antibody (i.e. PKC f/l Thr410/403), which did not

discriminate between PKC f and l; PKC l being structurally

highly homologous to PKC f in the COOH-terminal end of the

molecule [12]. L-2286 treatment decreased significantly the

phosphorylation of PKC a/bII Thr638/641 and f, while it could

increase the phosphorylation of eSer729 (PKC a/bII Thr638/641, f,
eSer729: p,0.01, SHR-L vs. SHR-C) (Fig. 6,7). In the case of PKC

dThr505 there was no significant difference between the SHR

groups (Fig. 7).

Discussion

The major findings of this study are that chronic inhibition of

nuclear PARP enzyme reduces excessive ADP-ribosylation of

nuclear proteins, beneficially influences the intracellular signaling

pathways and thus prevents the development of cardiac hypertro-

phy, which is an early consequence of hypertension. We used the

SHR model that is a relevant animal model of essential

hypertension in humans [13]. Our study began at a very early

age (6-week-old) of SHRs, because at this age the blood pressure of

animals is still normal and the hearts show no signs of remodeling.

However, by the end of the study (30 weeks), marked signs of

hypertensive cardiopathy develop in SHRs.

Previously, we have proved that PARP-inhibition could inhibit

the transition of hypertensive cardiopathy to end-stage heart

failure [6], but there is no data about the role of PAPR-inhibitors

against the development of early consequences of hypertension.

Hypertension is a major risk factor for cardiovascular mortality

and morbidity, and it is associated with left ventricular hypertro-

phy and diastolic dysfunction and later with systolic dysfunction

and it can lead to heart failure. There is a strong correlation

between left ventricular mass and the development of cardiovas-

cular pathogies [14]. The development of long-term hypertension-

induced myocardial remodeling can be explained by different

mechanism in the literature, but generally, oxidative stress and

abnormal signaling are considered as molecular basis of the

disease. Peroxynitrite and other reactive species induce oxidative

DNA damage and consequent activation of the nuclear enzyme

PARP. In related animal models of the disease, pharmacological

inhibition of PARP provides significant therapeutic benefits [15].

Figure 5. Effect of L-2286 on the phosphorylation state of MAPK pathway. Representative Western blot analysis of ERK 1/2Thr183-Tyr185, and
p38-MAPKThr180-Gly-Tyr182 phosphorylation and densitometric evaluation is shown (n = 4). Actin was used as loading control. Values are means6S.E.M.
WKY: normotensive age-matched control rats. SHR-C: 30 week-old spontaneously hypertensive rats, SHR-L: 30 week-old spontaneously hypertensive
rats treated with L-2286 for 24 weeks. 1p,0.05 vs. WKY *p,0.01 vs. WKY.
doi:10.1371/journal.pone.0102148.g005
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PARP inhibition and gravimetric parameters in SHR
Significant LV hypertrophy develops by the age of 3 months in

SHR animals but it is more often studied closer to 6 months of age

[16]. In our SHR rats myocardial hypertrophy developed, as

increased WV/BW ratio could be observed. We could not observe

any obvious signs of HF, because BNP activity and the index of

pulmonary congestion was not elevated compared to the WKY

group.

PARP inhibition and interstitial collagen deposition in
SHR

Chronic hypertension leads to excessive collagen deposition

(fibrosis) as part of the process of cardiovascular remodeling. In

our previous studies, when SHR or postinfarcted animals

exhibited overt heart failure, L-2286 also prevented interstitial

fibrosis and adverse structural remodeling [3,6]. In the present

study, our results suggest that PARP inhibitor treatment can exert

marked antifibrotic effect already in this early stage of hypertensive

heart disease.

PARP inhibition and echocardiographic parameters
In our experiment the systolic LV function was not decreased in

SHR rats during the 24-week-long treatment. It is in accordance

with several other studies [8,9,10] involving different experimental

models of pressure overload-induced hypertrophy. During the

development of hypertension, alterations in LV geometry may also

occur as an adaptation to increased pressure overload. In

hypertensive patients, LV geometry can be classified into four

patterns on the basis of LV mass index and RWT and these

patterns have been shown to be closely related to LV function and

to patients’ prognosis [17,18,19]. In this study, increased RWT

and increased WV/BW were found, which indicates concentric

LV hypertrophy [9]. L-2286 treatment decreased significantly the

signs of left ventricular hypertrophy (wall thickness and RWT)

even though the elevated blood pressure of SHR rats was not

influenced by PARP inhibition.

L-2286 treatment and the activity of Akt-1Ser473/
GSK3bSer9 and FKHRSer256 pathway

Previous works demonstrated that PARP inhibitors can induce

the phosphorylation and activation of Akt-1 in reperfused

myocardium, thus raising the possibility that the protective effect

of PARP inhibition can be mediated through the activation of the

prosurvival phosphatidylinositol-3-kinase (PI3-kinase)/Akt-1 path-

way [20]. Akt-1 is a key molecule in the signaling cascade of

physiological hypertrophy [21]. Recent results demonstrate an

important role of Akt/m-TOR signaling in cardiac angiogenesis,

whose disruption contributes to the transition from hypertrophy to

HF [1]. In our experiment, the phosphorylation of Akt-1Ser473 was

far the lowest in WKY group and the highest in SHR-L group.

Phosphorylation and therefore the inhibition of GSK-3bSer9 and

Foxo1 (FKHR) (downstream targets of Akt-1) [22,23] were also

determined. This showed the same pattern as the phosphorylation

of Akt-1. The similar results were obtained in our studies using

Figure 6. Effect of L-2286 administration on the activity of PKC isoenzymes. Representative Western blot analysis of PKC pan bIISer660 and
PKC a/bIIThr638/641 phosphorylation and densitometric evaluations are shown (n = 4). Values are means6S.E.M. WKY: normotensive age-matched
control rats. SHR-C: 30 week-old spontaneously hypertensive rats, SHR-L: 30 week-old spontaneously hypertensive rats treated with L-2286 for 24
weeks. *p,0.01 vs. WKY, {p,0.01 vs. SHR-C.
doi:10.1371/journal.pone.0102148.g006
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PARP inhibitors [20,24] or by suppressing PARP-1 activation by

siRNA technique [25]. These results may indicate that SHR-C

animals tried to compensate for the adverse effects of chronic

hypertension, but failed to do so. On the other hand, L-2286

treatment further elevated Akt activation that could, at least

partially, account for the beneficial changes in the cardial

remodeling of the SHR-L animals.

L-2286 administration and levels of Hsp 72 and 90
Cellular stress leads to the expression of Hsp’s [26]. They are

known to protect the myocardium from the damaging effects of

ischemia and reperfusion [27]. According to the results of Jiang et

al [27] and Shinohara et al [28] the Hsp’s can preserve the

mitochondrial respiratory function and structure which are

damaged in case of cell death. The flux of pro-apoptotic proteins

can be induced by various stimuli, one of them is the decreased

level of ATP. This can be induced by overactivation of PARP-1,

which consumes too much ATP in certain pathologic conditions

[29]. In case of Hsp90 in our study, the level of it was increased by

long-term L-2286 treatment. Besides the activation of Akt-1Ser473,

this can contribute to the cell survival in L-2286 treated rats. The

level of Hsp72 was not influenced significantly by L-2286

administration in our investigation.

L-2286 administration and MAPKs in young SHR
Previous works demonstrated that PARP inhibitors have a

moderate effect on MAPKs in acute phase of myocardial

infarction and in postinfarction heart failure [3,20]. MAPKs are

ubiquitously expressed and their activation is observed in different

heart diseases, including hypertrophic cardiomyopathy, dilated

cardiomyopathy, and ischemic/reperfusion injury in human and

animal models [30]. In our study, the phosphorylation of p38-

MAPKThr180-Gly-Tyr182, JNK and ERK 1/2Thr183-Tyr185 was

elevated both in SHR-C and SHR-L groups. Our results are

consistent with the results of Kacimi et Gerdes [31] using

spontaneously hypertensive heart failure (SHHF) rats. L-2286

treatment did not influence the phosphorylation of p38-MAPK

and JNK. The role of JNK and p38-MAPK-signaling in cardiac

hypertrophy is not fully clarified [1]. However, both p38-MAPK

and JNK transduction cascades have been implicated in the

regulation of hypertrophic response as well as cardiomyopathy and

HF [32]. JNK activity was not altered by L-2286 treatment in

SHR animals, similarly to Hsp72 level. This result is in accordance

with previous data [28] demonstrating that Hsp72 downregulates

JNK by accelerating its dephosphorylation.

The elevated blood pressure may induced ERK activation [33].

Accordingly, activation of ERK1/2 was the lowest in WKY group,

and was higher in SHR-C. Phosphorylation of ERK1/2 was not

Figure 7. Effect of L-2286 administration of PKC isoenzymes. Representative Western blot analysis of PKC dThr505, eSer729 and f/lThr410/403

phosphorylation and densitometric evaluation is shown (n = 4). Actin was used as loading control. Values are means6S.E.M. WKY: normotensive age-
matched control rats. SHR-C: 30 week-old spontaneously hypertensive rats, SHR-L: 30 week-old spontaneously hypertensive rats treated with L-2286
for 24 weeks. *p,0.01 vs. WKY, {p,0.01 vs. SHR-C.
doi:10.1371/journal.pone.0102148.g007

PARP Inhibition in Cardiac Remodeling

PLOS ONE | www.plosone.org 9 July 2014 | Volume 9 | Issue 7 | e102148



elevated by L-2286 administration in this study. The in vivo role of

ERK in cardiac hypertrophy has been demonstrated in several

genetically engineered animal models. Cardiac-specific expression

of constitutively activated MEK1 promotes cardiac hypertrophy

without compromised function or long-term animal survival,

suggesting that activation of ERK activity promotes a compen-

sated form of hypertrophy [30]. All these results suggest that

MAPK activation did not participate significantly in mediating the

adverse cardiac effects of chronic hypertension in our model.

PARP inhibition and PKC pathways in young SHR
PARP inhibitors were found to affect PKC isoenzymes [3,17].

The levels of all PKC isoforms increased in SHR groups compared

to the WKY group in our study. Our results are in agreement with

Koide et al. [34] using Dahl Salt-Sensitive rats in cardiac

hypertrophy stage. Recent studies suggested that PKC is critically

involved in the development of cardiac remodeling and HF. The

data also suggest that individual PKC isoforms have different

effects on cell signaling pathways, variously leading to changes in

cardiac contractility, hypertrophic response and tolerance to

myocardial ischaemia in the heart [34].

Activation of PKC pan bIISer660 and dThr505 were not altered by

L-2286 treatment, while activation of a/bIIThr638/641 and f/l
Thr410/403 were attenuated and activation of eSer729 was augmented

by L-2286. These alterations can mediate – at least partly – the

favourable cardiovascular effects of L-2286, similarly as it was

found in previous works [3,20].

PKC a is the most extensively expressed among the myocardial

PKC isoforms, and it is a key regulator of cardiomyocyte

hypertrophic growth [35,36]. PKC a was sufficient to stimulate

cell hypertrophy [37]. Transgenic mice overexpressing PKC b2

exhibited cardiac hypertrophy and decreased LV performance;

this depressed cardiac function improved after the administration

of a PKC b-selective inhibitor [38]. Previous reports suggest that

PKC a and b and PKC f/l are involved in the development of

cardiac hypertrophy and HF. Additionally, PKC e plays a role in

physiological hypertrophic responses [34,39], has cardioprotective

effect [40] and by interacting with Akt-1 and affecting Bcl-2

promote vascular cytoprotection [41]. Accordingly, in our study,

both the activity of Akt-1Ser473 and PKCeSer729 were elevated by

L-2286 administration.

Conclusions

In our study, we examined the effect of a PARP inhibitor (L-

2286) in SHR at the stage of LV hypertrophy. L-2286 exerted a

beneficial effect on the progression of myocardial hypertrophy

(thickness of PW and septum, RWT) and myocardial fibrosis. In

the background of these changes, we did not observe any blood

pressure lowering effect of PARP-inhibition. According to our

results, PARP-inhibition can exert this antihypertrophic effect due

to the activation of several prosurvival (especially Akt-1/GSK-3b,

FKHR, PKCe and Hsp90) and the inhibition of prohypertrophic

(PKC- a/bII, - f/l) protein kinases (Fig.8).

Figure 8. Summary of pathway alterations due to L-2286 treatment.
doi:10.1371/journal.pone.0102148.g008
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