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Abstract: With extended life expectancy, the older population is constantly increasing, and conse-
quently, so too is the prevalence of age-related disorders. Sarcopenia, the pathological age-related loss
of muscle mass and function; and malnutrition, the imbalance in nutrient intake and resultant energy
production, are both commonly occurring conditions in old adults. Altered nutrition plays a crucial
role in the onset of sarcopenia, and both these disorders are associated with detrimental consequences
for patients (e.g., frailty, morbidity, and mortality) and society (e.g., healthcare costs). Importantly,
sarcopenia and malnutrition also share critical molecular alterations, such as mitochondrial dysfunc-
tion, increased oxidative stress, and a chronic state of low grade and sterile inflammation, defined as
inflammageing. Given the connection between malnutrition and sarcopenia, nutritional interventions
capable of affecting mitochondrial health and correcting inflammageing are emerging as possible
strategies to target sarcopenia. Here, we discuss mitochondrial dysfunction, oxidative stress, and
inflammageing as key features leading to sarcopenia. Moreover, we examine the effects of some
branched amino acids, omega-3 PUFA, and selected micronutrients on these pathways, and their
potential role in modulating sarcopenia, warranting further clinical investigation.

Keywords: sarcopenia; malnutrition; mitochondria; inflammageing; senescence; vitamin D; branched-
chain amino acids (BCAAs); n-3 PUFA; zinc; selenium

1. Introduction

The life expectancy of an average person has doubled during the last century; hence,
the elderly population is rapidly increasing. Disability due to age-related diseases and
frailty has become an important socio-economic burden. Amongst chronic conditions
that severely affect the patient’s quality of life, sarcopenia is widely present, but generally
underdiagnosed, and therefore undertreated. Sarcopenia and its consequences are essential
features of “physical frailty”, and contribute to “unhealthy aging”. The term sarcopenia
indicates a condition characterized by reduced muscle mass and muscle strength (“Dynape-
nia”), leading to an impairment in physical performance [1]. Sarcopenia is associated with
poor health outcomes, such as functional decline, falls, fractures, depression, and mortal-
ity [1], which increases health care costs and decreases quality of life in older patients [2–4].
A contributing factor to sarcopenia under-diagnosis is the diversity of diagnostic criteria;
recently, these criteria have evolved (Table 1). The more ancient criteria are essentially
based on the reduction of muscle mass regardless of its effect on muscle strength and
performance [5,6], whereas the more recent criteria are stricter [7–9].
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Table 1. Different criteria for the diagnosis of sarcopenia.

Criteria Muscle Performance Muscle Strenght Lean Body Mass Summary Definition
International Working

Group [7] Gait speed < 1.0 m/s Not included ALM/ht2

≤ 7.23 kg/m2
Sarcopenia: slowness

and low lean mass

EWGSOP-1 [8] Gait speed ≤ 0.8 m/s Grip strength < 30 kg 2 SD < mean
reference value

Sarcopenia: low lean
mass and slowness or

weakness
Severe sarcopenia: all

three criteria

EWSGOP-2 [10]

Gait speed ≤ 0.8 m/s
SPPB ≤8 point score

TUG ≥ 20 s
400 m walk test ≥6 min

Grip strength <27 kg
for men and <16 kg for

women
Chair stand for five

rises > 15 s

ALM/ht2 < 7.0 kg/m2

for men
ALM/ht2 < 5.5 kg/m2

for women

Sarcopenia: weakness
and low lean mass

Severe sarcopenia: all
three criteria

FNIH [9] Gait speed ≤ 0.8 m/s Grip strength < 26 kg ALM/BMI < 0.789

Sarcopenia: weakness
and low lean mass

Severe sarcopenia: all
three criteria

Baumgartner [6] Not included Not included ALM/ht2 ≤ 7.23
kg/m2 Low lean mass

Newman [5] Not included Not included
Residual of actual

ALM-predicted ALM
from equation

Low lean mass

ALM: appendicular lean mass; SD: standard deviation; SPPB: short performance physical battery; TUG: timed up
and go test.

The European Working Group on Sarcopenia (EWSGOP) has proposed an evolution
of their former algorithm (EWGOP1) [8]; hence, it is defined as EWSGOP2 criteria [10]. The
new criteria suggest using the SARC-F questionnaire as a screening tool to identify patients
at risk [11], to measure muscle weakness as the primary characteristic of sarcopenia, and
to confirm the diagnosis by measuring muscle quantity or quality (Table 1 and Figure 1).
EWGSOP2 further recommends the use of grip strength [12] and a chair stand test [13]
to measure muscle strength. The Double-emission X-ray Absorptiometry (DXA) and the
Bioimpedentiometry Analyses (BIA) are advocated for muscle mass and quality measure-
ment in standard clinical care, whereas the use of MRI or CT is recommended only for
research or for special needs in patients at high risk of adverse clinical outcomes. In order
to assess the presence of severe sarcopenia, the EWSGOP-2 advises to measure physical
performance by using the Short Performance Physical Battery (SPPB) [14], the Timed “Up
and Go” test (TUG) [15], and the 400-m walk tests [16] (Table 1).

A recent study compared EWSGOP-2 and EWSGOP-1 criteria in in two cohorts of
Swedish older adults, showing small differences in the prevalence of sarcopenia measured
either way (0.9–1.0 percentage points lower with EWSGOP-2). However, in the very
old subjects (>85-years), significant differences between EWGSOP-1 and 2 could not be
ruled out [17]. The prevalence of the disease ranges from 6.42% to 21.56% depending on
the diagnostic criteria applied and the population studied [18]. Regardless, the number
of patients living with sarcopenia will grow to over 200 million in the next 40 years
worldwide [19]. Moreover, despite the criteria used and population analyzed, sarcopenia
is associated with a significantly higher mortality (HR: 2.00 (95% CI: 1.71, 2.34); OR: 2.35
(95% CI: 1.64, 3.37)) [20].
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and quantify the severity.

Several risk factors have been associated with the development of sarcopenia; among
those, aging [21,22], malnutrition [23,24], and reduced physical activity [25] play an impor-
tant role. Despite the epidemiology and the clinical consequences of sarcopenia, until now,
no validated treatment has emerged, although several drugs are under investigation [26].
Current clinical practice relies on a rehabilitative approach that includes physical exercise
and nutritional interventions [27,28].

The diagnosis and treatment of sarcopenia are further complicated by the lack of
reliable markers of muscle health and targets for potential interventions. Different bio-
logical pathways have been proposed to discriminate between physiological ageing and
pathological ageing, named “senescence” [29]. Cellular senescence has been shown to be
responsible for reduced muscle mass and quality observed in sarcopenia; namely the senes-
cence of satellite cells, the development of a senescence-associated secretory phenotype,
and an imbalance in protein synthesis/degradation and inflammation have been shown
to be of paramount importance in the pathogenesis of sarcopenia [30,31]. Amongst the
multiple mechanisms involved in cellular senescence, here we focus on mitochondrial
dysfunction as associated to increased oxidative stress and inflammation, and their role
in the development of sarcopenia. Mitochondrial dysfunction and increased oxidative
stress are of particular interest in the development of age-associated sarcopenia, as they are
potentially reversible with a nutritional intervention [32]. Lifestyle, physical activity, and
dietary intake, which greatly influence the development of sarcopenia, are implicated in
the regulation of mitochondrial function, and oxidative stress as well [22,32–34].

Numerous nutrients have been linked both to mitochondrial function and to muscle
health [35]. Among macronutrients, the branched-chain amino acids (BCAAs) [36] and
the omega 3 polyunsaturated fatty acids (n-3 PUFA) [37] have repeatedly been shown to
have a central place. Among micronutrients, vitamin D, zinc, and selenium, which all have
antioxidant properties, have been shown to be essential. The status of these nutrients has
been shown to be inadequate or deficient in a large proportion of old adults.

Although several reviews investigated the role for nutritional interventions in rescuing
sarcopenia, here we propose an original translational approach unravelling the link between
mitochondrial dysfunction, oxidative stress, chronic inflammation, and ageing with their
impact on sarcopenia, highlighting how a nutritional strategy may be optimized to mitigate
cellular senescence and, therefore, sarcopenia at clinical level.
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2. Mitochondrial Dysfunction and Oxidative Stress

Abundant literature has described an age-dependent impairment of mitochondrial
function, and an alteration of mitochondrial structure across species from yeast to humans,
which in turn contributes to age-associated cellular quality control decline and tissue dys-
function [38,39]. Though dysregulation of mitochondrial homeostasis is a global hallmark
of aging, there are tissues in which it is more prominently observed. These typically include
post-mitotic and highly metabolic tissues, such as skeletal muscle, which are therefore more
sensitive to the dysregulation of mitochondrial-mediated processes [38,40]. Hence, it is not
surprising that altered mitochondrial homeostasis has been long suggested as key player
in the development of sarcopenia.

Indeed, sarcopenic muscles present reduced mitochondrial mass, largely due to de-
creased mitochondrial biogenesis (Figure 2). Mitochondria biosynthesis relies on the key
transcription factor, peroxisome proliferator-activated receptor gamma coactivator 1-alpha
(PCG1α). In agreement with the observed age-associated mitochondrial content reduction
and dysfunction, PGC1-α mRNA and protein levels are reduced in aged experimental
animals and older persons [41–46]. Interestingly, PGC1α overexpression is sufficient to
prevent age-associated muscle dysfunction and atrophy, contributing to maintain mito-
chondrial copy number, and normalize mitochondrial dynamics [47–49]. Moreover, PCG1α
modulates the expression of a panel of antioxidant enzymes, including superoxide dis-
mutase (SOD) and glutathione peroxidase (GPx) [50]. Animals lacking PGC1-α display
reduced levels of SOD and GPx, whereas overexpressing PGC1-α in mouse leads to in-
creased antioxidant defenses in muscles [50,51]. Therefore, reduced levels of PGC1-α in
sarcopenia contribute to the disease pathogenesis also through an impairment of oxidative
stress defenses.
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Given the acquired jammed mitochondrial biogenesis observed in sarcopenia, mito-
chondrial quality control plays a pivotal role in mitochondrial homeostasis maintenance in
this post-mitotic tissue. The mitochondrial quality control entails two key stress response
pathways: the unfolded protein response of the mitochondria (UPRmt, coordinating re-
covery of challenged mitochondria) and the mitophagy (mediating removal and digestion
of compromised mitochondria) [52]. Mitochondrial potential and transport, two altered
features of sarcopenic muscles, are essential for mitochondrial quality control mecha-
nisms; hence, UPRmt and mitophagy are altered during pathological muscle aging [53,54]
(Figure 2). Accordingly, numerous mitophagy and UPRmt regulators decrease with age
in mice and human sarcopenic muscles, including mitochondrial chaperons and compo-
nents of the endo-phagosome assembly machinery [55–57]. This decline in mitophagy and
UPRmt efficiency during aging sarcopenia contributes to the progressive accumulation of
dysfunctional organelles and further tissue damage. Importantly, muscle-specific inhibition
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of the mitophagy mediator, autophagy related 7 (Atg7), in mice leads to premature aging
typified by oxidative stress, mitochondrial dysfunction, muscle loss, and weakness [57,58],
underlining the importance of damaged mitochondrial removal for muscle function. Ac-
cordingly, mice lacking the mitochondrial protease, HtrA2/Omi, involved in the UPRmt

response, display a sarcopenia phenotype accompanied by an alteration of mitochondrial
proteostasis and function [59]. Conversely, interventions aiming at improving UPRmt and
mitophagy mediate numerous anti-aging effects in different tissues from nematodes to
mammals, including increased lifespan and fitness. Pharmacological-, genetic-, or exercise-
induced mitochondrial quality control upregulation mediates a restoration of mitochondrial
function and muscle homeostasis in aged flies, rodents, and patients [38,56,60–63]. The
beneficial effects of mitochondrial quality control boosting in muscle tissue has encouraged
the initiation of different clinical trials to assess the therapeutic potential of this strategy in
muscle health and sarcopenic patients [64–67].

Mitochondrial dynamics are fundamental for correct mitochondrial quality control;
hence, the proper balance between mitochondrial fusion and fission is critical for muscle
homeostasis. Accordingly, mitochondrial dynamics and, consequently, mitochondrial mor-
phology are profoundly altered in sarcopenia (Figure 2). Abnormalities in mitochondrial
morphology observed in sarcopenia are a direct consequence of the dysregulation of key
proteins involved in mitochondrial dynamics, including the fusion proteins, mitofusins 1
and 2 (MFN1 and MFN2) and optic atrophy protein 1 (OPA1), and the fission proteins, mito-
chondrial fission factor (MFF) and dynamin-related protein 1 (DRP1). In line, MFN2, OPA1,
or DRP1 deficiency negatively affect muscle health and mitochondrial homeostasis, trig-
gering the insurgence of sarcopenia features, such as muscle atrophy [68–70]. Importantly,
sarcopenia patients also present altered expression of MFNs and DRP1, and consequent
accumulation of dysfunctional and enlarged mitochondria [71]. Indeed, unbalanced fusion
and fission leads in aged and sarcopenic muscle to the accumulation of swollen mitochon-
dria that cannot be properly removed due to mitophagy flux impairment. This further
exacerbates mitochondrial dysfunction by the inhibition of mitochondrial quality control
and recycling, worsening tissue damage.

The concomitant stalling of mitochondrial biogenesis, reparation, and recycling ul-
timately provokes the accumulation of damaged and dysfunctional mitochondria in sar-
copenic muscles. These defective organelles are a major source of cellular reactive oxygen
species (ROS) (Figure 2). High metabolic tissues, such as skeletal muscles, process large
quantities of oxygen; therefore, the loss of structural integrity of mitochondrial membranes
and alteration of the respiratory machinery strongly promote ROS generation and oxida-
tive damage. This accumulation of oxidative stress promotes consequent deterioration
of muscle homeostasis [72]. Moreover, being the main source of ROS, mitochondria are
also the primary targets of oxidative damage, which compromises mitochondrial qual-
ity control [73]. The equilibrium between ROS generation and scavenging is essential in
maintaining cellular homeostasis. Hence, the increased level of oxidative stress observed
in sarcopenia also reflects the inability of antioxidants to contain ROS overproduction.
Indeed, despite an upregulation of some components of the cellular antioxidant defenses
during sarcopenia due to compensatory mechanisms, their activity is not sufficient to
prevent the accumulation of oxidative damage [74]. This is further exacerbated by reduced
levels of PGC1-α, which modulates antioxidant enzymes synthesis, as previously men-
tioned. Interestingly, mice lacking Cu/Zn-superoxide dismutase (SOD1) display high levels
of oxidative stress damage and early insurgence of sarcopenia [75,76]; similar results are
observed when SOD1 ablation is restricted to muscle tissue [77]. Moreover, animals express-
ing muscle-specific mutated forms of SOD1 (SOD1G93A) showed neuromuscular junctions’
dismantlement, which is considered an early pathogenic signature of sarcopenia [78,79].
Conversely, strategies targeting oxidative stress have shown efficacy in preventing the
development of the sarcopenic phenotype in aged rodents [80,81]; although, controversy
still exist in the field due to different experimental designs [82,83].
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3. Inflammageing

Aging is typically accompanied by a chronic state of low grade and sterile inflamma-
tion referred to as “inflammageing” (Figure 2). Inflammageing is associated with increased
plasma levels of proinflammatory mediators, such as tumor necrosis factor α (TNFα),
interleukin 6 (IL-6), and C-reactive protein (CRP). Increased circulating cytokines have
been associated with the onset of different age-associated degenerative diseases, partic-
ularly muscle pathologies and concomitant reduced muscle mass and function. Indeed,
elevated levels of proinflammatory cytokines are observed in diseases associated with
muscle wasting, such as AIDS, chronic heart failure, chronic obstructive pulmonary disease,
and cancer-related cachexia [84,85]. IL-6, TNFα, and CRP are also strongly upregulated in
primary sarcopenia [86,87], suggesting a causal role of inflammageing in muscle loss.

A chronic state of inflammation in muscle tissue is often associated with altered
cellular redox balance and oxidative stress. Increased ROS levels following mitochondrial
dysfunction have been proposed as one of the main contributors in the development of
sarcopenia-associated inflammageing, and of its impact in muscle function. In fact, nuclear
factor kappa B (NF-κB), the main transcription factor involved in the induction of the
inflammatory response in muscle tissue, can sense a cellular redox-state, allowing it, de
facto, to be reactive towards ROS. Transgenic animals displaying constitutively activated NF-
κB, indeed, are characterized by muscle wasting, whereas mice expressing a dysfunctional
NF-κB are resistant to immobilization-induced muscle atrophy. Elevated oxidative stress
influences NF-κB activity at different levels, by post-transcriptionally modulating upstream
mediators of NF-κB response, or through promotion and stabilization of NF-κB binding
to DNA. Stress-induced activation of NF-κB leads to upregulation of different cytokines,
including IL-6 and TNF-α, which play a crucial role in the pathogenesis of sarcopenia.
Increased levels of these cytokines further stimulate NF-κB activity and promote a chronic
inflammatory state, triggering a pathological positive feedback loop, which drives muscle
deterioration. In particular, TNF-α can mediate NF-κB upregulation, and mediate the loss
of muscle proteins. Interestingly, this activation is redox sensitive, and the blockage of ROS
production can prevent TNF-α mediated muscle wasting. Therefore, ROS play a crucial
role in the development of inflammation in sarcopenia, and in mediating its detrimental
effects by activating NF-κB either directly or indirectly.

Sarcopenia is characterized by a decrease in PGC-1α levels in muscle tissue, as men-
tioned above. This transcription factor plays a crucial role in inflammageing, and the
inhibitory effects of PGC-1α on inflammatory response are the result of several cellular
mechanisms. First, PGC-1α can directly modulate cytokines production by limiting NF-κB
binding to DNA, hence reducing its detrimental effects on muscle tissue [88]. PGC-1α
affects inflammation also by mediating the expression of different antioxidant enzymes [50].
Accordingly, PGC-1α overexpression in cultured muscle cells is sufficient to reduce the
expression of inflammatory markers, including IL-6 and TNF-α [89]. Contrarily, muscle-
specific ablation of PGC-1α leads to increased synthesis of these inflammatory cytokines
in rodents and primary human muscle cells [89,90]. Interestingly, muscle-specific PGC-1α
knockout mice also display reduced expression of antioxidant enzymes, suggesting also a
role of PGC-1α in regulating inflammation through levels of ROS.

Inflammageing itself favours malnutrition and sarcopenia, as inflammatory cytokines
activate protein catabolism and hormonal deregulation with increased cortisol production,
which induces muscle waste and cachexia, and reduces anabolic hormones, such as growth
hormones, sex hormones, and insulin growth factor (see [91] for a comprehensive review).

4. Malnutrition

The reduction of appetite and food intake is frequently associated with aging, and
has been defined as “anorexia of aging” [92] (Figure 2). It is due to several conditions
associated with aging itself, such as decreased salivation, difficulty swallowing, delayed
emptying of the stomach and oesophagus, slower gastrointestinal movement [93], as well
as a reduction of nutrient absorption capacity [94]. Other conditions associated with
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aging, such as drug use, loneliness, depression, lack of oral health, low quality of life,
in addition to chronic non-communicable diseases, markedly increase the malnutrition
risk [95]. Moreover, aging is associated with an imbalance in protein metabolism with
increased catabolism, decreased anabolism, and reduced splanchnic extraction of amino
acids [96,97]. Thus, both intrinsic and extrinsic factors contribute to malnutrition in old
adults. Amongst extrinsic factors, hospitalization worsens malnutrition, affecting clinical
outcomes, and resulting in increased morbidity and mortality [92,98]. Malnutrition is one
of the risk factors predisposing to sarcopenia, and contributes to mitochondrial damage,
an increase in inflammageing, and, consequently, to unhealthy and frail ageing [99,100].
Despite the importance of malnutrition, its reported incidence in older subjects varies,
mainly because of the use of different definitions. It has been reported that malnutrition
affected approximately 5 to 10% of community-dwelling older subjects; however, this
percentage may rise up to 40% of hospitalized patients, and even up to 50% in patients in
rehabilitation facilities [101].

A meta-analysis of whole protein supplements or high dietary protein intake trials
have not been conclusive in terms of efficacy of this nutritional intervention [102,103].
Another meta-analysis shows that the efficacy of this nutritional strategy is only increased
if combined with physical exercise [104]. The association between type and quality of diet
beyond proteins, and the development of sarcopenia has been studied, and their meta-
analysis showed that a diet rich in highly saturated fats, such as the Western diet, increases
the risk of sarcopenia, whereas the Mediterranean and Nordic diets are associated with a
lower risk [105].

Although protein-energy malnutrition is the most common form of malnutrition
amongst older subjects, specific nutrient deficiencies, such as BCAAs, n-3 PUFAs, vitamin D,
zinc, and selenium, play a major role in linking mitochondrial dysfunction, oxidative stress,
inflammageing, and sarcopenia; hence, this review focuses specifically on these nutrients.

5. BCAAs

The aging process per se impairs protein metabolism, and favors muscle loss and the
development of sarcopenia. BCAAs metabolism appears to be particularly impaired in
older subjects, even though data on this topic are conflictual. Some studies suggest that
there is a decreased blood availability of BCAAs in older subjects [106,107], whereas others
do not [108,109].

Despite the controversy, several studies suggested that supplementation with a mix-
ture of amino acids or essential amino acids might successfully counteract the development
of sarcopenia by stimulating protein anabolism. A recent meta-analysis supports this
hypothesis, showing that BCAAs-rich supplementation improves muscle mass and muscle
strength in older subjects [36]. Similarly, previous meta-analyses suggest that essential
amino acids are more effective in increasing muscle mass and function in old, malnourished
patients, compared to non-essential amino acid or whole protein supplementations [110].

In aged animals, BCAAs-enriched supplements are effective in promoting mitochon-
drial formation and bioenergetics in skeletal muscles, with a consequent decrease in ox-
idative stress, and preservation of muscular function [111] (Figure 3). BCAAs target the
mammalian site of the rapamycin (mTOR) signalling pathway, increase mitochondrial
formation and nicotinamide adenine dinucleotide (NAD+) levels, and promote fatty acid
oxidation, thus increasing energy production, and promoting muscle cellular homeosta-
sis [111–114] (Figure 3). In addition, in vitro models confirm the ability of different BCAAs
to boost mitochondrial activity [115–118]. We recently demonstrated that a BCAAs-enriched
mixture is effective not only in increasing mitochondrial bioenergetics and mitochondrial
function, and reducing oxidative stress in older malnourished patients, but also in rescuing
the clinical sarcopenia phenotype [32] (Table 2). Different groups also showed the ability
of BCAAs in decreasing inflammation in sarcopenic patients [119] (Table 2). Thus, the
supplementation with BCAAs seems to be effective in clinical conditions characterized by
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increased protein catabolism, and, in particular, is able to influence mitochondrial function,
and reduce oxidative stress in sarcopenia (Table 2).
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Figure 3. Mitochondrial pathways and molecular mediators affected by BCAA (in red), vitamin D (in
blue), PUFA (in green), zinc (in orange), and selenium (in grey). ↑: increased.

A metabolite of leucine, beta-hydroxy-beta-methylbutyrate (HMB), has been shown to
efficiently counteract protein catabolism and preserve muscle mass in old healthy adults
submitted to bed rest [120]. Importantly, these effects on muscle structure are concomitant
with a preservation of gene expression of mitochondrial genes. Moreover, HMB supple-
mentation in combination with training rehabilitation (RT) leads to an increased in-muscle
mitochondrial content, higher oxidative phosphorylation, and improved mitochondrial
dynamics, effects not observed with RT alone [120]. HMB supplements are also capable
of enhancing sarcolemma integrity, inhibiting protein degradation by stimulation of the
ubiquitin pathway, increasing protein synthesis via the mTOR pathway, stimulating the
growth hormone/insulin-like growth factor-1 (GH/IGF-1) axis, and enhancing muscle
stem cell proliferation and differentiation [121].

6. Omega-3 PUFA

The link between muscle health and n-3 PUFA ingestion is well established [38].
In healthy middle-aged subjects, 8 weeks of 4 g supplementation increases the muscle
protein fractional synthesis rate, the muscle protein concentration, and the protein/DNA
ratio (i.e., muscle cell size) during insulin and amino acid infusion [122] (Table 2). At
the molecular level, PUFA administration leads to increased synthesis of mitochondrial
proteins in muscle tissue of older adults, with a concomitant reduction of oxidative stress
and inflammation [123] (Table 2 and Figure 3). In line, a meta-analysis including 49 studies
confirms that n-3 PUFA decreases the levels of IL-6 and CRP in middle-aged and older
adults [124], thereby reducing the components of inflammageing, which contributes to
sarcopenia. Further, n-3 PUFA has been shown to activate the mTOR and mitochondrial
pathway in older adults, and to reduce insulin resistance (insulin being key to mTOR
activations [125,126] (Figure 3)).
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7. Vitamin D

Vitamin D deficiency or hypovitaminosis D is diagnosed by serum 25-hydroxyvitamin
D (25(OH)D) levels of <50 nmol/L [127,128], and can be the consequence of different
inappropriate lifestyles, such as malnutrition or reduced sunlight exposure [128–130]. Due
to its diffusion, hypovitaminosis D has been defined as a pandemic. Prevalence increases
with ageing due to different conditions, such as reduced cutaneous synthesis; lower sun
daily exposure; or diseases, including chronic renal failure or gastrointestinal malabsorp-
tion [131,132]. Hypovitaminosis D has been associated with several chronic diseases, and
is considered a causal factor for the development of sarcopenia and frailty [133,134]. In
line, in animal models, diet-induced vitamin D deficiency leads to the manifestation of
sarcopenia symptoms in skeletal muscles, including muscle weakness, decreased mus-
cle force and physical performance, and reduced mitochondrial activity [129,135–138].
Moreover, reduced vitamin D levels have been associated with decreased muscular mass
and strength in different human cohorts [139–142]. Despite these association studies and
the biological plausibility of the link between vitamin D and muscle health, interven-
tion studies are conflicting. In fact, some meta-analysis and systematic literature reviews
have found only modest clinical effects of vitamin D supplements on muscle strength;
these non-conclusive results are partially explained by the great inter-study heterogeneity
regarding the population included, and the different molecules and doses used for the
supplementation [143–145].

Several authors have studied the direct effect of vitamin D on mitochondrial func-
tion. Reduced vitamin D is associated with impaired mitochondrial function in skeletal
muscle [146]. Moreover, vitamin D receptor (VDR) loss-of-function C2C12 myoblasts dis-
play severely compromised mitochondrial function [147], whereas muscle-specific VDR
knock down in rodents leads to decreased expression of mitochondrial genes and sar-
copenia [148,149]. On the other hand, 25(OH)D administration improves mitochondrial
OXPHOS and dynamics in C2C12 myoblasts [146] (Figure 3). Accordingly, protective effects
on mitochondrial functions of calcitriol, the active metabolite of vitamin D, and calcipotriol,
an analogue of vitamin D, have been demonstrated in experimental models [150–153]. De-
spite the association and intervention studies in humans and experimental data suggesting
a protective effect of vitamin D on mitochondrial function (Table 2), taken together, the
available evidence is not sufficient to recommend treating patients affected by sarcopenia
with vitamin D supplementation, even though they have proven hypovitaminosis D.

8. Selenium and Zinc

Selenium is an essential trace element that is cornerstone to the body’s antioxidant
defence, being a structural component of the glutathione peroxidase (GPX) family of se-
lenoenzymes. Deficiency is frequent in different parts of the world. Low plasma levels
have been independently associated with poor muscle strength in community-dwelling
older adults in Tuscany [154]. Moreover, selenium deficiency has been linked to numerous
skeletal muscle disorders [155], including sarcopenia [156,157]. Selenium is found within
muscles as selenocystein in selenoprotein N, which is involved in redox-modulated cal-
cium homeostasis, and in protection against oxidative stress [158]. Accordingly, decreased
levels of selenium are linked to impaired antioxidant defenses, and increased oxidative
stress, with a consequent increase of muscle inflammation and mitochondrial abnormalities,
including reduced copy number, increased size, altered cristae structure, and impaired
respiration [159,160]. On the other hand, animal research has shown that selenium supple-
ments improve muscle performance by modulating calcium metabolism and mitochondrial
biogenesis [158,161] (Figure 3).

Zinc is a universal essential trace element, being the second most abundant element in
the body after iron [162]. Its distribution in the body is not homogeneous, the majority (60%)
being found in the muscle. In skeletal muscle, zinc has been shown to affect myogenesis
and muscle regeneration due to its effects on muscle cell activation, proliferation, and
differentiation [162]. Not surprisingly, zinc intake has been characterized as a predictor



Nutrients 2022, 14, 483 10 of 19

of reduced age-related skeletal muscle decline in older adults [163]. Among its multiple
properties, zinc acts as an anti-inflammatory and anti-oxidant mediator, being a crucial
component of the copper-zinc-dependent SOD (SOD1), involved in ROS scavenging and
mitochondrial redox defenses [164], and by inhibiting NF-kB activation [165] (Figure 3).
Moreover, in vitro zinc administration can induce mitophagy under oxidative stress condi-
tion in muscle cells, preventing ROS damage [166] (Figure 3). Zinc deficiency is widespread
and particularly frequent in old adults [167]. Importantly, significantly decreased serum
levels are observed in sarcopenic patients, underlining the role of this element in muscle
homeostasis [168].

Table 2. Effects of dietary intervention on mitochondrial function, oxidative stress level, and clinical
features of sarcopenia.

Dose Subjects Mitochondria Muscle Study Design
and References

BCAAs
Leucine (1250 mg), Lysine
(650 mg), Isoleucine (625

mg), Valine (625 mg),
Threonine (350 mg),

Cystine (150 mg),
Histidine (150 mg),

Phenylalanine (10 mg),
Methionine (50 mg),

Tyrosine (30 mg),
Tryptophan (20 mg),
Vitamin B 6 (0.1 mg),
Vitamin B1 (0.15 mg).

Twice a day for 2 months.

116 men and women aged
80 years or older.

ATP ↑
Electron flux ↑

Fusion ↑
Oxidative stress ↓

*

Strength ↑
Walking distance ↑

Balance ↑
Risk of falls ↓

Protein synthesis ↑
Lean mass ↑

Insulin sensitivity ↑

Randomized Controlled
Trial [32]

l-leucine (2.5 g), l-lysine
(1.3 g), l-isoleucine (1.25 g),

l-valine (1.25 g),
l-threonine (0.7 g),
l-cysteine (0.3 g),
l-histidine (0.3 g),

l-phenylalanine (0.2 g),
l-methionine (0.1 g),
l-thyrosine, (0.06 g),

l-tryptophan (0.04 g).
Twice a day for 8 months

41 men and women aged
66–84 years with

diagnosed sarcopenia.

TNFα ↓
Lean mass ↑

Insulin sensitivity ↑
Randomized Controlled

Trial [118]

Histidine (0.82 g),
Isoleucine (0.78 g),
Leucine (1.39 g),
Lysine (1.17 g),

Methionine (0.23 g),
Phenylalanine (1.17 g),

Threonine (1.10 g),
Valine (0.86 g). Twice a

day for 3 months.

14 women aged
68 +/− 2 years.

Fractional synthesis rate ↑
Lean mass ↑

Randomized, Controlled
Trial [169]

(mg ·mL−1 and
(mmol · l−1), respectively):

Alanine 20.7 (232.3),
arginine 11.5 (66.0),
glycine 10.3 (137.2),
histidine 4.8 (30.9),

isoleucine 6.0 (45.7),
leucine 7.3 (55.6), lysine
5.8 (39.7), methionine 4

(26.8), phenylalanine 5.6
(33.9), proline 6.8 (59.1),

serine 5.0 (47.6), threonine
4.2 (35.3), tryptophan 1.8

(8.8), tyrosine 0.4 (2.2), and
valine 5.8 (49.5). The total
amino acid infusion was
148.5 mg × kg−1 × h−1

for 480 min.

5 subjects aged
71+/− 2 years. Fractional synthesis rate ↑ Longitudinal Clinical

Trial [170]
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Table 2. Cont.

Dose Subjects Mitochondria Muscle Study Design and
References

L-leucine (1.3 g),
L-lysine (0.66 g),

L-isoleucine (0.6 g),
L-valine (0.63 g),

L-threonine (0.36 g),
L-cystine (0.13 g),

L-histidine (0.13 g),
L-phenylalanine (0.1 g),
L-methionine (0.06 g),

L-tyrosine (0.03 g),
L-triptophane (0.03 g).

3 times a day for
3 months.

One hundred men and
women aged >65 years.

Strength ↑
Walking distance ↑

Myocardial performance ↑
Randomized Controlled

Trial [171]

Omega-3 PUFA
Ethylesters of

eicosapentaenoic acid
(1.86 g), docosahexaenoic
acid (1.50 g). Once a day

for 8 weeks.

5 men and 4 women aged
25–45 years

Protein concentration ↑
Cell size ↑

Longitudinal Clinical Trial
[122,172]

EPA (1.35 g), DHA (0.6 g).
Twice a day for 4 months.

12 young (18–35 years)
and 12 older (65–85 years)

men and women.

Biogenesis ↑
Oxidative stress ↓

**
Fractional synthesis rate↑ Longitudinal Clinical Trial

[123]

EPA (0.72 g), DHA (0.24 g).
Twice a day for 6 months.

126 women aged between
64–95 years. Walking speed ↑ Randomized Controlled

Trial [173]

EPA (0.93 g), DHA (0.75 g).
Twice a day for 6 months.

60 men and women aged
60–85 years.

Thigh muscle volume ↑
Handgrip strength ↑
Upper & lower-body

muscle strength ↑

Randomized Controlled
Trial [174]

Vitamin D

Vitamin D3 (0.5 mg) on
alternate days for

3 months.

12 individuals with severe
vitamin D deficiency aged

18.1–50.4 years and
15 age-matched controls.

OXPHOS ↑
**

Fatigue ↓
Phosphocreatine recovery

half-time ↓
Longitudinal Clinical trial

[175]

Vitamin D3 (60,000
IU/week) for 3 months.

16 females and 3 males,
mean age 17–24 years.

ATP ↑
** Pi:PCr ↑ Longitudinal Clinical Trial

[176]

OXPHOS: Oxidative phosphorylation; ATP: adenosine triphosphate; Pi:PCr: inorganic phosphate to phospho-
creatine ratio. ↓: decreased; ↑: increased. * mitochondria analyzed in PBMC; ** mitochondria analyzed in
muscle tissue.

9. Conclusions

Sarcopenia is rapidly emerging as a global health concern due to its multifactorial
nature, age-associated increase in prevalence, and unavailability of specific treatment.
From a clinical point of view, sarcopenia is characterized by a progressive decrease in
muscle mass, causing a deterioration in strength and physical performance, contributing to
frailty and, ultimately, mortality. A major role in mediating these detrimental features of
sarcopenia is played by mitochondrial dysfunction, and consequent oxidative stress and
inflammageing. Malnutrition favors the development of sarcopenia, and has profound ef-
fects on mitochondrial function, cellular redox status, and inflammatory response. The role
of different micro- and macro-nutrients in maintaining muscle health is well characterized;
not surprisingly, they also play a role in preventing the onset of sarcopenia. Indeed, the
administration of BCAAs, PUFA, vitamin D, zinc, and selenium is effective in ameliorating
features of cellular senescence, namely mitochondrial homeostasis, oxidative stress, and
inflammageing. Despite the beneficial effects observed on muscle-cell ageing suggesting a
therapeutic role of these molecules in ameliorating sarcopenia, the evidence for promoting
these nutrients for treating sarcopenia is still not sufficient. Carefully planned clinical
studies of proper durations with correct doses, involving large numbers of patients, should
be performed for these nutrients to translate from the bench to bedside.
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