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Individuals carrying a pathogenic germline variant in the breast cancer predisposition gene
BRCA1 (gBRCA1+) are prone to developing breast cancer. Apart from its well-known role
in DNA repair, BRCA1 has been shown to powerfully impact cellular metabolism. While, in
general, metabolic reprogramming was named a hallmark of cancer, disrupted
metabolism has also been suggested to drive cancer cell evolution and malignant
transformation by critically altering microenvironmental tissue integrity. Systemic
metabolic effects induced by germline variants in cancer predisposition genes have
been demonstrated before. Whether or not systemic metabolic alterations exist in
gBRCA1+ individuals independent of cancer incidence has not been investigated yet.
We therefore profiled the plasma metabolome of 72 gBRCA1+ women and 72 age-
matched female controls, none of whom (carriers and non-carriers) had a prior cancer
diagnosis and all of whom were cancer-free during the follow-up period. We detected one
single metabolite, pyruvate, and two metabolite ratios involving pyruvate, lactate, and a
metabolite of yet unknown structure, significantly altered between the two cohorts. A
machine learning signature of metabolite ratios was able to correctly distinguish between
gBRCA1+ and controls in ~82%. The results of this study point to innate systemic
metabolic differences in gBRCA1+ women independent of cancer incidence and raise the
question as to whether or not constitutional alterations in energy metabolism may be
involved in the etiology of BRCA1-associated breast cancer.

Keywords: breast cancer, plasmametabolome, BRCA1 germline mutation, energy metabolism, NAD+ balance, HIF1
alpha, lactate, aerobic glycolysis
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INTRODUCTION

During recent years, the idea of the tumor suppressor and breast
cancer predisposition gene BRCA1 and its protein product
exclusively serving as a critical DNA repair agent maintaining
genomic stability has been challenged, as it has become
increasingly apparent that BRCA1’s pleiotropic functions
comprise mechanisms as widespread as epigenetic regulation
(1), chromatin remodeling and gene transcription (2, 3),
differentiation of mammary stem/progenitor cells to mature
luminal epithelial cells (4), control of cancer stem cell-like
characteristics (5), and the powerful regulation of cellular
metabolism (6–13).

At the same time, the emerging concept of cancer initiation
and progression being an evolutionary process in which not only
the accumulation of mutational burden in tumor cells but also
t issue integri ty and alterat ions in stem cel l niche
microenvironments play a fundamental role (14) gains
stronger interest. In this context, progressively degrading
tissues, e.g. due to aging processes, chronic pro-inflammatory
status, or external insults such as radiation, represent a challenge
for resident stem cells poorly adapted to such niche changes and
provide a competitive advantage to those that improve their
fitness through specific oncogenic mutations (a process termed
“adaptive oncogenesis”). For the emergence of altered
microenv i ronment cond i t ions , metabo l i c ce l lu l a r
reprogramming of stromal cells such as cancer-associated
fibroblasts (CAFs) plays an integral role [reviewed in (15)].
Therefore, it seems conceivable that germline alterations that
constitutionally push the organism towards a metabolic state
resembling aging conditions or chronic inflammation amount to
a microenvironment that—in advance of natural aging—
supports adaptive oncogenesis and, thus, contributes to
cancer predisposition.

As has previously been shown for recognized “Inborn Errors
of Metabolism”, metabolic alterations such as succinate
dehydrogenase (SDH) or fumarate hydratase (FH) deficiency
are capable of fostering malignant transformation efficiently and
reliably, and heterozygous germline alterations in the respective
genes are associated with cancer predisposition syndromes
[reviewed in (16)]. Not only has metabolic cellular
reprogramming been named a hallmark of cancer (17), but
emerging evidence seems to also raise the question if disrupted
metabolism may in fact be a prerequisite for cancer evolution.
BRCA1, specifically, has been shown to strongly impact energy
metabolism, fatty acid metabolism, and antioxidative pathways
in breast epithelial cells and breast cancer cell lines (11–13). A
reversion of the Warburg effect has been postulated upon
transfection of a BRCA1-mutated breast cancer cell line by
wildtype BRCA1 (11). In CAFs, BRCA1 has been shown to
influence proliferation rates, response to hypoxia, autophagy,
and SDH complex efficiency (18). Many of these effects seem to
involve the transcription factor and master regulator of
metabolism hypoxia-inducible factor 1 (HIF1) (11, 12, 18), the
overexpression of which has been demonstrated in BRCA1-
related invasive breast cancer as well as ductal carcinoma
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in situ (DCIS), suggesting hypoxia to already play a role in
early stages of BRCA1-related breast carcinogenesis (19, 20).

While little is known about systemic effects of heterozygous
pathogenic germline BRCA1 variants (gBRCA1+), luteal phase
sex hormones—in particular progesterone (P4)—were observed
to be elevated and osteoprotegerin (OPG) levels were decreased
in serum of gBRCA1+ carriers (21, 22). In women without
known genetic predisposition, high receptor activator of NFkB
ligand (RANKL)/OPG ratios were suggested indicative of breast
cancer manifestation, and elevated RANKL and P4 serum levels
stratified a subgroup of women at high risk of developing breast
cancer 1–2 years before diagnosis (23), though recently a report
rebutted plasma RANKL levels correlating with breast cancer
risk in germline BRCA1/2mutation carriers (24). In patients with
triple-negative breast cancer (TNBC), a plasma metabolomics
signature has been described, which distinguishes diseased
gBRCA1+ patients from diseased germline BRCA1 wildtype
patients (25). Whether or not systemic effects of globally
altered metabolism exist in non-cancer-diseased gBRCA1+
individuals and whether these can be detected via metabolome
analyses has, to our knowledge, not yet been investigated.

The purpose of the present study was to evaluate if plasma
metabolome signatures of non-cancer-diseased gBRCA1+
carriers and healthy age-matched controls mirror genotype, as
has previously been shown for carriers of pathogenic germline
PTEN variants (26). We intentionally selected for non-diseased,
treatment-naïve females seeking to confine confounding factors
such as tumor burden, radio-chemotherapy, or anti-hormonal
treatment to a minimum to allow primary focus on genotype-
related metabolic differences. Findings of distinct systemic
metabolic alterations preceding tumor formation could not
only have vast consequences in terms of diagnostic procedures,
predictive measures, and prognostic assessment, but also could
they provide clues to etiologically critical drivers of cancer
evolution in gBRCA1+ carriers and potentially uncover
preventive as well as therapeutic options.
MATERIALS AND METHODS

Study Cohort
Patient Selection
Plasma samples of 72 women carrying a heterozygous (likely)
pathogenic germline variant in BRCA1 (ACMG criteria class 4/5)—
but not previously diagnosed with any type of malignancy—were
recruited from the Departments of Human Genetics, Radiology, or
Obstetrics and Gynecology, Hannover Medical School, during
2015 to 2018. All of the study subjects’ pedigrees of at least three
generations had been established during genetic counseling.
Subjects who knowingly carried an additional (likely) pathogenic
variant (PV) in any other established cancer predisposition gene
were dismissed from study inclusion.

In order to diminish the possibility of metabolomics effects
arising from potentially pre-existing breast cancer disease in
gBRCA1+ individuals at the time of blood draw, patients who
developed invasive or in situ breast cancer during the follow-up
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period were excluded from the cohort. The follow-up period
comprised a minimum of 19 months and a maximum of 56
months. For 14 gBRCA1+ women (19%), no clinical follow-up
data was available.

Female relatives of patients in whom a PV in an established
predisposition gene associated with Mendelian disease had
previously been detected and who tested negative for this
familial variant were included as age-matched control subjects
(i.e., +/- 5 years, in one pair 6 years, at time of sample collection;
42/72 (~60%) of pairs being age-matched ≤2 years). As these
individuals had also been seen in the outpatient clinic of the
Department of Human Genetics, their personal medical and
family histories were available, which enabled us to specifically
exclude any sporadic cancer patients or any whose family history
was suggestive of cancer predisposition in the other family
branch according to currently available genetic testing criteria.
Frontiers in Oncology | www.frontiersin.org 3
Known carriers of variants of uncertain significance (ACMG
class 3) or PVs in other genes were excluded. Among the
included control subjects, there were 33, 24, 3, 2, and two in
which a familial PV in BRCA1, BRCA2,MSH2,MSH6, and TP53,
was excluded, respectively, and eight with exclusion of a familial
PV in either APC, CFTR, FBN1, GLI3, MLH1, PALB2, PTEN, or
of a duplication of 22q11. No clinical follow-up data were
available for control subjects.

Cohort Characteristics
The final cohort (Figures 1A, B) consisted of 144 individuals
from 130 different families, including three families out of which
cases and controls were integrated. The age range of cases and
controls was 24–65 years (median 35 years), and 19–67 years
(median 39 years), respectively. For age-stratified analyses, the
cohort was split into three distinct age groups: G1: 19–34 years,
A

C

B

FIGURE 1 | Cohort characteristics. (A) Age distribution at time of plasma sampling; median depicted as horizontal red line. (B) Age composition of cohort.
(C) Overview of (likely) pathogenic BRCA1 variants within the cohort (i.e., five exonic deletions, one exonic duplication, 15 frameshift, seven nonsense, five
missense, and two splice-site variants). BRCA1 NCBI reference sequence NM_007294.2; UniProtKB - P38398 (BRCA1_HUMAN).
April 2021 | Volume 11 | Article 627217
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G2: 35–50 years, and G3: 51–67 years. The gBRCA1+ cohort
contained 35 distinct variants in the BRCA1 gene (for details, see
Figure 1C).

The majority of patients and controls were assumed to be of
European-Caucasian ancestry. The present study was performed
in accordance with the Declaration of Helsinki and was approved
by the institutional ethics review board of Hannover Medical
School. Written informed consent was obtained from
all participants.

Sample Processing and Gas
Chromatography-Mass Spectrometry
Measurement
Sample Collection
Peripheral blood EDTA samples were transferred to Hannover
Unified Biobank (HUB) in a cool box immediately after blood
draw. For plasma separation, samples were centrifuged at
2.000 x g for 10 min at 4°C and aliquoted within 2 h from
blood collection. Plasma aliquots were immediately stored at
−192°C. Samples were stored and tracked according to standard
operating procedures at HUB and sent to Technical University,
Braunschweig, on dry ice for further analyses.

Metabolite Extraction
All blood plasma samples were processed in technical duplicates.
For each replicate, 20 ml of plasma were mixed with 180 ml
methanol/water mixture (4 + 1; v/v) and vortexed on a
thermomixer (Eppendorf) for 5 min at 1.400 rpm at 4°C. The
mix was then directly centrifuged at 17.000 x g for 5 min at 4°C
(Eppendorf 5415R), and 140 ml of the supernatant were
transferred into GC glass vials. Samples were completely dried
in a refrigerated rotary vacuum evaporator (Labconco) at 4°C for
at least 40 min. In order to avoid condensation of water on the
glass surface of the vials, the refrigerated rotary vacuum
evaporator was heated up to room temperature for 25 min
prior to taking out the vials. In addition, plasma metabolite
pools (quality controls) were produced during the metabolite
extraction procedure by mixing an equal amount of each sample.
The GC glass vials were stored at −80°C until GC-
MS measurements.

Metabolite Derivatization and GC-MS Analysis
Derivatization of the samples was performed by an autosampler
(Axel Semrau) directly before GC-MS measurement. The dried
samples were dissolved in 15 ml methoxyamine hydrochloride
(Sigma-Aldrich) in pyridine (20 mg/ml) at 40°C for 60 min
under shaking, followed by addition of 15 ml N-Methyl-N-
(trimethylsilyl)trifluoroacetamide (Macherey-Nagel) and
subsequent incubation for 30 min at 40°C.

GC-MS measurements were performed on a 7890B GC
coupled to a 5977B MSD (both Agilent Technologies). The gas
chromatograph was equipped with a 30 m DB-35ms capillary
column (I.D. 250 µm, film 0.25 µm) + 5 m DuraGuard capillary
in front of the analytical column (Agilent J&W GC Column). A
sample volume of 1 µl was injected into a split/splitless inlet,
operating in splitless mode at 270°C. Helium was used as carrier
Frontiers in Oncology | www.frontiersin.org 4
gas with a constant flow rate of 1 ml/min. The GC oven
temperature was held at 80°C for 6 min, ramped with 6°C/min
to 300°C and was held for 10 min. Then, the temperature was
increased to 325°C at 10°C/min and held for additional 4 min.
The total run time was 59.167 min. The transfer line temperature
was set to 280°C. The MSD was operating under electron
ionization at 70 eV. The MS source was held at 230°C and the
quadrupole at 150°C. Full scan mass spectra were acquired from
m/z 70 to m/z 800. Pool samples have been measured after 8 GC-
MS measurements for quality control and data correction.

Data Processing, Statistical Analysis, and
Machine Learning
Al l GC-MS chromatograms were processed us ing
MetaboliteDetector, v3.320200313 (27). The software package
supports automatic deconvolution of all mass spectra.
Compounds were annotated by retention time and mass
spectrum using an in-house mass spectral library. Data
normalization was performed by dividing each metabolite
intensity by the median intensity of the three chronologically
nearest pool samples of the corresponding metabolite. After pool
normalization, a total of 262 metabolites have been selected for
further analysis after filtering of GC-MS measurement artefacts,
such as siloxanes.

Normalized data were subject to statistical analysis using
Python (version 3.7.6). To diminish potential deteriorating
effects of outliers, mal-assigned signals, and artefacts on
statistical analysis, we excluded all metabolites featuring a
relative standard deviation (RSD) of ≥20%. We performed a
two-tailed Welch’s t-test (scipy version 1.4.1) as well as
correction for multiple testing by Benjamini & Hochberg p-
value adjustment (statsmodels version 0.11.0), the designed level
of significance being p<.05. Metabolite ratios were determined
per patient and replicate, means for both replicate-ratios were
generated for each patient, and subsequently the two cohorts
were compared.

For machine learning approaches we used the Waikato
Environment for Knowledge Analysis (Weka) (https://www.cs.
waikato.ac.nz/ml/weka/). Weka is a workbench for machine
learning that is intended to aid in the application of machine
learning techniques to a variety of data mining problems in
bioinformatics research (28). Different machine learning
algorithms including random forest, J48 simple logistic, and
SMO (Sequential Minimal Optimization) – a training
algorithm of support vector machines – were evaluated. Each
classification method was used with Weka’s default settings. We
mainly performed Simple Logistic Regression analyses, which are
frequently applied for cancer classification issues. Simple Logistic
in Weka fits a multinomial logistic regression model using the
LogitBoost algorithm (29). The number of LogitBoost iterations
was manually selected based on an optimization of cross
validation results. To build a classifier via stratified cross
validation (training), we used 1) raw data, 2) averaged data
(mean from both replicates per metabolite and patient), 3)
averaged data of metabolites with RSD <20%, 4) metabolite
ratios (see above), and 5) metabolite ratios plus metabolites
April 2021 | Volume 11 | Article 627217
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with RSD <20% for different sub-analyses. The resulting
classifiers were subsequently applied to a) the whole dataset,
and b) the separate age-subgroups (re-evaluation on test set).
RESULTS

Differentially Expressed Metabolites
Between gBRCA1+ Carriers and Controls
We profiled the plasma metabolome of 72 gBRCA1+ and 72
healthy controls in technical duplicates. The analysis yielded 262
metabolites with unique retention time and mass spectrum
detectable across all subjects (Supplementary Material 1).
After excluding all metabolites featuring an RSD of ≥20%, 78
out of 262 identifiable metabolites remained within the analysis
(Supplementary Material 2). From these, we identified three
metabolites with significantly differing concentrations between
gBRCA1+ and control subjects. After applying multiple testing
correction via Benjamini-Hochberg adjustment, pyruvic acid
was left as the sole significantly different metabolite, elevated in
gBRCA1+ (Figure 2A).

Differentially Expressed Metabolite Ratios
Between gBRCA1+ Carriers and Controls
Alterations of pairwise metabolite ratios are often more
informative about specific metabolic pathways and disease
mechanisms. Including all 78 metabolites with an RSD <20%,
the resulting matrix consisted of 3.003 possible pairwise
ratios. Of these, 208 metabolite ratios significantly differed
between gBRCA1+ and control subjects. After Benjamini-
Hochberg adjustment, two metabolite ratios remained
significant, specifically RI1984:pyruvic acid and lactic acid:
pyruvic acid, both reduced in gBRCA1+ carriers (Figure 2B).
Although we have not been able to elucidate the structure of
RI1984, its mass spectrum suggests a sugar acid. Based on a
Frontiers in Oncology | www.frontiersin.org 5
reference measurement, we excluded gluconic acid as
candidate metabolite.

Machine-Learning Signature
Additionally, we applied a machine learning approach in order to
disclose complex interrelations between metabolites and
metabolite ratios for genotype prediction. A 10-fold cross
validation strategy was applied. Best results were obtained for
the classifier based on pairwise metabolite ratios. After training
of the Simple Logistic Model with this data set, we obtained
63.9% correct classification of samples per genotype. Using this
classifier to evaluate the entire dataset, 81.9% of subjects
(specificity: 0.79, sensitivity: 0.85) were assigned the correct
genotype (Figure 3). Evaluation of the three age-subgroups
separately yielded 80.0%, 84.2%, and 81.8% correct
classification of G1, G2, and G3, respectively.

The classifier resulting from training on ratios plus averaged
data of metabolites with RSD <20% exclusively contained
metabolite ratios, indicating that metabolite ratios are more
informative and perform better than single metabolite data. All
classifiers generated contained the elements pyruvic acid, lactic
acid, and RI1984, except for the classifier based on averaged data,
which did not include lactic acid. In all sub-analyses, the
classifiers consistently performed best on the middle age group
G2, which included subjects aged 35–50 years at time of plasma
sampling. Given the 10-fold cross validation strategy, we tried to
avoid over-fitting. For an overview of all classifiers produced by
sub-analyses, see Supplementary Material 3. For complete raw
data, see Supplementary Material 4.
DISCUSSION

Inquiring an organism’s plasma metabolome represents a unique
challenge distinct from investigating primary tissue of interest.
A B

FIGURE 2 | Results of statistical analyses after multiple testing correction. Box plots of (A) pyruvic acid as single plasma metabolite, and (B) two metabolite ratios
significantly differing between gBRCA1+ individuals and controls.
April 2021 | Volume 11 | Article 627217

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Penkert et al. Plasma Metabolome Indicating BRCA1 Status
As such, the plasma metabolome can be seen as a dynamic
equilibrium between total tissue consumption of specific
metabolites, total flux from tissue into bloodstream (including
endogenous production rates of metabolites), intestinal
absorption of metabolites, and excretion via elimination
mechanisms such as bile acid secretion or kidney filtration.

In comparison with age-matched controls, we detected two
metabolite ratios significantly reduced in plasma of gBRCA1+
carriers after multiple testing correction, i.e., lactic acid:pyruvic
acid and RI1984:pyruvic acid. Of the involved metabolites,
pyruvate showed the most significant deviation as a single
metabolite. Although the differences were not highly
statistically significant, we believe that even discreet metabolic
plasma effects justify appropriate notice in a study cohort fully
consisting of healthy individuals lacking a personal history of
cancer. As effect sizes were not particularly strong, we
additionally applied a machine learning approach as a second
method, which resulted in the correct discrimination between
gBRCA1+ and controls in ~82% via a metabolite ratios signature
that included both ratios previously identified as significantly
different. Since no breast cancer was observed in gBRCA1+
subjects within a minimum follow-up period of 19 months, it
seems unlikely that metabolic effects depicted in this cohort are
attributable to preclinical undiagnosed breast cancer incidence in
gBRCA1+ women. Because clinical follow-up data were not
Frontiers in Oncology | www.frontiersin.org 6
available for control subjects, breast cancer incidence during
follow-up of gBRCA1+ cases cannot be ruled out for the control
cohort. However, as we had excluded all subjects whose family
pedigree suggested another cancer predisposition or who had
previously been diseased, our control cohort was extremely
carefully composed and potentially co-occurring malignancies
should constitute rare events. The results of this study therefore
point to innate systemic metabolic differences in gBRCA1+
individuals independent of and preceding cancer incidence,
raising the disputable question as to whether or not metabolic
alterations may pave the way for cancer evolution in
gBRCA1+ individuals.

The observed metabolic changes can be interpreted within the
scope of a network of alterations already known to correlate with
BRCA1-low conditions (Figure 4): NFkB signaling is induced in
precancerous breast tissue of gBRCA1+ carriers via paracrine
signaling mechanisms involving P4-RANKL (30–32) (Figure 4,
key factor 1), leading to pro-inflammatory stromal conditions
that augment hypoxia-inducible factor 1 alpha (HIF1A)
transcription (33)—one of two subunits constituting the
transcription factor HIF1. Upregulation of HIF1A in BRCA1-
deficient fibroblasts has previously been shown to drive breast
cancer growth (18). In addition to upregulated transcription,
HIF1A is stabilized in BRCA1-low conditions via impairment of
two of four subunits of the mitochondrial SDH complex and
subsequent accumulation of the oncometabolite succinate (11,
18), and via suppressed sirtuin 1 (SIRT1) levels (34) mimicking a
pseudohypoxic state that results in loss of mitochondrial
homeostasis (35). HIF1 (Figure 4, key factor 2) acts as a
master transcriptional regulator of metabolism mediating
i) massively increased glycolytic flux via transcriptional
activation of glycolytic enzymes and glucose transporter 1
(GLUT1), ii) a reduction in mitochondrial-encoded gene
expression, resulting in reduced mitochondrial function and
impaired OXPHOS (35), iii) activation of pro-inflammatory
genes and growth factors such as TNFa, interleukin 6 (IL-6),
and VEGF (36), and iv) strong activation of pyruvate
dehydrogenase kinase 1 (PDK1) (37), which regulates pyruvate
dehydrogenase complex (PDC), resulting in reduced conversion
of pyruvate to acetyl-CoA and, thus, pyruvate accumulation. The
lack of glycolytic acetyl-CoA as the major substrate for the TCA
cycle results in its decrement and further suppression of
mitochondrial respiration. In summary, HIF1 regulates
multiple genes contributing to the “Warburg effect”—a
metabolic switch towards glycolytic over oxidative metabolism
under normoxic conditions, i.e., “aerobic glycolysis” [reviewed
in (38)].

Moreover, NAD+ levels are known to be elevated in BRCA1-
low conditions, partly due to upregulated nicotinamide
phosphoribosyltransferase (NAMPT)-mediated NAD+

synthesis (Figure 4, key factor 3), and increased NAD+ levels
as well as elevated NAD+/NADH ratios have been shown to
activate BRCA1 transcription in turn (39, 40). The equilibrium
between pyruvate and lactate is governed by cellular NAD+/
NADH ratios, as are multiple other reversible enzymatic
reactions, and it has been suggested that redox buffering of
FIGURE 3 | Receiver operating characteristic (ROC) curve of metabolite
ratios classifier for the prediction of BRCA1 genotype, obtained by machine
learning. Area under ROC is a performance metric used to evaluate
classification models that classify subjects into one of two categories. The
ROC curve is created by plotting the true positive rate (i.e., sensitivity) against
the false positive rate (i.e., 1-specificity). Smaller values on the x-axis of the
plot indicate lower false positives and higher true negatives. Larger values on
the y-axis of the plot indicate higher true positives and lower false negatives.
Area under ROC equals 0.5 when the ROC curve corresponds to random
chance and the model allows no classification. An area under ROC of 1.0
means perfect accuracy (i.e., sensitivity and specificity being 100%).
Generally, an area under ROC greater than 0.8 indicates very good
classification performance. All metabolite ratios included in the machine
learning classifier are listed in the light gray box below the curve. This
classifier correctly classifies ~82% of the cohort per genotype (specificity:
0.79, sensitivity: 0.85).
April 2021 | Volume 11 | Article 627217
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intracellular NAD+/NADH ratios across cells and tissues could
take place via uptake regulation of lactate or pyruvate through
nearly universally expressed MCT transporters from systemic
circulation (41). Thus, in such a setting of excessive NAD+ over
Frontiers in Oncology | www.frontiersin.org 7
NADH, cellular net uptake of lactate and simultaneous excretion of
pyruvate would help alleviate intracellular redox imbalance.
Notably, this scenario would require high lactate dehydrogenase
(LDH) activity, the expression of which was indeed shown to be
FIGURE 4 | Suggested network of contributing factors in gBRCA1+ oncogenesis. Circled numbers/shaded areas = key factors. In gBRCA1+ precancerous
mammary tissue (key factor 1, red shading), amplification of the progesterone signaling axis due to elevated P4 levels and heightened PR activity in BRCA1-low
conditions mediate RANKL secretion in PR+ ductal cells and subsequent paracrine binding to corresponding RANK on RANK+ luminal progenitor cells (LPC). In
these cells, NFkB signaling is strongly activated, leading—in parallel—to i) chronic pro-inflammatory, ROS-enriched microenvironmental conditions, which contribute
to OXPHOS impairment and mitochondrial dysfunction, eventually resulting in declined tissue integrity supportive of cancer evolution, and ii) a strong pro-proliferative
signal specifically in RANK+ LPCs, increasing the chances of eruption of malignant phenotypes that are properly adjusted to challenging environmental conditions
(the process of adaptive oncogenesis). Hypoxic as well as pseudohypoxic triggers mediate the stabilization and activation of HIF1A (key factor 2, yellow shading),
amplified through direct and indirect interactions via BRCA1 as well as BRCA1-mediated alterations in SIRT1 and SDH activities. Downstream effects of HIF1A
activation cause i) a massive increase in glycolytic flux via transcriptional activation of glycolytic enzymes and GLUT1, ii) further reinforcement of mitochondrial
dysfunction and impaired OXPHOS, e.g. via TFAM iii) induction of pro-inflammatory genes and growth factors, and iv) strong activation of PDK1 resulting in impaired
conversion of pyruvate to acetyl-CoA and, thus, diminished fuel for TCA cycling and energy generation from three-carbon compounds. The equilibrium between
pyruvate and lactate via LDH, i.e., the direction of net LDH flux, is governed by cellular NAD+/NADH ratios (key factor 3, green shading); as NAD+ levels are elevated
in BRCA1-low conditions due to upregulated NAMPT-mediated synthesis, lactate may be more readily converted into pyruvate than vice versa. Lactate influx and
pyruvate efflux through MCTs would therefore mediate redox buffering of intracellular NAD+/NADH ratios while affecting net pyruvate and lactate levels in systemic
circulation. NADH generated from glycolysis and from conversion of lactate into pyruvate may immediately be transported into mitochondria via malate-aspartate or
glycerol phosphate shuttles to feed the otherwise neglected ETC for energy generation. 3PG, 3-phosphoglycerate; Ac-CoA, acetyl coenzyme A; aKG, alpha-
ketoglutarate; ETC, electron transport chain; F1,6BP, fructose 1,6-bisphosphate; F6P, fructose 6-phosphate; fum, fumarate; G6P, glucose 6-phosphate; glc,
glucose; GLUT1, glucose transporter 1; HIF1A, hypoxia-inducible factor 1 alpha; HK2, hexokinase 2; IL-6, interleukin 6; lac, lactate; LDH, lactate dehydrogenase;
MCT, monocarboxylate transporter; NAD+, nicotinamide adenine dinucleotide (oxidized form); NADH, nicotinamide adenine dinucleotide (reduced form); NAM,
nicotinamid; NFkB, nuclear factor “kappa-light-chain-enhancer” of activated B-cells; NMN, nicotinamide mononucleotide; OAA, oxaloacetate; OXPHOS, oxidative
phosphorylation; P4, progesterone; PDC, pyruvate dehydrogenase complex; PDK1, pyruvate dehydrogenase kinase 1; PEP, phosphoenolpyruvate; PFK2,
phosphofructokinase 2; PKM2, pyruvate kinase isozyme M2; PR+, progesterone receptor positive; pyr, pyruvate; RANK+, Receptor Activator of NFkB positive;
RANKL, Receptor Activator of NFkB ligand; ROS, reactive oxygen species; SDH, succinate dehydrogenase; SIRT1, sirtuin 1; succ, succinate; TCA, tricarboxylic acid
cycle; TFAM, mitochondrial transcription factor A; TNFa, tumor necrosis factor alpha; VEGF, vascular endothelial growth factor.
April 2021 | Volume 11 | Article 627217

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Penkert et al. Plasma Metabolome Indicating BRCA1 Status
upregulated in a BRCA1-mutated cell line (11). The generated
NADH, in turn—both scarce and valuable due to low NADH
output through TCA cycling—would likely be instantly shuttled
into mitochondria via malate-aspartate or glycerol-3-phosphate
shuttles in an attempt to produce energy via OXPHOS, further
perpetuating increased cellular NAD+/NADH ratios. The
significantly elevated pyruvate levels and reduced lactate:pyruvate
ratios in plasma of gBRCA1+ individuals observed in our study
may reflect on these alterations in co-factor balance and
equilibrium adjustment.

In line with previously published data on BRCA1-driven
metabolic rewiring, our results support a bioenergetic shift in
gBRCA1+ individuals towards aerobic glycolysis, traceable even
in the plasma metabolome of healthy gBRCA1+ carriers. Within
the context of “adaptive oncogenesis,” in which stromal tissue
degradation sets the stage for cancer cell evolution via selection
for adaptive phenotypes in heterogeneous populations of stem or
progenitor cells (14), an excessively anabolic, pro-inflammatory,
and pro-proliferative environment producing massive amounts
of macromolecules from glycolysis and shuttling them to
surrounding cells could provide the necessary growth
advantage to adjacent (pre)-malignant cells that acquired the
ability to import and thrive on these nutrients [a phenomenon
known as the “reverse Warburg effect,” reviewed in (15)].

The strengths of this study include a well-characterized
cohort of gBRCA1+ and age-matched control subjects,
comprising established family pedigrees as well as individual
clinical information. We have collected standardized and
documented high-quality biosamples, which were frozen
within 2 h of blood draw. We were able to carefully select
control subjects pursuant to their bland familial backgrounds,
which contrasts conventional practice and is a privilege of this
particular study. To avoid confounding factors, none of the study
subjects had previously been diagnosed with malignant disease,
nor were any diagnosed during the follow-up period.

Limitations include the following:

• Only two technical replicates per sample and no biological
replicates were analyzed.

• Due to relatively small study size, the method is susceptible to
errors, overfitting can occur, and study power is limited.

• Many metabolites lack a clear identity.
• Samples were not collected during identical menstrual cycle

phases, e.g. luteal phase in which P4 levels are physiologically
elevated and effects might be stronger.

• No clinical follow-up data were available for control subjects.
• Results were not validated in an independent validation cohort.

Future validation in an independent cohort and proteomics/
transcriptomics analyses on plasma as well as metabolomics and
other -omics analyses on breast tissue of gBRCA1+ carriers
(preferably single cell analyses) are instrumental in further
addressing currently hypothetic pathogenic mechanisms.
Importantly, if proven correct, these complex disease mechanisms
would yield multiple options for therapeutic targets and
Frontiers in Oncology | www.frontiersin.org 8
preventative measures in gBRCA1+ carriers. Moreover, the
classifier prediction model of BRCA1+ status, if validated and
enhanced, could have great implications for diagnostic genotype
prediction independent of genetic testing or complementation of
genetic testing in case of non-conclusive results, for personalized
risk assessment, and for individual clinical measures.
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