
BERT-Kgly: A Bidirectional Encoder
Representations From Transformers
(BERT)-Based Model for Predicting
Lysine Glycation Site for Homo
sapiens
Yinbo Liu†, Yufeng Liu†, Gang-Ao Wang, Yinchu Cheng, Shoudong Bi* and Xiaolei Zhu*

School of Sciences, Anhui Agricultural University, Hefei, China

As one of the most important posttranslational modifications (PTMs), protein lysine glycation
changes the characteristics of the proteins and leads to the dysfunction of the proteins,
which may cause diseases. Accurately detecting the glycation sites is of great benefit for
understanding the biological function and potential mechanism of glycation in the treatment
of diseases. However, experimental methods are expensive and time-consuming for lysine
glycation site identification. Instead, computational methods, with their higher efficiency and
lower cost, could be an important supplement to the experimental methods. In this study, we
proposed a novel predictor, BERT-Kgly, for protein lysine glycation site prediction, which
was developed by extracting embedding features of protein segments from pretrained
Bidirectional Encoder Representations from Transformers (BERT) models. Three pretrained
BERT models were explored to get the embeddings with optimal representability, and three
downstream deep networks were employed to build our models. Our results showed that
the model based on embeddings extracted from the BERT model pretrained on 556,603
protein sequences of UniProt outperforms othermodels. In addition, an independent test set
was used to evaluate and compare our model with other existing methods, which indicated
that our model was superior to other existing models.

Keywords: protein lysine glycation, BERT, biological sequence, natural language processing, posttranslational
modification (PTM), embedding

1 INTRODUCTION

As one of the most important posttranslational modifications (PTMs) of proteins, glycation is a two-
step non-enzymatic reaction that is different from glycosylation, which is an enzyme-dependent
reaction (Stitt 2001). Advanced glycation end products (AGEs) generated in the reaction are involved
in different human diseases (Vlassara et al., 1994; Ling et al., 1998; Ahmed et al., 2005), such as
diabetes, Alzheimer’s disease, and Parkinson’s disease. The identification of glycation sites in
proteins would be of great benefit for the understanding of the biological function of protein
glycation and treatment of the related diseases. In addition to human metabolism, protein glycation
is also an unavoidable part of plant metabolism and proteotoxicity (Rabbani et al., 2020).

Different methods have been developed for detecting lysine glycation (Kgly) sites. Wet experiment
methods such as mass spectrometry (Thornalley et al., 2003) and electrochemical chip (Khan and Park
2020) have been used to identify lysine glycation sites. However, wet experiment methods are both cost-
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and time-consuming. Alternatively, several in silico methods
(Johansen et al., 2006; Liu et al., 2015; Ju et al., 2017; Xu H.
et al., 2017; Zhao et al., 2017; Islam et al., 2018; Chen K. et al.,
2019; Yu et al., 2019; Khanum et al., 2020; Yang et al., 2021; Yao et al.,
2021) have been developed to predict the Kgly sites efficiently. In a
pioneer work, Johansen et al. proposed a predictor, GlyNN, built by
neural networks based on a dataset with 89 Kgly sites and 126 non-
Kgly sites of 20 proteins (Johansen et al., 2006). Later, Liu et al.
developed a model, PreGly, by using support vector machine (SVM)
for detecting Kgly sites (Liu et al., 2015). They used the same dataset
as Johansen et al.’s study and generated three kinds of sequence
features that were selected by using the maximum relevance
minimum redundancy (mRMR) and the incremental feature
selection (IFS) methods. Based on the larger training dataset, Xu
et al. built a Kgly site prediction model, Gly-PseAAC, based on
sequence order information and position-specific amino acid
propensity (Xu Y. et al., 2017). By using the same dataset as Xu
et al.’s study, Ju et al. constructed a model, BPB_GlySite, to predict
glycation sites by using a single feature of bi-profile Bayes (BPB) (Ju
et al., 2017). By using Xu et al.’s dataset as a training dataset, Zhao
et al. built amodel, Glypre, based on fusedmultiple features via using
a two-step feature selection method (Zhao et al., 2017). In addition,
they used another two datasets to test the generalization of their
model. Benchmarked on Xu et al.’s dataset and other two datasets,
Islam et al. proposed a method, iProtGly-SS, to predict Kgly by
searching the optimal feature subset from sequential features,
physicochemical properties, and structural features using an
incremental group-based feature selection algorithm (Islam et al.,
2018). Based on predicted structural properties of residues, Reddy
et al. developed a model, GlyStruct, based on the SVM (Reddy et al.,
2019). Leveraging Xu et al.’s dataset as training dataset, Yao et al.
developed a model, ABC-Gly, by selecting the optimal feature subset
with a two-step feature selection method by combining the Fisher
score and an improved binary artificial bee colony algorithm (Yao
et al., 2021). All the previous methods were built on the dataset with
less than 500 Kgly sites; however, four other methods, PredGly (Yu
et al., 2019), Gly-LysPred (Khanum et al., 2020), MUscADEL (Chen
Z et al., 2019), andMultiLyGAN (Yang et al., 2021), which were built
on datasets with more than 1,000 Kgly sites. For building PredGly,
Yu et al. (2019) collected Kgly sites from PLMD (Xu H. et al., 2017)
and usedCD-HIT (Huang et al., 2010) to remove the redundancy for
protein sequences and peptide segments, with a cutoff of 30%. The
dataset contains 3,969 non-redundant Kgly sites and 82,270 non-
Kgly sites. Based on the dataset, they built their model by selecting an
optimal feature subset via XGBoost (Chen and Guestrin 2016). By
collecting Kgly sites from UniProt (https://www.uniprot.org/),
Khanum et al. obtained their dataset with 1,287 Kgly sites and
1,300 non-Kgly sites by using CD-HIT to remove the redundancy,
with a cutoff of 60%, and then built their model by using random
forest (Khanum et al., 2020). BothMUscADEL (Chen K et al., 2019)
and MultiLyGAN (Yang et al., 2021) were developed to predict
multiple lysine modification sites. For MUscADEL, Chen et al.
collected Kgly sites for both Homo sapiens and Mus musculus
from the PhosphoSitePlus database (Hornbeck et al., 2015), and
then removed the redundancy of protein sequences by using CD-
HIT (Huang et al., 2010), with a cutoff of 30%. Based on the dataset
with 3,209 Kgly sites, they built their model by using a deep learning

algorithm. In MultiLyGAN (Yang et al., 2021), Yang et al. collected
lysine modification sites from the CPLM2.0 database (Liu et al.,
2014), and after removing redundancy by using CD-HIT at the
segment level with a cutoff of 40%, they obtained 1,454 Kgly sites.
Their model is a multiple-label model built with data augmentation
by conditional Wasserstein generative adversarial networks. The
details of all these tools are summarized in Supplementary Table S1.

Although considerable progress has been made for
differentiating Kgly sites and non-Kgly sites, the performance of
these methods is still not satisfactory. One possible reason is the
limitation of the representability of the features used before. The
powerful representability of the Bidirectional Encoder
Representations from Transformers (BERT) (Devlin et al., 2019)
model has been demonstrated in the current field of natural language
processing (NLP). By considering the biological sequences as
sentences, their representability has been explored in a variety of
works. Rives et al. pretrained protein language BERT models based
on 250million protein sequences (Rives et al., 2021) and explored
the representations of these models, and their results demonstrated
that the information of protein structure and function was encoded
in representations of these models. Rao et al. pretrained protein
language BERT models based on 31million protein sequences (Rao
et al., 2019). Zhang et al. pretrained protein language BERT models
based on 556,603 protein sequences (Zhang et al., 2021). The
embeddings extracted by the BERT pretrained models have been
used as features for classification in bioinformatics. With the
embeddings, Le et al. have developed a model to predict
enhancers (Le et al., 2021), Qiao et al. have developed a model to
predict Kcr sites (Qiao et al., 2021). Thus, the embeddings of
pretrained BERT models may be helpful for building a more
effective model for Kgly sites prediction.

In this study, we proposed a computational approach called
BERT-Kgly to improve the predictive performance of lysine
glycation sites. Considering peptide segments as sentences, the
embeddings were extracted from three different pretrained BERT
models which were fed to the downstream classifiers for Kgly site
prediction. In addition, several traditional features were also
extracted, and their performance was compared with the
embeddings of BERT. Furthermore, the built model with
embeddings of BERT was compared with the existing methods
using an independent test set. Empirical studies showed that our
model, BERT-Kgly, outperforms other methods, with an area
under the receiver operating characteristic curve (AUROC) of
0.69. The workflow of BERT-Kgly is shown in Figure 1.

2 METHODS AND MATERIALS

2.1 Data Sets
In this study, we used the same dataset as that collected by Yu
et al. (Yu et al., 2019), for their dataset is the largest for Homo
sapiens, as shown in Supplementary Table S1. The dataset was
collected from the PLMD database (http://plmd. biocuckoo. org/)
(Xu Y. et al., 2017). The redundancy of the dataset was removed
by a two-step process on the protein level and segment level with
CD-HIT (Huang et al., 2010) by using a cutoff of 30%,
respectively. Overall, the dataset contains 3,969 positive and
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82,270 negative samples, and about 90% of positive samples
3,573) and an equal number of negative samples were selected
randomly for training. For the independent test set, Yu et al.
selected 200 positive and 200 negative samples from the
remaining datasets. In Yu et al.’s dataset, each sample contains
31 residues with the lysine in the middle. The protein segments
with different lengths can be used to build our model. In previous
works, (Yu et al., 2019 and Zhao et al., 2017). have demonstrated
that the segments with 15 downstream and upstream residues
showed the best performance. All data and codes are available at
https://github.com/yinboliu-git/Gly-ML-BERT-DL.

2.2 Feature Extraction
2.2.1 Embeddings of BERT Pretrained Models
We used three different BERT pretrained models to encode
the peptide segments in our datasets, which are the initial
natural language BERT-Base model released by Google
Research (Devlin et al., 2019), Zhang et al.’s BERT model
(Zhang et al., 2021) which was pretrained on 556,603 protein
sequences from UniProt (named as BERT-prot), and the

TAPE model (Rao et al., 2019) which is based on
31 million protein domains from Pfam. These models
encode a 768-dimensional vector corresponding to each
residue of the peptide segments.

The Bidirectional Encoder Representations from
Transformers (BERT) model was developed by Devlin et al.
(Devlin et al., 2019), which has achieved new state-of-the-art
results on 11 natural language processing (NLP) tasks. The
architecture of BERT is a multilayered bidirectional
Transformer encoder, which jointly conditions on both left
and right context using the attention mechanism in all
encoder layers and processes all words in the sentence in
parallel. The network structures of all the encoder layers are
the same, which mainly consisted of two sublayers: the multi-
head self-attention layer and the feed-forward neural network
layer. In addition, a residual connection is added on each of the
sublayer; thus, the output of each sublayer is LayerNorm (x +
Sublayer(x)). When a sentence is inputted into the BERT model,
each word was encoded by three embeddings: token embeddings,
segment embeddings, and position embeddings. Then, we can

FIGURE 1 | Flowchart for building our model.
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obtain context-dependent features from different encoder layers
of the model.

For comparison, we also calculated six types of traditional
sequence-based features as follows.

2.2.2 Amino Acid Composition
As a classic sequence coding feature, amino acid composition
(AAC) has been used extensively for PTM sites prediction (Xu
et al., 2016; Yu et al., 2019; Zhang et al., 2019; Basith et al., 2021).
It counts the occurrence frequency of each of the 20 natural
amino acids and one complementary amino acid “O” in the
peptide segments.

2.2.3 K-Spaced Amino Acid Pair Composition
K-spaced amino acid pair composition or composition of
k-spaced amino acid pairs (CKSAAP) is another sequence
encoding scheme that has been employed to predict various
PTMs (Chen et al., 2008; Fu et al., 2019; Wu et al., 2019; Lv
et al., 2020; Chen et al., 2021). This method mainly calculates the
frequency of different pairs of amino acids separated by k-length
peptides. If we used A1X{k}A2 to represent k-spaced amino acid
pairs, both A1 and A2 can be the 21 types of amino acids, so there
are 441 types of k-spaced amino acid pairs. Each of them can be
calculated as follows:

f (A1X{k}A2) � N(A1X{k}A2)/(L − k + 1),
where L represents the length of the segment and

N(A1X{k}A2) is the occurrence frequency of A1X{k}A2.

2.2.4 Position Weight Amino Acid Composition
Position weight amino acid composition (PWAA), which is first
proposed by Shi et al. (Shi et al., 2012), is used to extract the
sequence order information of amino acid residues around target
residues. For each of the 20 types of residues, the feature can be
calculated by using the following equation:

PWAA(i) � 1
L(L + 1) ∑

L

j�−L
xi,j(j +

∣∣∣∣j∣∣∣∣
L
),

where i denotes one of the 20 types of residues, L represents the
number of upstream or downstream residues, and xi,j describes if
the type of the residue on position j of the peptide segment is the
same as i, if true then its value is 1, otherwise 0.

2.2.5 Dipeptide Bi-Profile Bayes (DBPB)
The bi-profile Bayes feature proposed by Shao et al. (Shao et al.,
2009) is used to represent the occurrence probability of each type
of residues on each position of the positive peptide segments and
negative peptide segments, respectively. Thus, the dipeptide bi-
profile Bayes (DBPB) feature is used to represent the occurrence
probability of each type of dipeptides on each position of the
positive peptide segments and negative peptide segments,
respectively. These probabilities were first calculated based on
the data used for training which were then assigned to the peptide
used for testing. Note that the data used for validation could not
be used for calculating the probabilities in the cross-
validation stage.

2.2.6 Encoding Based on Grouped Weight (EBGW)
For calculating this kind of feature, the 20 types of residues were
first classified into four different groups according to the charge
and hydrophobicity properties. Then, the four groups were
further divided into three categories. For each category, the 20
types of residues were divided into two classes, so that a binary
representation can be obtained for a residue according to which
class it belongs to. Thus, a peptide segment with length L can be
represented as a binary vector with the same length. Totally, we
obtained three binary vectors for each peptide segment. Each
vector was then divided into J sub-vectors increasing in length,
the feature for each sub-vector were calculated as follows: X(j) =
sum (sub-vector(j))/length (sub-vector(j)). In all, we obtained 3 J-
dimension feature vectors for each peptide segment. J was set as 5
according to previous studies (Shi et al., 2012; Yu et al., 2019).

2.2.7 K-Nearest Neighbor (KNN) Feature
The k-nearest neighbor feature counts the positive samples
percentage of the k nearest samples in the training dataset to
the query sample. For peptide segment samples, the distance
between two different samples is represented by sequence
similarity which is calculated as follows:

Dist(S1, S2) � 1 − ∑L
i�1Sim(S1(i), S2(i))

L
,

where L is the length of the peptide segments and S1(i) and S2(i)
represent the ith residues of the two segments S1 and S2,
respectively. The similarity between S1(i) and S2(i) is
computed as follows:

Sim(m, n) � B(m, n) −min(B)
max(B) −min(B),

where B represents the BLOSUM62 substitution matrix
(Henikoff and Henikoff 1992) and max(B) and min(B)
represent the largest and smallest values of the matrix,
respectively. Given k = 2,4,8,16,32, we generated 5D feature
vectors for a given peptide segment.

2.3 Machine Learning and Deep Learning
Algorithms
2.3.1 SVM
A support vector machine (SVM) is one of the most popular
learning algorithms which has been used extensively in
bioinformatics (Chen Z. et al., 2019; Zhu et al., 2019; Chen
et al., 2020). SVM was first proposed by Vapnik (1995), the
main idea of which is to determine a hyperplane to maximize the
margin between different classes. In this study, the sklearn
package for Python 3 (https://www.python.org) was used to
build the SVM classifiers.

2.3.2 Random Forest
Random forest (RF) (Breiman 2001) is an ensemble learning
algorithm by using a decision tree as a base learner. Based on
different training sets which were sampled from the original
training dataset and different feature subsets which were
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randomly selected from the original feature set, multiple decision
trees were built. The class of a test sample is determined based on
the voting result of all the base decision trees. In this work, the
sklearn package for Python 3 (https://www.python.org) was used
to build the RF classifier.

2.3.3 XGBoost
XGBoost (Chen and Guestrin 2016) is an also ensemble learning
algorithm using a decision tree as a base learner. Based on the
gradient boosting decision tree (GBDT) (Friedman 2001), the
regularization term was added which effectively prevents the
problem of overfitting. The algorithm not only inherits the
good performance of the original boosting algorithm but also
shows the advantage to process sparse data and high dimensional
data. In this study, the xgboost package for Python 3 is used to
build the XGBoost classifier.

2.3.4 KNN
The K-nearest neighbor classification rule was first proposed by
Cover et al. (Cover and Hart 1967), in which the new sample was
classified based on its nearest set of previously classified samples.
The algorithm does not depend on any special distribution of the
samples, which has been a ubiquitous classification tool with good
scalability.

2.3.5 CNN
As a famous deep network, the convolutional neural network
(CNN) (Krizhevsky et al., 2012), was originally used in the field of
computer vision which has been used extensively in many other
fields. CNN is composed of a convolutional layer and a pooling
layer. In this study, our network includes an input layer, a 1-
dimensional convolutional layer with 64 filters, a flatten layer, a
dropout layer, a dense layer with 32 nodes, and an output layer.
The Adam algorithm was selected as the optimizer, and the cross-
entropy loss formula was selected as the loss function.

2.3.6 BiLSTM
The long short-term memory (LSTM) network (Hochreiter and
Schmidhuber 1997) is a variant of a recurrent neural network
(Schuster and Paliwal 1997). By combining forward LSTM and
backward LSTM, a bidirectional long short-term memory
(BiLSTM) network (Zhang et al., 2015) was proposed to
model the context information and effectively capture
bidirectional semantic dependencies in natural language
processing (NLP). In this study, the architecture of our
network is composed of an input layer, a BiLSTM layer with
128 hidden units, a flatten layer, a dense layer with 32 nodes, a
dropout layer, and an output layer. The Adam algorithm was
selected as the optimizer, and the cross-entropy loss formula was
selected as the loss function.

2.3.7 CNN + BiLSTM
In addition, we also designed a network that combined CNN
and BiLSTM. Specifically, the network contains an input
layer, a 1D CNN layer with 64 filters, a BiLSM layer wit
128 hidden units, a flatten layer, a dense layer of 32 nodes, a
dropout layer, and an output layer. The Adam algorithm was

selected as the optimizer, and the cross-entropy loss formula
was selected as the loss function.

2.4 Model Evaluation Parameters
Generally, we used the area under the receiver operating
characteristic (ROC) curve as our main metric to evaluate the
models. The ROC curve can evaluate the prediction performance
of the proposed method in the whole decision value range, and
the area under the curve (AUROC) is often used to quantify the
performance of the model. In addition, we also calculated 5 other
metrics which are sensitivity (SEN), specificity (SPE), precision
(PRE), accuracy (ACC), and Matthews correlation coefficient
(MCC). The five metrics are defined as follows:

SEN � TP
TP + FN

,

SPE � TN
TN + FP

,

PRE � TP
TP + FP

,

ACC � TP + TN
TP + FP + TN + FN

, and

MCC � TPpTN − FPpFN���������������������������������������(TP + FP)p(TN + FN)p(TN + FP)p(TN + FN)√ ,

where TP (true positive) means the number of predicted Kgly
sites are actual Kgly sites, FP (false positive) means the number of
predicted Kgly sites are actual non-Kgly sites, TN (true negative)
means the number of predicted non-Kgly sites are actual non-
Kgly sites, and FN (false negative) means the predicted non-Kgly
sites are actual Kgly sites.

3 RESULTS

3.1 Sequence Discrepancy Between
Positive and Negative Samples in the
Benchmark Dataset
Based on the hypothesis that the sequence patterns of positive
samples are different from that of the negative sample, we are
able to develop machine learning methods to discriminate
Kgly sites from non-Kgly sites. The overall pattern discrepancy
could be visualized by Two Sample Logo (Vacic et al., 2006).
The distribution and preference of the flanking residues of the
central lysine were analyzed. Figure 2 shows that amino acids
G, V, M, and A are enriched in positive samples, which are all
uncharged residues. On the contrary, the amino acids K, R, and
E are depleted in negative samples, which are all charged
residues. In addition, most of the depleted amino acids E of
the negative samples are on the left of central lysine sites at
positions −11, −6, −5, −4, −3, and −1. On the other hand,
residues R and K of the negative samples are depleted on the
right of central lysine sites at positions +1, +2, +3, +4, and +5.
Although there is a difference in the distribution and
preference between positive and negative samples, the
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overall enriched or depleted ratio for a specific sequential
position is less than 7.5%. Thus, the context information
may be helpful to build a classification model.

3.2 Model Performance Based on
Embeddings of Different Pretrained BERT
Models
3.2.1 Model Performance Based on the Embedding of
Token “CLS”
From pretrained BERT models, the token “CLS” is often used for
downstream classification tasks, sowe extracted the embeddings of the
token “CLS” of different segments to build our models. Three deep
networks were used to build ourmodels including 1DCNN, BiLSTM,
and 1D CNN + BiLSTM. The grid search has been used to optimize
the hyperparameters such as batch_size, learning rate, and epochs, for
which the ranges are shown in Supplementary Table S2. Thus, we
obtained the optimal models for different networks and different
embeddings (Supplementary Tables S3, S4, S5). Table 1 shows that
the performance of the models based on the embeddings extracted
from BERT-prot is generally better than the embeddings extracted
from BERT-base and TAPE according to values of AUROC. The
ROC curves can be found in the supplemental materials
(Supplementary Figure S1). In addition, the performance of the
models based on the embeddings extracted from BERT-Base is better
than that of TAPE. Note that BERT-Base is a pretrained natural
language model, BERT-prot is a pretrained protein language model
based on about 560,000 sequences, and TAPE is a pretrained protein
language model based on about 31 million sequences.

Furthermore, based on the embeddings of BERT-Base and
BERT-prot, Table 1 also shows that the models with 1D CNN
outperform the models with BiLSTM and 1D CNN + BiLSTM.
But for the embeddings of TAPE, the model with BiLSTM
outperforms the other two networks. Overall, with the 1D
CNN network, the model based on the embeddings of BERT-
prot achieved the best performance.

3.2.2 Model Performance Based on the Embedding of
Token “K”
In this work, the middle residue of all the peptide segments is K
(lysine), so we explored if we could use the embeddings of the

middle Ks to build our models. Table 2 shows that the
performance of the models based on the embeddings extracted
from BERT-Base and BERT-prot is similar according to the
values of AUROC, and the performance of the model based
on the embeddings extracted from TAPE is inferior to that of the
other two.Moreover, based on the embeddings of BERT-Base and
BERT-prot, Table 2 shows that the models with 1D CNN again
outperform the models with BiLSTM and 1D CNN + BiLSTM.
But for the embeddings of TAPE, the model with BiLSTM
outperforms the other two networks. Overall, with the 1D
CNN network, the model based on the embeddings of BERT-
Base achieved the best performance.

3.2.3 Model Performance Based on the Average
Embeddings of the Peptide Segment
The average embedding of the tokens of the whole sentence
can also be used for downstream classification tasks. In this
study, the average embedding of the 31 tokens in a peptide
segment was extracted to build our models. Table 3 shows that
the whole profile of the results is similar to that of the results
shown in Table 2. The model based on the combination of
BERT-prot and 1D CNN network achieved the best
performance.

All in all, three different types of embeddings extracted from
three different pretrained models were fed to three different deep
networks. It turned out that the representability of the
embeddings extracted from BERT-prot is better than that of
BERT-base and TAPE in this study. Moreover, the model based
on 1D CNN shows the best performance.

3.3 Model Performance Based on
Handcrafted Feature With Machine
Learning Algorithms
To demonstrate the effectiveness of the embeddings of pretrained
models, we also calculated six kinds of handcrafted features
(HCFs) which were then used to build models based on four
machine learning algorithms, namely, XGBoost, random forest,
SVM, and KNN. The hyperparameters of these algorithms were
also optimized (Supplementary Table S6,S7). The performance
of these models is shown in Table 4. Overall, the models based on

FIGURE 2 | Overall sequence pattern discrepancy between positive and native samples illustrated by Two Sample Logo.

Frontiers in Bioinformatics | www.frontiersin.org February 2022 | Volume 2 | Article 8341536

Liu et al. Kgly Prediction with BERT

https://www.frontiersin.org/journals/bioinformatics
www.frontiersin.org
https://www.frontiersin.org/journals/bioinformatics#articles


AAC and CKSAAP were superior to the models based on the
other four kinds of features according to the values of AUROCs.
The ROC curves can be found in supplemental materials
(Supplementary Figure S2). For all six kinds of features, the
models based on XGBoost show the best or near-best
performance. The best model was obtained by combining
AAC and XGBoost, for which the AUROC is 0.633.

The best model based on HCFs was compared with the best
model based on embeddings of pretrained BERT. Figure 3
shows the best model based on embeddings of BERT-prot,
which showed higher AUROC than the best model based
on HCFs.

3.4 Comparing With Other Existing Methods
on the Independent Test Set

An independent test set was used to evaluate the generalization
of our model, which is obtained from Yu et al.’s work (Yu et al.,
2019). In addition, the dataset has also been used to test other
four models including GlyNN, Gly-PseAAC, BPB-GlySite, and
PredGly. Although about 11 models have been developed
(Supplementary Table S1) for predicting Kgly sites, only
the four models mentioned previously are available and
work well. In addition, the model PredGly has been built
with features including KNN encoding whose overfitting

TABLE 1 | Cross-validation performance of models based on embeddings of token “CLS” extracted from different pretrained BERT models.

Deep networks Sen Spe Pre MCC ACC AUROC

BERT-Base 1D CNN 0.668 0.440 0.548 0.117 0.554 0.581
BiLSTM 0.602 0.485 0.547 0.096 0.544 0.571
1D CNN + BiLSTM 0.640 0.454 0.544 0.105 0.547 0.572

BERT-prot 1D CNN 0.569 0.616 0.603 0.191 0.592 0.643
BiLSTM 0.604 0.576 0.594 0.188 0.590 0.638
1D CNN + BiLSTM 0.588 0.592 0.604 0.191 0.590 0.639

BERT-TAPE 1D CNN 0.308 0.685 0.505 -0.007 0.497 0.485
BiLSTM 0.469 0.541 0.507 0.012 0.505 0.505
1D CNN + BiLSTM 0.409 0.588 0.498 -0.003 0.498 0.498

Bold values means the highest values of that column in the tables.

TABLE 2 | Cross-validation performance of models based on embeddings of the central “K” extracted from different pretrained BERT models.

Deep networks Sen Spe Pre MCC ACC AUROC

BERT-base 1D CNN 0.698 0.464 0.580 0.185 0.581 0.634
BiLSTM 0.587 0.596 0.600 0.188 0.591 0.626
1D CNN + BiLSTM 0.551 0.616 0.599 0.174 0.584 0.628

BERT-prot 1D CNN 0.610 0.580 0.593 0.191 0.595 0.632
BiLSTM 0.583 0.575 0.586 0.164 0.579 0.618
1D CNN + BiLSTM 0.682 0.483 0.573 0.174 0.582 0.630

BERT-TAPE 1D CNN 0.536 0.478 0.505 0.013 0.507 0.509
BiLSTM 0.510 0.530 0.521 0.040 0.520 0.517
1D CNN + BiLSTM 0.473 0.549 0.512 0.022 0.511 0.514

Bold values means the highest values of that column in the tables.

TABLE 3 | Cross-validation performance of models based on embeddings of the central “average” extracted from different pretrained BERT models.

Deep networks Sen Spe Pre MCC ACC AUROC

BERT-base 1D CNN 0.526 0.605 0.589 0.144 0.566 0.606
BiLSTM 0.699 0.423 0.556 0.144 0.561 0.600
1D CNN + BiLSTM 0.610 0.510 0.568 0.138 0.560 0.597

BERT-prot 1D CNN 0.595 0.595 0.598 0.192 0.595 0.640
BiLSTM 0.613 0.584 0.598 0.199 0.599 0.636
1D CNN + BiLSTM 0.703 0.465 0.583 0.194 0.584 0.639

BERT-TAPE 1D CNN 0.517 0.491 0.501 0.008 0.504 0.503
BiLSTM 0.476 0.514 0.491 -0.008 0.495 0.496
1D CNN + BiLSTM 0.369 0.633 0.540 -0.026 0.501 0.501

Bold values means the highest values of that column in the tables.

Frontiers in Bioinformatics | www.frontiersin.org February 2022 | Volume 2 | Article 8341537

Liu et al. Kgly Prediction with BERT

https://www.frontiersin.org/journals/bioinformatics
www.frontiersin.org
https://www.frontiersin.org/journals/bioinformatics#articles


nature has been demonstrated in Basith et al.’s work (Basith
et al., 2021). Furthermore, the performance could not be
recovered when we retrained the model. Thus, we only
compared our model with GlyNN, Gly-PseAAC, and BPB-
GlySite. As shown in Figure 4, the AUROC, MCC, ACC, and
SPE of our model are 0.69, 0.23, 0.61, and 0.73, respectively,
which are substantially higher than those of GlyNN, Gly-
PseAAc, and BPB-GlySite. Our results indicate that our
model is better than other existing predictors, which implies
that the features extracted from NLP pretrained models could
be useful for predicting protein posttranslational
modification sites.

3.5 Web Implementation
For the easy use of our model, we deployed a web server at http://
bert-kgly.zhulab.org.cn/. The users can carry out the prediction as
follows:

First, the input of the server can be protein sequences in
text or a FASTA file that contains the query protein
sequences. Then, by clicking the “submit” button, a unique
task ID would be assigned to the job. To obtain the results, the
users can provide their email addresses on the webpage.
When the job was done, the results would be sent to the
users by email.

TABLE 4 | Cross-validation performance of models based on handcrafted
features.

HCF Classifier Sen Spe Pre MCC ACC AUROC

AAC KNN 0.587 0.514 0.547 0.102 0.551 0.571
RF 0.664 0.526 0.584 0.192 0.595 0.631
SVM 0.530 0.586 0.562 0.116 0.558 0.590
XGBoost 0.638 0.551 0.587 0.191 0.595 0.633

DBPB KNN 0.529 0.528 0.529 0.057 0.528 0.537
RF 0.551 0.537 0.544 0.088 0.544 0.558
SVM 0.522 0.575 0.551 0.097 0.548 0.570
XGBoost 0.547 0.545 0.546 0.092 0.546 0.567

EBGW KNN 0.537 0.498 0.517 0.035 0.517 0.527
RF 0.707 0.386 0.535 0.099 0.547 0.564
SVM 0.565 0.535 0.549 0.100 0.550 0.569
XGBoost 0.688 0.413 0.540 0.106 0.551 0.568

KNN KNN 0.418 0.617 0.522 0.036 0.518 0.523
RF 0.710 0.368 0.529 0.084 0.539 0.555
SVM 0.566 0.510 0.537 0.077 0.538 0.555
XGBoost 0.685 0.396 0.531 0.085 0.541 0.554

CKSAAP KNN 0.591 0.505 0.544 0.096 0.548 0.566
RF 0.639 0.533 0.578 0.173 0.586 0.626
SVM 0.554 0.625 0.596 0.180 0.590 0.629
XGBoost 0.607 0.568 0.585 0.176 0.588 0.629

PWAA KNN 0.517 0.517 0.517 0.033 0.517 0.527
RF 0.483 0.629 0.565 0.113 0.556 0.584
SVM 0.213 0.803 0.210 0.020 0.508 0.504
XGBoost 0.534 0.603 0.574 0.138 0.569 0.593

Bold values means the highest values of that column in the tables.

FIGURE 3 | Comparison of performance between the best model based on HCFs and the embeddings extracted from pretrained BERT model.
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4 DISCUSSIONS

In this study, the embeddings of three different pretrained BERT
models were extracted to build our models. Our results indicated
that the embeddings obtained from BERT-prot which is based on
556,603 protein sequences are more effective than the
embeddings extracted from the other two BERT models,
although the other two BERT models were pretrained on
larger datasets. Generally speaking, the model parameters and
the size of the dataset for pretraining are positively related to the
representability of the embeddings. Another factor, the domain-
specific data have also been reported to be proportionally related
to the representability. In our study, one possible reason is that
the dataset obtained from UniProt (Swiss-Prot) may be more
specific than the dataset obtained from Pfam because the data
from Swiss-Prot are from manually curated protein sequences.

To inspect the effectiveness of our 1D-CNN network, we
compared the features extracted from BERT-prot and the features
transformed by the 1D-CNN network. We used t-SNE to project the
features into the two-dimensional space (Figure 5). For the features
extracted from BERT-prot for token “CLS,” although there are some
clusters for positive or negative samples, overall, the positive and
negative samples are tangled together (Figure 5A). However, for the
features transformed by 1D CNN, Figure 5B shows that negative
samples (green points) are concentrated at the bottom left, while
positive samples (blue points) are concentrated at the top right. Thus,

we demonstrated that the informative feature representation from
input sequences can be learned by the pretrained BERT model and
the downstream 1D CNN network.

Considering the information of all residues of the protein
segments, we have built the model based on the embeddings of all
residues of the whole segment, and the corresponding cross-
validation AUROC is 0.646, which is similar to the model based
on the embedding of “CLS” (0.643). Additional results showed
that the model based on the embeddings of all residues of the
whole sequences had worse generalization on the independent
test set with an AUROC of 0.624, which is smaller than that of our
model based on the embeddings of “CLS.”

To investigate the complementarity between BERT embeddings
and HCFs, we combined the embeddings of BERT with the AAC
feature, which is the best handcrafted feature in this study. The two
features were concatenated as the input of our deep networks. The
cross-validation results showed that the corresponding AUROC is
0.6427, which is similar to the highest value (0.643) based only on the
embeddings of BERT.

Our model was built and evaluated on balanced datasets;
however, the reality is that the negative samples are more than
positive samples. So, we have constructed an imbalanced
independent test to evaluate our model, which contains 200
positive samples and 1,000 negative samples. We used our
model to do prediction on the imbalanced test set and obtained
an AUROC of 0.64 for the imbalanced test set. The imbalanced

FIGURE 4 | Performance of our model and other existing models based on independent test set.
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dataset was also tested on other models. Based on the predictive
results of Gly-PseAAC and BPB-Glysite, the AUROCs for the two
models were calculated which are 0.53 and 0.51, respectively. The
results indicated that our model was superior to the two models on
the imbalanced test set. Note that the results predicted by the web
server of GlyNN could not be displayed normally.

Many studies (Bao et al., 2019a; Bao et al., 2019b; Bao et al.
2021) have been conducted to predict themodifications of lysines.
Our results indicated that the embeddings extracted from BERT
could be effective features for building the models.

5 SUMMARY

In this study, we developed a newmethod, BERT-Kgly, to predict Kgly
sites of proteins by extracting features from a pretrained protein
language BERT model. Recently, NLP pretrained models have been
transferred to analyze and tackle sequence information of biological
macromolecules. Different pretrained protein language BERTmodels
have been built based on different sizes of protein sequences. We
adopted two protein language BERTmodels and one natural language
BERT model to extract features from peptide segments. Our results
demonstrate the features extracted from BERT-prot are more
informative than the other two BERT models. Three different
downstream deep networks were used to build our models; it
turned out that the model based on 1D CNN was superior to the
models based on other two networks. Our model was compared with
the models built on HCFs and traditional machine learning
algorithms, which indicated that our BERT-Kgly model
outperformed these models. Thus, we demonstrate the
effectiveness of features extracted from the pretrained protein

BERT model and the downstream deep learning networks. In
comparison to the independent test set, we also showed that our
model was superior to other state-of-the-art models.
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