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Abstract
Background: Arthropods are infected by a wide diversity of maternally transmitted microbes.
Some of these manipulate host reproduction to facilitate population invasion and persistence. Such
parasites transmit vertically on an ecological timescale, but rare horizontal transmission events
have permitted colonisation of new species. Here we report the first systematic investigation into
the influence of the phylogenetic distance between arthropod species on the potential for
reproductive parasite interspecific transfer.

Results: We employed a well characterised reproductive parasite, a coccinellid beetle male-killer,
and artificially injected the bacterium into a series of novel species. Genetic distances between
native and novel hosts were ascertained by sequencing sections of the 16S and 12S mitochondrial
rDNA genes. The bacterium colonised host tissues and transmitted vertically in all cases tested.
However, whilst transmission efficiency was perfect within the native genus, this was reduced
following some transfers of greater phylogenetic distance. The bacterium's ability to distort
offspring sex ratios in novel hosts was negatively correlated with the genetic distance of transfers.
Male-killing occurred with full penetrance following within-genus transfers; but whilst sex ratio
distortion generally occurred, it was incomplete in more distantly related species.

Conclusion: This study indicates that the natural interspecific transmission of reproductive
parasites might be constrained by their ability to tolerate the physiology or genetics of novel hosts.
Our data suggest that horizontal transfers are more likely between closely related species.
Successful bacterial transfer across large phylogenetic distances may require rapid adaptive
evolution in the new species. This finding has applied relevance regarding selection of suitable
bacteria to manipulate insect pest and vector populations by symbiont gene-drive systems.

Background
Reproductive parasites represent a diverse assemblage of
maternally inherited microorganisms that induce aberra-
tions in their hosts' reproductive biology in order to pro-
liferate within arthropod populations. Their vertical
transmission route greatly limits opportunities for inter-

specific transfer. However, phylogenies of hosts and para-
sites are generally not congruent, indicating that
interspecific horizontal transfer events characterise the
evolutionary history of these selfish genetic elements [1].
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Two different modes of reproductive parasitism exist that
aid the maintenance of these microbes in host popula-
tions. Some maternally inherited parasites bias host prog-
eny sex ratios in favour of female offspring, through which
they then achieve transmission (by feminization, parthe-
nogenesis induction or male-killing); others modify
sperm of infected males, in order to reduce the fitness of
the uninfected females with which they mate (cytoplas-
mic incompatibility) [2]. Whilst Wolbachia is the best
known, a variety of other microbial taxa has also evolved
to manipulate arthropod reproduction, including micro-
sporidia, gamma proteobacteria and members of the gen-
era Cardinium, Rickettsia and Spiroplasma [2-5].

Individual symbioses between reproductive parasites and
host species are generally short-lived relative to the speci-
ation rate of hosts [6,7] (although exceptions exist [8]).
Transience may be due to host resistance evolution [9] or
alternatively some sex ratio distorters risk driving host
extinction due to male shortage [10]. Long term persist-
ence of parasite lineages therefore demands horizontal
transfer to exploit new host species. It seems logical that
horizontal transfer should be more common within spe-
cies than between them. Nevertheless strong linkage dise-
quilibrium usually exists between bacterial strains and
host mitochondrial DNA, indicating that intraspecific
horizontal transfer is exceptionally rare [11-14]; opportu-
nities for transmission between species must thus be
highly restricted. One exception is the close ecological
contact between parasitoids and their hosts, which may
facilitate transfer between wasps following oviposition in
a common host [15,16] and between host and parasitoid
[17,18].

Three potential routes exist for a species to acquire a repro-
ductive parasite infection: direct transfer of infective mate-
rial, introgressive hybridisation or co-speciation of host
and bacterium. Phylogenetic studies indicate that the
majority of symbioses originate from infective transfer:
bacterial strains are usually considerably more closely
related to each other than are their hosts [6,19,20]. How-
ever, such studies cannot generally distinguish whether
transfer occurred directly between two hosts, or if unstud-
ied intermediate species were involved (but exceptions are
known [18]). Although rare, cases exist where high recent
host speciation rates have enabled host-parasite co-speci-
ation [8]. Furthermore, hybridisation between closely
related hosts has permitted introgression of Wolbachia in
at least two cases and may be responsible for others
[12,21]. Whatever the transmission route, phylogenetic
studies reveal that closely related reproductive parasite
strains may specialise on closely related arthropod spe-
cies; either reflecting symbiont adaptation to similar hosts
or the frequency of horizontal transmission opportunities
[6,22]. Once a reproductive parasite has infected a novel

host, the probability of invasion will be determined by its
ability to induce a reproductive phenotype, its vertical
transmission efficiency and its virulence in the new spe-
cies.

An increasing number of studies report experimental
interspecific transfers of Wolbachia and other symbionts
[23-28]; most of these transfers have been intra-generic.
Transfection of the Drosophila simulans cytoplasmic
incompatibility (CI) strain wRi into D. melanogaster and
parthenogenesis inducing (PI) Wolbachia within the Trich-
ogramma genus both resulted in maternal transmission
and expression of the original phenotype [23,25]. Host-
shifts of increasing phylogenetic distance have had varia-
ble success. Whilst the D. simulans wRi strain transmitted
and induced CI in Aedes albopictus, a PI Wolbachia from
Muscidifurax uniraptor transmitted but induced no pheno-
type in D. simulans [24,29]. Experimental transfer of Dro-
sophila SROs (male-killers) generally led to establishment
in other Drosophila species; however, in some cases male-
killing ability was reduced and maternal transmission
unstable [27].

The experimental transfer of reproductive parasites
between host species is of practical as well as evolutionary
interest. Due to their ability to spread deterministically
through host populations, microbes such as Wolbachia
have been proposed as potential gene drive systems to
control insect pest population sizes and manipulate vec-
tor competence [30,31]. In addition to genetically engi-
neering the symbionts concerned, such techniques may
require infection of target species with well characterised
bacterial strains from other hosts. Some successful trans-
fers to vector species have recently been reported [32] but
others have had less promising results [26].

There is phylogenetic evidence for horizontal transfer of
bacteria between both closely and distantly related host
species and an increasing number of reports demonstrat-
ing experimental transfection. However, only a minority
of studies have attempted transfers outside the native
genus and systematic research to investigate the effect of
phylogenetic distance on the success of experimental
infections is lacking. It also seems likely that there is a
publication bias towards reports of successful transfection
studies.

This study tested the hypothesis that increasing phyloge-
netic distance between native and novel hosts decreases
the likelihood of reproductive parasites colonising a new
species. The Spiroplasma male-killer of the coccinellid bee-
tle Adalia bipunctata was employed because it has previ-
ously been demonstrated to transfer repeatably by
injection [33]. The bacterium was injected into pupae of
seven novel coccinellid species. Within the Adalia genus it
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was injected into both the native host A. bipunctata and its
sister species A. decempunctata. We transfected five species
outside the Adalia genus but within the Coccinellinae sub-
family: Coccinella septempunctata, Harmonia quadripunc-
tata, Anisosticta novemdecimpunctata, Calvia
quatuordecimguttata and Propylea quatuordecimpunctata. We
also injected Exochomus quadripustulatus, which lies in the
Chilocorinae subfamily [34]. Finally, we injected the non-
male-killing Spiroplasma symbiont of the aphid Acyrthosi-
phon pisum [35] into A. bipunctata. In each case three ques-
tions were investigated: could the bacterium establish an
infection, could it transmit trans-ovarially and did it kill
males in the novel host?

Results
Phylogenetic relationships between host species
We produced 661 bp of 16S and 396 bp of 12S mitochon-
drial rDNA sequence; of the 1057 sites in our dataset, 386
were variable and 200 parsimony informative. The neigh-
bour joining tree produced (Figure 1) broadly confirmed
existing phylogenetic positions based on morphological
characters [34].

Parental Lines
The female parents of all species from which recipient
pupae for injection were derived produced offspring sex
ratios not significantly different from equity (Fisher exact
tests for all 19 parents, P > 0.18). Negative PCR results
demonstrated that no parents were infected by the bacte-
rial taxa Spiroplasma, Rickettsia, Wolbachia or Flavobacteria.

Adalia genus transfers
In total 33 A. bipunctata control females that had been
injected with their native Spiroplasma were bred. They pro-
duced no male offspring (Figure 2). Mean progeny per
line was 37.5 (range 4 – 95); in all, 1239 females resulted.
Matriline sex ratios differed significantly from equity in 28
cases (Fisher exact test, Bonferroni corrected for 33 multi-
ple comparisons). All females laying substantial numbers
of eggs had hatch-rates below 50% (mean = 0.32) indicat-
ing that male-killing was taking place (Figure 3). An F1
female from each line was confirmed infected with
Spiroplasma by PCR. The microinjection technique was
thus both effective and replicable; infectivity of all
homogenate samples used to inject novel species was con-
firmed.

Complete male-killer expression also occurred in A.
decempunctata transfected lines. Sixteen females were bred,
which all solely produced female offspring, 480 in total
(Figure 2). Mean offspring number per line was 30.0
(range 4 – 48), 14 progeny sex ratios differed significantly
from equity (Fisher exact test, Bonferroni corrected for 16
multiple comparisons). Low hatch rates were again
recorded (mean = 0.27) and one offspring from each
female was demonstrated Spiroplasma infected by PCR.

Inter-genus transfers
PCR tests at least six weeks after injection detected
Spiroplasma infections in 100% of the parental females for
all six species outside the Adalia genus (total n = 70; n per
species 8 – 15). The bacterium therefore survived and rep-
licated in these novel hosts. However, inter-genus trans-
fers generally resulted in incomplete sex ratio distortion

Phylogenetic relationships of the coccinellid beetle species, derived from a combined 16S and 12S mitochondrial rDNA datasetFigure 1
Phylogenetic relationships of the coccinellid beetle species, derived from a combined 16S and 12S mitochon-
drial rDNA dataset. Tree estimation procedures are described in methods. The results of 1000 bootstrap resampling repli-
cates are given next to branches, branch lengths are proportional to genetic distance (base substitutions per site, see scale 
bar). Tribolium castaneum is included as an outgroup.
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and impaired vertical transmission. These factors could
not be assessed in C. septempunctata for which all females
(n = 13) injected with the Spiroplasma were sterile (see
below). In total, across the five remaining species 27 fer-
tile females produced 334 offspring, 66% were female. All
species exhibited significantly female-biased sex ratios
except for E. quadripustulatus (Figure 2). Many females of
the five species displayed low egg hatch rates, fecundity
and survivorship. However, except in C. septempunctata, a
considerable proportion of eggs hatched or reached late
embryonic development (became grey); thus low hatch
rates did not result from infertility and were indicative of
male-killing (Figure 3). Pooling across species, sex ratio
distortion was significantly impaired in females outside
the native genus (mean sex ratio = 0.26 ± 0.05 SEM, n =

27) in comparison to transfers to congeneric A. decem-
punctata hosts (mean sex ratio = 0.0 ± 0.0 SEM, n = 16)
(Wilcoxon W(n = 27,16) = 208; P < 0.001). Furthermore, a
significant positive correlation between mean offspring
sex ratio and genetic distance of transfection existed across
species, indicating that progressively more distant host
shifts reduced the degree of sex ratio distortion the bacte-
rium achieved (Figure 4a) (rs(n = 6) = 0.829; P < 0.042).

Spiroplasma transmission rates in novel host-parasite asso-
ciations were assessed by PCR (Table 1). Vertical transmis-
sion was perfect in A. bipunctata and A. decempunctata.
However, only in two of the five fertile species outside the
Adalia genus (A. novemdecimpunctata and E. quadripustula-
tus) did all offspring inherit the bacterium. Calvia quatuor-

Offspring sex ratios produced by females of each species injected with the A. bipunctata Spiroplasma male-killerFigure 2
Offspring sex ratios produced by females of each species injected with the A. bipunctata Spiroplasma male-
killer. Average proportions of female and male offspring are represented by black and grey shading respectively. Species bars 
are shown in order of increasing genetic distance from A. bipunctata (left to right). Number of matrilines and total number of 
offspring per species are given above each bar. The results of Fisher exact tests for the significance of sex ratio deviations away 
from equity are indicated above bars by asterisks. Coccinella septempunctata females produced no offspring.
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decimguttata females behaved inconsistently: three
females transmitted the Spiroplasma to all offspring tested
(16 females, 1 male), whereas five females transmitted it
to none (20 females, 14 males). Harmonia quadripunctata
females were similarly variable: one female produced a
significant sex ratio bias of 0.17 (n = 18) and transmitted
to all offspring tested (7 females, 1 male), whereas
another whose sex ratio was 0.47 (n = 53) transmitted to
only 19% of progeny (19 females, 23 males tested). Pro-
pylea quatuordecimpunctata females produced a strongly
female-biased sex ratio (0.11, n = 45) but surprisingly
only 15% of offspring were infected when assayed as
adults (n = 20). The bacterial transmission rate in hosts
following inter-generic transfers (mean = 0.61 ± 0.09
SEM, n = 26) was significantly lower than that in conge-
neric A. decempunctata females (mean = 0.0 ± 0.0 SEM, n
= 16) (Wilcoxon W(n = 26,16) = 483 P < 0.001). However,

considering all interspecfic transfections, the negative
relationship between mean transmission rate and genetic
distance was not significant (Figure 4b) (rs(n = 6) = -0.213;
P = 0.686). In three non-Adalia species (H. quadripunctata,
A. novemdecimpunctata and E. quadripustulatus) a consider-
able percentage of male progeny were infected (Table 1).
Pooling across all inter-genus transfers 46% (n = 72) of
male offspring survived embryonic infection and carried
the Spiroplasma as adults.

Coccinella septempunctata responded unusually to
Spiroplasma injection: all females were sterile. Thirteen
injected females laid eggs, however not one hatched (n =
1889, mean eggs per female 145.3). All eggs remained yel-
low and showed no signs of embryonic development.
Each female was mated to at least two independent males
to ensure male infertility was not the cause. Egg clutches

Hatch rates of eggs laid by females of the species injected with the A. bipunctata Spiroplasma male-killerFigure 3
Hatch rates of eggs laid by females of the species injected with the A. bipunctata Spiroplasma male-killer. Aver-
age proportions of eggs that hatched are shown by black bars. Proportions of unhatched eggs are divided between those that 
showed no signs of embryonic development (in white) and those that became grey and died shortly before hatching (in grey). 
Species bars are shown in order of increasing genetic distance from A. bipunctata (left to right). Number of matrilines and total 
number of offspring per species are given above each bar.
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laid by these females carried the Spiroplasma (n = 10). Sub-
sequently, 14 further females were produced that had
been injected with homogenate of uninfected A. bipunc-
tata females. Ten were fertile (71%) with hatch rates rang-
ing from 0.07 to 0.81. The mean hatch rates of females
injected with uninfected and infected homogenate (0.29
± 0.07 SEM and 0.00 ± 0.00 SEM respectively) differed sig-
nificantly (t-test, arcsin transformed data, t(v = 25)= 4.41; P
= 0.002).

In addition, a non-male-killing Spiroplasma from the
aphid Acyrthosiphon pisum was injected into A. bipunctata
pupae. One egg clutch was tested for Spiroplasma from
each of 50 injected females; none was infected. These 50
females were all similarly uninfected when they were
killed and tested by PCR at least 5 weeks post-injection.
Four individuals tested within two days of injection
shortly after pupal emergence were all positive.

Discussion
This study investigated the host specificity of a reproduc-
tive parasite, the male-killing Spiroplasma of the coccinel-
lid beetle Adalia bipunctata. We injected it into seven novel
species and investigated bacterial transmission and sex
ratio distortion. We tested the hypothesis that the phylo-
genetic distance between native and potential novel spe-
cies has constrained host-shifts during male-killer
evolution. The full male-killing phenotype was retained
following transfers within the native genus, but in more
distantly related species inefficient transmission or
incomplete sex ratio distortion occurred.

Across every species tested injections always established
an infection; bacteria were thus consistently able to sur-
vive the immune response associated with host injury and
interact with cells in novel species. Wolbachia and

Spiroplasma reproductive parasites do not naturally stimu-
late their hosts' immune systems, but Spiroplasma densi-
ties do fall following artificial immune challenge [36,37].
This male-killer was therefore probably able to maintain
immune evasion in novel hosts. Immune evasion may be
aided if bacteria reside permanently or at times within
host cells, where the antimicrobial response does not
operate. The failure of the inter-order transfer of the non-
male-killing A. pisum symbiont suggests that Spiroplasma
tolerance to novel host environments is not without limit.

Relationship between host shift genetic distance and bacterial traits in novel speciesFigure 4
Relationship between host shift genetic distance and 
bacterial traits in novel species. Figure 4a – the relation-
ship between interspecific transfer distance and the degree of 
host offspring sex-ratio distortion achieved by the male-killer 
(proportion male); the correlation is significant (see text). 
Figure 4b – the relationship between host shift genetic dis-
tance and vertical transmission to host offspring (proportion 
infected); the correlation is not significant (see text). Data 
points represent means for each species. A least squares best 
fit line fitted through the origin (4a) and through 1.0 (4b) is 
shown for each graph. All interspecific transfections are rep-
resented apart from C. septempunctata (for with no offspring 
resulted): brown, A. decempunctata; blue, P. quatuordecimpunc-
tata; green, C. quatuordecimguttata; red, A. novemdecimpunc-
tata, black; H. quadripunctata, orange; E. quadripustulatus. 
Error bars show standard errors, where no bar is visible var-
iance was zero (apart from E. quadripustulatus for which n = 
1).
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Table 1: Transmission efficiency of the A. bipunctata Spiroplasma 
male-killer following injection into different coccinellid species.

Species N Females Males

Infected Uninfected Infected Uninfected

A. bipunctata 33 33 0 - -
A. decempunctata 16 16 0 - -
C. septempunctata - - - - -
H. quadripunctata 6 20 18 11 22
A. novemdecimpunctata 5 12 0 12 0
C. quatuordecimguttata 8 16 20 1 14
P. quatuordecimpunctata 6 3 14 0 3
E. quadripustulatus 1 10 0 9 0

Offspring of injected females were tested by PCR for Spiroplasma 
infection when adults. Numbers of infected males and females from 
each species are shown separately. The Adalia species produced no 
males. Coccinella septempunctata produced no fertile eggs, but clutches 
did carry the bacterium. The number of matrilines from which the 
offspring tested were derived is shown (N).
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Bacteria were detected in eggs and offspring of all novel
species following interspecific transfer between coccinel-
lids. Thus no qualitative constraint to trans-ovarial trans-
mission exists at this phylogenetic level. Bacterial
transmission in novel species suggests absence of very
tight specificity in the molecular interactions required, or
considerable evolutionary conservation of the host mole-
cules exploited. However, the efficiency and consistency
of maternal inheritance did vary between species. Whilst
transmission was perfect in A. bipunctata and A. decem-
punctata, in some cases outside the native genus it was
reduced. Overall there was no consistent correlation
between host-shift genetic distance and transmission rate;
indeed no uninfected offspring were detected in two of
the more distantly related species A. novemdecimpunctata
and E. quadripustulatus.

The Spiroplasma maintained an ability to distort sex ratios
following all inter-specific shifts across the native sub-
family (Coccinellinae). However, as genetic distance of
the novel host increased the degree of sex ratio distortion
achieved by the bacterium fell. Whilst male-killing did
occur outside the Adalia genus, in most other species
infected males were produced. Therefore, in some cases,
whilst the bacterium did transmit, male-killing failed. To
distort sex ratios male-killers must interact with host sex
determination mechanisms or male-specific gene prod-
ucts [38] and also be present in high enough density to
kill male embryos [39,40]. It is possible that bacterial den-
sity in distantly related species was lower than in the
native host, as has been reported following other interspe-
cific transfections [23,41]. If correct, this hypothesis could
explain the variable and reduced transmission rates as
well as inefficient male-killing observed in some novel
hosts. Phylogenetic variation in the molecules used to
detect or kill males (such as sex determination pathways)
may provide a further explanation for low male-killing
penetrance in novel species. Male-killers require the eco-
logical advantage provided by male embryo death to
spread in host populations [42], therefore incomplete sex
ratio distortion (due to low transmission or inefficient
male-killing) would inhibit invasion of novel host spe-
cies.

We did not set out to investigate the virulence of this bac-
terium in novel species. However, we found all C. septem-
punctata hosts were sterile following injection of the
Spiroplasma. It is possible this resulted from specific patho-
geneic effects of infection, or an inability of the bacterium
to selectively kill only male embryos in this species.
Strong selection acts on vertically transmitted parasites to
reduce virulence costs on their hosts [43]. Future studies
might assess pathogenic effects of reproductive parasites
following host shifts (eg [41]). Increased virulence would

represent another factor reducing the probability of pop-
ulation invasion following interspecific transfers.

Our study has assessed the average performance of a
reproductive parasite in a panel of novel host species.
There was variation in male-killing and transmission
between individuals in most transfected species. It there-
fore remains possible that infections that kill males and
transmit efficiently may occasionally establish following
transfers beyond the genus level. Such events, however
rare, might provide opportunities for parasites to success-
fully invade. In addition, we have not assessed transmis-
sion and sex ratio distortion past the F1 generation.
Nevertheless, our data provide controlled comparisons of
the likelihood of reproductive parasites retaining high fit-
ness and establishing in a population following host
shifts. A previous study transferred A. novemdecimpunc-
tata's native male-killing Spiroplasma into A. bipunctata
and also reported incomplete male-killing [20]. Therefore
our data might have general relevance beyond this partic-
ular male-killing parasite. The manipulations of reproduc-
tive parasites employing other phenotypes may well be
adversely affected by host shifts in a similar phylogeneti-
cally dependent manner.

We have demonstrated clear phylogenetic constraints to
the interspecific movement of a male-killing bacterium.
Molecular studies suggest that natural reproductive para-
site host-shifts have occurred more frequently between
closely related hosts [6,22]. The present data indicate this
may be the result of similarity in host physiology or genet-
ics. Given molecular evidence that closely related bacterial
strains do infect distantly related species [19,20], we pro-
pose two scenarios for horizontal interspecific movement.
Firstly, male-killers may make phylogenetically 'small
steps' with relative ease whilst retaining efficiency of the
original reproductive manipulation. Secondly, if phyloge-
netic 'giant leaps' occur, then persistence in novel hosts
may require rapid bacterial evolution to improve sex ratio
distortion, transmission or virulence.

One widely discussed application for bacterial reproduc-
tive parasites is in the control of insect pest or disease vec-
tor populations [30,44,45]. Releases of CI Wolbachia
strains might be used to reduce pest species population
sizes [31,46]. Alternatively, the invasive nature of CI Wol-
bachia might be exploited to drive trans-genes conferring
refractoriness to human disease transmission through
insect vector populations [30]. The technical and practical
aspects of these techniques have yet to be fully resolved.
However, most require the introduction of well character-
ised symbionts into the target species. Such experimental
transfers have indeed been achieved (eg [32]). Neverthe-
less our study emphasises that except in the case of small
phylogenetic steps, ensuring high bacterial transmission
Page 7 of 10
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fidelity and phenotype retention in field conditions may
be a considerable challenge. Engineering native infections
of the species concerned may be more generally successful
than introducing novel bacteria.

Conclusion
This study indicates that constraints of host physiology or
genetics have limited opportunities for successful hori-
zontal transfers during reproductive parasite evolution.
We demonstrated that the Adalia bipunctata male-killing
Spiroplasma was only able to maintain full transmission
and offspring sex ratio distortion after being injected into
hosts within the native genus; more distant transfers
resulted in low-fitness infections. Reproductive parasites
thus exhibit a considerable degree of evolutionary special-
isation on their natural host. Host-shift genetic distance
was significantly correlated with sex ratio distortion abil-
ity but its relationship with transmission rate was incon-
sistent and not significant. This finding suggests the
possibility that the reproductive manipulations of these
parasites may be more generally sensitive to host shifts
than their transovarial transmission. Our data offer exper-
imental support for phylogenetic studies which indicate
that host-shifts are relatively frequent between closely
related species.

Methods
Ladybird Material
Donor individuals were A. bipunctata females carrying this
species' native male-killing Spiroplasma, which displays
perfect vertical transmission in the laboratory and has pre-
viously been shown infective by injection [33]. Donors
were F1 progeny of parents collected in Stockholm. Novel
recipient species were all collected close to Cambridge,
UK. Offspring of field collected females were reared in the
laboratory to pupal stage using standard techniques [47].
Parental females of each species from which recipient
pupae were derived were assayed by PCR for the presence
of any known coccinellid sex ratio distorting bacteria (see
below) and offspring sex ratios were recorded to ensure
that they were equitable in the generation prior to injec-
tion. Adalia bipunctata is host to at least three other male-
killers, a Rickettsia and two strains of Wolbachia [48,49],
furthermore A. decempunctata carries a male-killing Rick-
ettsia [50], A. novemdecimpunctata carries a male-killing
Spiroplasma [20] and H. quadripunctata has a male-killing
flavobacterium (Majerus unpublished). None of these
symbionts was present in any recipient pupae.

Spiroplasma transfection
Injection techniques followed Tinsley and Majerus [20].
Briefly, A. bipunctata abdomen homogenate was prepared
in 0.7% NaCl (25 μl per abdomen), then injected into
recipient pupae between the second and third abdominal
segments using pulled capillary needles attached to an oil-

filled Hamilton syringe. The volume injected was stand-
ardised according to recipient pupal size: 0.5 μl was
employed for A. novemdecimpunctata and P. quatuordecim-
punctata, 1 μl for A. bipunctata, A. decempunctata and E.
quadripustulatus, 1.25 μl for C. quatuordecimguttata and 1.5
μl for C. septempunctata and H. quadripunctata. Homoge-
nate infectivity was confirmed on each occasion by injec-
tion back into uninfected A. bipunctata pupae. Whole
body homogenate of Acyrthosiphon pisum adults carrying
their Spiroplasma symbiont were similarly prepared and
injected into A. bipunctata pupae. Aphids were derived
from a laboratory clone collected in Bayreuth, Germany in
2001.

After pupae eclosed, females were maintained at 21°C on
a mixed diet of aphids (Acyrthosiphon pisum) and artificial
food [47] for one month before breeding to allow bacte-
rial replication; males were discarded. Most species were
bred directly following this incubation period. However,
C. quatuordecimguttata, E. quadripustulatus and most C. sep-
tempunctata require diapause to initiate oviposition [51]
therefore females were stored in an incubator at 4–8°C
(24 hr dark) for around three months before breeding.
Injection caused over 50% pupal mortality, further deaths
occurred between eclosion and breeding and many
females failed to oviposit: several hundred pupae of each
species were injected to derive breeding samples. Surviv-
ing females were fed aphids, mated and allowed to ovi-
posit at 21°C. Egg hatch rates (proportion hatched) and
progenic sex ratios (proportion male) were assessed. The
significance of offspring sex ratio deviations from 1:1 was
calculated using one-tailed Fisher exact tests. PCR assays
were used to determine if Spiroplasma bacteria were
present in the injected females, their eggs and their off-
spring.

Molecular techniques
Molecular methods followed Tinsley and Majerus [20]. In
short, DNA was extracted by incubating samples in buffer
containing Chelex-100 resin, DTT and Proteinase K, then
used in diagnostic PCR reactions employing primers spe-
cific for the following bacterial taxa: Spiroplasma (MGSO –
Ha-In-1 [33,52]), Wolbachia (wps81f – wsp691r [53]),
Rickettsia (RSSUF – RSSUR [50]) and Flavobacteria (FL1 –
FL2 [54]). Products were identified by agarose gel electro-
phoresis. Presence of amplifiable template was verified
using mitochondrial DNA primers C1-J-2630 and TL2-N-
3014 [55] and universal invertebrate ribosomal primers
BD1 and 4S [56,57]; if product was lacking the sample
was discarded.

For phylogenetic analysis we investigated two conserved
sections from the 3' ends of the 16S and 12S mitochon-
drial ribosomal subunits of all host species. These were
amplified using primer pairs N1-J-12585 – LR-N-13398
Page 8 of 10
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(16S) and SR-J-14233 – SR-N-14588 (12S) [58]. Products
were purified using Sigma GeneElute™ columns and
sequenced directly using the PCR primers by MWG-Bio-
tech (EMBL accession numbers [AM779598] –
[AM779613]). We discarded the data from the 3' region of
the 16S fragment which spanned the 5' end of the ND1
gene and the leucine tRNA and combined the remaining
sequence from the two rDNA genes. A sequence align-
ment was constructed using CLUSTALW and manually
edited, then a tree was constructed using the neighbour
joining method in MEGA version 4.0 [59] and evaluated
by maximum composite likelihood, employing pair-wise
gap deletion and a gamma distributed rate variation
parameter of 0.255 (calculated in PAUP* version 4.0b8
[60]). Robustness of this tree was tested by performing
1000 bootstrap replicates. Genetic distances of novel
hosts from A. bipunctata were calculated in MEGA using
the parameter options above. Correlations of the species
means for bacterial transmission rate and offspring sex
ratio with genetic distance were determined non-paramet-
rically using Spearman rank tests due to non-normality of
dependent variables.
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