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Abstract

Motivation: Accurately predicting drug–target interaction (DTI) is a crucial step to drug discovery. Recently, deep
learning techniques have been widely used for DTI prediction and achieved significant performance improvement.
One challenge in building deep learning models for DTI prediction is how to appropriately represent drugs and
targets. Target distance map and molecular graph are low dimensional and informative representations, which how-
ever have not been jointly used in DTI prediction. Another challenge is how to effectively model the mutual impact
between drugs and targets. Though attention mechanism has been used to capture the one-way impact of targets
on drugs or vice versa, the mutual impact between drugs and targets has not yet been explored, which is very
important in predicting their interactions.

Results: Therefore, in this article we propose MINN-DTI, a new model for DTI prediction. MINN-DTI combines an
interacting-transformer module (called Interformer) with an improved Communicative Message Passing Neural
Network (CMPNN) (called Inter-CMPNN) to better capture the two-way impact between drugs and targets, which are
represented by molecular graph and distance map, respectively. The proposed method obtains better performance
than the state-of-the-art methods on three benchmark datasets: DUD-E, human and BindingDB. MINN-DTI also pro-
vides good interpretability by assigning larger weights to the amino acids and atoms that contribute more to the
interactions between drugs and targets.

Availability and implementation: The data and code of this study are available at https://github.com/admislf/MINN-
DTI.

Contact: sgzhou@fudan.edu.cn

1 Introduction

In drug discovery and design, verifying whether a drug interacts
with a certain target is a key step to prove the effectiveness of the
drug. Since large-scale in vitro and in vivo experiments are high-cost
and time consuming, computational methods for drug–target inter-
action (DTI in short) prediction have received increasing attention.
However, traditional computational methods have obvious limita-
tions. For example, the widely used molecular docking is inefficient
and sometimes ineffective because of its huge amount of computa-
tion and inaccurate scoring function (Su et al., 2019). On the other
hand, traditional machine learning models such as Random Forest
(RF) and Support Vector Machine (SVM) have also been used for
DTI prediction (Ballester and Mitchell, 2010; Bleakley and
Yamanishi, 2009; Liu et al., 2015). These methods are generally
simple and efficient, but the performance is far from satisfaction.
Recently, the introduction of deep learning models to DTI predic-
tion has greatly advanced this area (Bagherian et al., 2021;

Tian et al., 2016). In deep learning-based works, DTI prediction can
be characterized as a binary classification, a ranking task or a regres-
sion task for binding affinity. Usually, deep learning models for DTI
prediction are composed of a target feature extraction module, a
drug feature extraction module and a prediction module. These
modules are carefully designed according to various practical factors
including the input representations.

The most commonly used representations of drugs and targets
are one-dimensional (1D) sequences such as Simplified Molecular
Input Line Entry Specification (SMILES) strings for drugs and amino
acid sequences for targets (Karimi et al., 2019; Liu et al., 2020; Peng
et al., 2020; Tsubaki et al., 2019; Zheng et al., 2020). The models
with 1D sequences as input generally use Convolutional Neural net-
work (CNN), Recurrent Neural Network (RNN), Long Short-Term
Memory (LSTM) blocks or Gated Recurrent Unit (GRU) blocks to
extract drug and target features. For instance, Ozturk et al. used
CNN modules to extract hidden representations of amino acid
sequences and SMILES strings, which were later combined and
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input to a multi-layer perceptron to perform the prediction (Ozturk
et al., 2018). Besides sequences, feature vectors representing physi-
cochemical properties of targets/drugs and drug molecular finger-
prints are also common forms of 1D input to DTI prediction models
(Lee et al., 2019; Lenselink et al., 2017; Rifaioglu et al., 2021).
Slightly different from the work of Ozturk et al., instead of SMILES
strings, Lee et al. used molecular fingerprints with fully connected
networks to extract drug features to predict DTI prediction (Lee
et al., 2019). According to the research of Lenselink et al. (2017),
with feature vectors composed of physicochemical properties of tar-
gets/drugs and molecular fingerprints as input, Deep Neural
Network (DNN) models outperform Naive Bayes, RF, SVM, logistic
regression models in DTI prediction. Two-dimensional (2D) paired
feature map has also been used for DTI prediction, which uses a ma-
trix of a specific property calculated for amino acid pairs in the cor-
responding protein sequence to represent a target (Rifaioglu et al.,
2021; Zheng et al., 2020). For example, Rifaioglu et al. used multi-
channel protein feature maps involving sequence, structural, evolu-
tionary and physicochemical properties to represent proteins for
proteochemometric protein-drug binding affinity prediction
(Rifaioglu et al., 2021). 2D structural images are intuitive represen-
tations of drugs and have been used in DTI prediction (Rifaioglu
et al., 2020; Wang et al., 2021). Wang et al. proposed an efficient
DTI prediction system using only 2D images as input, which
includes CNN-based models for 704 targets (Rifaioglu et al., 2020).
Two-dimensional (2D) molecular graph is another effective repre-
sentation of drugs, which has been widely used in Graph Neural
Network (GNN)-based models for predicting molecular properties
(Gilmer et al., 2017; Song et al., 2020; Xiong et al., 2020; Yang
et al., 2019; Zhang et al., 2021). Recently, molecular graph has also
been increasingly used in DTI prediction (Nguyen et al., 2021;
Torng and Altman, 2019; Tsubaki et al., 2019). Tsubaki et al. used
GNN to extract the information of a small molecule as a feature vec-
tor, which is then concatenated with the target feature vector
extracted by CNN from amino acid sequence to make prediction
(Tsubaki et al., 2019). Compared with SMILES-based models,
graph-based models can readily exploit topological information of
molecules, which show obvious advantages in the task of DTI
prediction.

Although 1D and 2D-based DTI prediction models have made
significant progress recently, as DTI is in essence three-dimensional
(3D) physical interaction, so it is natural and reasonable to predict
DTI using three-dimensional structural information. Many studies
directly use 3D Cartesian coordinates to represent the 3D structures
of targets, but the limited samples cannot cover such a huge space,
which leads to poor performance (Ragoza et al., 2017; Wallach
et al., 2015; Zheng et al., 2019). Some models apply 3D voxel grids
to represent targets and use 3D-CNN to extract target features, their
accuracy is limited because the grid coordinates are not accurate
enough to represent the spatial positions of targets’ atoms. On the
other hand, 2D paired distance map represents 3D structure of each
target by a matrix of internal pairwise distances between the amino
acids of the target, which has been mainly used in protein structure
prediction (Skolnick et al., 1997). Recently, Zheng et al. proposed
an advanced model called drugVQA to predict DTI, where LSTM
and dynamic 2D-CNN were used to extract features from SMILES
strings and distance maps, respectively (Zheng et al., 2020), and
achieved satisfactory performance. Though 2D paired distance map
and molecular graph are promising representations of targets and
drugs, respectively. However, they have not yet been jointly used for
DTI prediction.

After extracting feature vectors from the drug and the target, re-
spectively, the features are usually concatenated and input to a MLP
to predict DTI. In most existing models, targets and drugs are repre-
sented and processed separately, they can hardly capture the inter-
acting context between targets and drug molecules. The attention
mechanism is often used to acquire the contributions of different
components of a drug or target to the interaction (Karimi et al.,
2019; Tsubaki et al., 2019; Zheng et al., 2020), which has been re-
cently used to characterize the interactions between targets and
drugs (Chen et al., 2020, 2021). The attention mechanism was

found to be able to better capture the impact of targets on drugs and
vice versa, so as to obtain better representations. However, these
models pay attention only to the impact of one participant of a DTI
on the counterpart, such as target on drug, but ignore the reverse im-
pact. According to the induced-fit theory (Johnson, 2008), interact-
ing drug molecules and targets are mutually impacted. Therefore, it
is natural and reasonable to consider their mutual impacts when
learning to represent the drugs and targets for DTI prediction.

In this article, to overcome the above-mentioned drawbacks of
existing DTI prediction models, we propose a new model for DTI
prediction. In this model, 2D paired distance maps of proteins and
molecular graphs are served as inputs for targets and drugs, respect-
ively. To capture the interactive impacts between targets and drugs,
we design a mutual interaction neural network (MINN) by innova-
tively combining two interacting-transformers (Interformer in short)
with an improved Communicative Message Passing Neural
Network (CMPNN) (called Inter-CMPNN). In the experiments, our
model achieves better performance than state-of-the-art methods on
DUD-E, human and BindingDB benchmark datasets. Case studies
show that individual contributions of residues in the target and
atoms in the drug to the formation of DTI can be inferred from
learned attention weights, which indicates that our proposed model
is interpretable and can help to explain the drug action mechanism,
and suggests the direction of drug optimization in the future.

2 Materials and methods

2.1 Overview
The architecture of our proposed model MINN-DTI is shown in
Figure 1. It consists of three modules: a target preprocessing net-
work (TPN), a MINN and an interaction prediction network (IPN).
MINN is the core component of our model, which consists of an
Interformer module and an Inter-CMPNN module. The Interformer
module is constructed by two interacting transformer decoders, and
the Inter-CMPNN module is a variant of CMPNN. With these two
modules, we can extract the latent vectors of targets and drugs while
considering their interacting contexts.

The 2D distance map and 2D molecular graph are served as the
input representation of a given target and a molecule, respectively.
The molecular graph is directly used, while the distance map is first-
ly preprocessed by the target preprocessing network (TPN). The la-
tent feature vectors of both the target and the molecule are extracted
by MINN. These latent feature vectors are then concatenated and
fed to the interaction prediction network (IPN) to predict DTI. The
details of these modules are presented in the following sections.

2.2 Target preprocessing network
Given a target, we calculate a 2D paired distance map (Skolnick
et al., 1997), which is subsequently preprocessed by the target pre-
processing network (TPN) into a fixed-size matrix following
drugVQA (Zheng et al., 2020). TPN is implemented by a dynamic
attentive CNN. As shown in Figure 2, the dynamic attentive CNN is
composed of a Dynamic CNN (DyCNN) block and a Sequential
Self-Attention (SSA) block. The DyCNN block contains a number of
residual blocks and an average pooling layer as ResNet (He et al.,
2016). To handle targets with different lengths, the pooling layers
between the residual blocks are eliminated. Through the DyCNN, a
2D paired distance map P 2 R

d�d is transformed into a feature map
Pc 2 R

d�f , where f is the number of filters of the residual block.
With the SSA block, a weight matrix Ap 2 R

r�d is derived by a two-
layer perceptron without bias from Pc:

Ap ¼ softmaxðWp2 tanhðWp1PT
c ÞÞ

where Wp1 and Wp2 are learnable parameters. This multilayer per-
ceptron (MLP) block can be regarded as a multi-head attention
where the number of neurons r in the last layer is interpreted as the
number of attentional heads. The attentional feature map
Aa 2 R

r�f is derived by multiplying Ap and Pc, which indicates the
relative importance of amino acid sites.
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2.3 Mutual interaction neural network (MINN)
The goal of MINN is to learn the representations of targets and
drugs while considering their interacting contexts. For this purpose,
we design an Interformer module to interact the information
extracted from targets and small molecules and an Inter-CMPNN
module to support information interacting from the drug side. Thus,
we can get more comprehensive representations of the targets and
drugs, and consequently boost DTI prediction.

2.3.1 Interformer

Here, we use two interacting transformer decoders to extract feature
vectors of targets and drugs, which is called Interformer in short.
The structure of Interformer is shown in Figure 3. Each decoder of
Interformer consists of one or more identical layers, similar to trans-
former (Vaswani et al., 2017). Each layer of Interformer consists of
three sublayers: a multi-head self-attention layer, an interaction
attention layer and a fully connected feed-forward network. The

multi-head self-attention sublayer and the feed-forward sublayer are
essentially consistent with transformer, except that the mask oper-
ation is eliminated to leverage complete drug and target information
following the work of Chen et al. (2020).

The interaction attention layer in each decoder of Interformer
adopts a multi-head scaled dot attention block to receive the exter-
nal information from another decoder. The source of external infor-
mation is the biggest difference between interaction attention layer
of Interformer and encode-decoder layer of transformer, where the
source of external information is the encoder. A scaled-dot attention
block can be expressed as:

AttentionðQ;K;VÞ ¼ softmax
QKTffiffiffiffiffi

dk

p
 !

V

where Q is the linearly transformed output of the multi head self-
attention layer of the decoder, K and V are linearly transformed out-
puts of the last layer of another transformer decoder, and dk is the
dimension of K and V.

headi ¼ AttentionðQWQ
i ;KWK

i ;VWV
i Þ

MultiHeadðQ;K;VÞ ¼ Concatðhead1; . . . ;headhÞWO

where WQ
i , WK

i , WV
i and WO are parameter matrices. With the

Interformer, the representation of each small molecule/target is
involved with the information of the corresponding interacted tar-
get/drug, which conforms to the real situation of DTI.

2.3.2 Inter-CMPNN

The Inter-CMPNN module is implemented by an improved
CMPNN, which is a variant of message passing neural network
based on directed graph (Song et al., 2020). CMPNN strengthens
the message interaction between nodes and edges through three well
designed modules (AGGREGATE, COMMUNICATE, UPDATE)
for L iterations:

mkðvÞ ¼ AGGREGATEðhk�1ðeÞÞ
hkðvÞ ¼ COMMUNICATEðmk;hk�1ðvÞÞ

hkðeÞ ¼ UPDATEðhkðvÞ; h0ðeÞ; hk�1ðeÞÞ;k ¼ 1; 2; . . . ;L

where mkðvÞ is the message obtained by node v in iteration k, hkðvÞ
is the hidden representation of node v in iteration k, hk eð Þ is the hid-
den representation of edge e in iteration k. After L iterations, one
more iteration is executed to exchange information more
thoroughly:

m ¼ AGGREGATEðhLðeÞÞ
h ¼ COMMUNICATEðm; hLðvÞ;xÞ

where x is the raw features of atoms. The AGGREGATE module
incorporates a message booster, which processes the information of
edges with a maximum pooling layer and calculates the

Fig. 1. Architecture of MINN-DTI

Fig. 2. The structure of target preprocessing network
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element-wise product of the maximum pooling layer’s result and the
sum of the hidden representations of edges. The UPDATE module is
a single-layer neural network with a skip connection, and the
COMMUNICATE module takes the form of a multilayer
perception.

Here, an Interformer is adopted after the COMMUNICATE
function to completely exploit the mutual impacts between targets
and drug molecules:

mkðvÞ ¼ AGGREGATEðhk�1ðeÞÞ
hkðvÞ ¼ COMMUNICATEðmk;hk�1ðvÞÞ

hkðvÞ;Ak
a ¼ INTERFORMERðhkðvÞ; Ak�1

a Þ
hkðeÞ ¼ UPDATEðhkðvÞ; h0ðeÞ; hk�1ðeÞÞ;k ¼ 1; 2; . . . ;L

where Ak
a is the target feature map in iteration k. Similarly, one

more iteration is executed:

m ¼ AGGREGATEðhLðeÞÞ
h ¼ COMMUNICATEðm; hLðvÞ;xÞ
h0;Ao

a ¼ INTERFORMERðh; Ak
aÞ

where h0 and Ao
a is the final drug graph feature and target feature

map. The schematic diagram of message interaction between
Interformer and Inter-CMPNN is shown in Figure 4. The last hidden
atom representations of each molecular graph and the feature map
vectors of each target are averaged to obtain fix-sized vectors of the
target and the small molecule, which are then fed to the interaction
prediction network.

2.4 Interaction prediction network (IPN)
The obtained target feature vector T and small molecule feature vec-
tor D are concatenated and fed to a two-layer perceptron without
bias to obtain the prediction result:

R ¼ sigmoidðWl2 reluðWl1concatðT;DÞÞÞ

where Wl1 and Wl2 are learnable weight parameters. Since the pre-
diction of DTI is regarded as a binary classification problem, cross
entropy is used as the loss function to train the model.

3 Experiments and results

3.1 Datasets
We evaluated our model MINN-DTI and compared it with state-of-
the-art DTI prediction methods on three widely used public datasets,
human dataset, DUD-E dataset and BindingDB dataset.

3.1.1 The DUD-E dataset

The DUD-E dataset consists of 22 886 active compounds against
102 targets. For each active compound, 50 decoys are generated,
which have similar physico-chemical properties but dissimilar 2-D
topologies to the active compound (Mysinger et al., 2012). We proc-
essed the DUD-E dataset following the works of Zheng et al. (2020)
and Ragoza et al. (2017), we obtained 22 645 positive examples and
1 407 145 negative examples, which were split according to a three-
fold cross-validation strategy. Ligands for the targets belonging to
the same target family are put into the same fold. We randomly
selected the same number of negative samples as the active samples
in training to obtain a balanced model, but we used unbalanced data
in model evaluation.

3.1.2 The human dataset

The human dataset contains highly credible positive and negative
CPI samples extracted by a systematic screening framework accord-
ing to a similarity rule (Liu et al., 2015). Following the works of
Zheng et al. (2020) and Tsubaki et al. (2019), we used a dataset
with equal number of positive and negative samples, forming 3369
positive interactions between 1052 unique compounds and 852
unique targets. Then, the dataset was randomly divided into a train-
ing set, a validation set and a test set according to the ratio of 8:1:1.
To evaluate the generalization power of our model on different
data, we redivided the human dataset according to molecular scaf-
fold similarities between drugs. The scaffold-based split method
implemented in the open source DeepChem package of
MoleculeNet (Wu et al., 2018) was used to divide structurally differ-
ent molecules into training/validation/test sets according to the ratio
of 8:1:1.

3.1.3 The BindingDB dataset

The BindingDB dataset (Gao et al., 2018) was a customized subset
of the Binding database (Gilson et al., 2016), which is a publicly ac-
cessible database that mainly contains the interaction affinities be-
tween targets and drug-like small molecules. The BindingDB dataset
contains 39 747 positive samples and 31 218 negative samples,
which was divided into a large training set (50 155 samples), a valid-
ation set (5607 samples) and a test set (5508 samples). To evaluate
the generalization power of our model on novel targets, the data of
the test set were divided into two parts to check the model perform-
ance according to whether the targets appear in the training set.

3.2 Implementation details and experimental settings
We implemented MINN-DTI with Pytorch 1.7.1 (Paszke et al.,
2019). The Adam optimizer was used in training and the learning
rate was set to 0.0001 (Kingma and Ba, 2015). The number of re-
sidual blocks, the number of filters and the dimension of molecular
graph features were set to 32. We explored hyperparameters on the
human dataset, and the best parameters are listed in Table 1.

Fig. 4. Message interaction between Interformer and Inter-CMPNN

Fig. 3. The structure of Interformer
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Following the work of Zheng et al. (2020), hyperparameter opti-
mization was not performed for the DUD-E and BindingDB data-
sets. All experiments were conducted on NVIDIA RTX3090 GPUs.

3.3 Performance metrics
Here, different metrics were used on different datasets following
previous works (Chen et al., 2020; Zheng et al., 2020). The area
under the receiver operating characteristic curve (AUC) was used as
the main metric to evaluate our model. Besides, the ROC enrich-
ment metric (RE) that describes the ratio of the true positive rate
(TPR) to the false positive rate (FPR) at a given FPR threshold was
used for performance assessment on the DUD-E dataset, where FPR
was set to 0.5%, 1%, 2% and 5%, respectively as the threshold.
Moreover, recall and precision were used for performance evalu-
ation on the human dataset, while the area under precision recall
curve (PRC) was applied to performance evaluation on the
BindingDB dataset. We repeated each experiment three times with
different seeds to calculate the mean and the standard deviation as
in the work of Zheng et al. (2020).

3.4 Results
3.4.1 Performance on the DUD-E dataset

Here, we compared our model with different types of existing meth-
ods on DUD-E. These compared methods include two traditional
machine learning-based methods NNscore (Durrant and
McCammon, 2011) and RF-score (Ballester and Mitchell, 2010), a
docking-based method Vina (Trott and Olson, 2009) and three re-
cent deep learning-based methods 3D-CNN (Ragoza et al., 2017),
PocketGCN (Torng and Altman, 2019) and DrugVQA (Zheng
et al., 2020). As shown in Table 2, MINN-DTI has significant ad-
vantage in terms of AUC and RE. The AUC of MINN-DTI is about
2.5% higher than that of the state-of-the-art method DrugVQA, and
over 10% higher than that of the other methods. In terms of RE,
MINN-DTI is at least twice as high as all the other methods. These
results show that our method is more effective in drug screening,
since the number of positive samples in DUD-E is much less than
that of negative samples, which is close to the actual situation of vir-
tual screening. In addition, deep learning-based methods are obvi-
ously superior to the descriptor-based traditional machine learning
methods and the docking-based method in terms of AUC and RE,

which suggests that deep learning-based methods are more effective
in learning the representations of drugs and targets.

3.4.2 Performance on the human dataset

Here, we compared our method with nine existing methods on the
human dataset to further evaluate our model, including k-nearest
neighbor (k-NN), random forest (RF), L2-logistic (L2), support vector
machine (SVM), graph neural network (GNN) (Tsubaki et al., 2019),
graph convolution network (GCN), GraphDTA (Nguyen et al.,
2021), TransformerCPI (Chen et al., 2020) and DrugVQA (Zheng
et al., 2020). The results are presented in Table 3, from which we can
see that our model is 0.2% better than the state-of-the-art method
DrugVQA in AUC. However, in terms of recall and precision, SVM is
the best. Actually, it is difficult to objectively and completely evaluate
the performance of a model by using only recall and precision, as the
performance of SVM is generally inferior to deep learning models
according to many existing works. Given the reliability of AUC, we
can still claim that our method is the best one.

A newly constructed dataset with a scaffold-based split was also
used to train and test the above-mentioned methods. As shown in
Table 4, our model consistently exceeds all the competitors in AUC.
Compared to the results on the random splitting human dataset, the
performance of all models on the scaffold splitting human dataset
degrades. However, our model has the slightest drop in AUC, i.e.
1.4%, about half of that of the second-place DrugVQA. These
results suggest that more comprehensive extraction of DTI informa-
tion could help enhance our model’s ability to identify novel
interactions.

3.4.3 Performance on the BindingDB dataset

We also compared our model with GCN, GNN (Tsubaki et al.,
2019), GraphDTA (Nguyen et al., 2021), DrugVQA (Zheng et al.,
2020) and TransfomerCPI (Chen et al., 2020) on the BindingDB
dataset. As shown in Table 5, our model achieves the highest AUC

Table 1. Hyperparameter setting in MINN-DTI

Hyperparameter Value

Learning rate 0.0001

Number of residual blocks 32

Number of filters 32

Graph feature size 32

Attention heads 8

Hidden size of Decoder 32

Iterations of message passing 4

Dropout 0.2

Table 2. Performance comparison between our model and existing

methods on the DUD-E dataset

Model AUC 0.5% RE 1.0% RE 2.0% RE 5.0% RE

NNscorea 0.584 4.166 2.980 2.460 1.891

RF-scorea 0.622 5.628 4.274 3.499 2.678

Vinaa 0.716 9.139 7.321 5.811 4.444

3D-CNNa 0.868 42.559 26.655 19.363 10.710

PocketGCNa 0.886 44.406 29.748 19.408 10.735

DrugVQAa 0.972 6 0.003 88.17 6 4.88 58.71 6 2.74 35.06 6 1.91 17.39 6 0.94

MINN-DTI 0.992 6 0.007 175.89 6 12.02 90.77 6 5.81 46.49 6 2.63 19.10 6 0.71

Note: The first row, the percentage before RE is the given threshold of FPR. Best results of the corresponding experiments were represented in bold.
aMeans results obtained from the article (Zheng et al., 2020).

Table 3. Performance comparison between our model and existing

methods on the random splitting human dataset

Model AUC Recall Precision

k-NNa 0.860 0.927 0.798

RFa 0.940 0.897 0.861

L2a 0.911 0.913 0.861

SVMb 0.910 0.966 0.969

GNNa 0.970 0.918 0.923

GCNb 0.956 6 0.004 0.862 6 0.006 0.928 6 0.010

GraphDTAb 0.960 6 0.005 0.882 6 0.040 0.912 6 0.040

TransformerCPIb 0.973 6 0.002 0.916 6 0.006 0.925 6 0.006

DrugVQAa 0.979 6 0.003 0.961 6 0.002 0.954 6 0.03

MINN-DTI 0.981 6 0.003 0.945 6 0.030 0.902 6 0.045

aMeans results obtained from the article (Zheng et al., 2020).
bMeans results obtained from the article (Chen et al., 2020).

Best results of the corresponding experiments were represented in bold.
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and PRC, which is in line with our expectation. Although this ad-
vantage is not as obvious as that on the DUD-E dataset, considering
that AUC has less room to improve at the level of more than 95%
on these datasets, such progress is still considerable.

We further investigated the generalization capability of our mod-
els on the test subsets with/without training targets, the results are
shown in Figure 5. We can see that our model performs better than
the other models regardless of whether or not the tested targets are
in the training set. Our model achieves an AUC of 0.972 6 0.008
and a PRC of 0.957 6 0.002 when test targets are in the training set.
While for new targets, our model still maintains an AUC of
0.957 6 0.009 and a PRC of 0.951 6 0.002. However, the other
methods all show a larger drop of performance than MINN-DTI on
the subset without the training targets, which means that the per-
formance gap between MINN-DTI and these methods is widened.
These results suggest that the generalization ability of our model on
new targets is higher than that of these existing methods.

3.5 Ablation study
We conducted ablation studies on the DUD-E and human datasets
to check the effectiveness of different configurations of MINN-DTI.
All experiments were repeated three times on the divided datasets
used above with different seeds to calculate the mean and the stand-
ard deviation. Models with different configurations and their per-
formance are presented in Table 6. The first model concatenates the
output vectors of DynCNN and CMPNN and uses MLP to predict
DTI. The second model replaces Interformer in MINN-DTI with
transformer. There are two possible settings: the encoder of trans-
former receives the information of protein, the decoder of trans-
former receives the information of drug, or vice versa. For
mimicking and competing with Inter-CMPNN, the first setting was
used to extract drug information during each round of message pass-
ing with the decoder in second model. For the third model, only an
Interformer is deployed behind the whole CMPNN module instead
of deploying an Interformer during each round of message passing
using multiple Interformer as MINN-DTI. As shown in Table 6,

MINN-DTI maintains the best performance on both datasets and
the model without Interformer module (the first model) performs
worst. The performance of the third model is close to the second
model, with a difference of only 0.002/0.003 in AUC. However, the
results are different on the two datasets. The second model is better
than the third model on the human dataset, while the opposite is
true on the DUD-E dataset. We speculate that the main reason for
the different results may be due to the different data distribution of
the two datasets: the test set of DUD-E has unbalanced positive and
negative samples, while human dataset is balanced. The second and
third models achieve significantly improved performance compared
with the first model, which indicates that adopting transformer or
Interformer to extract the interaction information between drug and
target is helpful for DTI prediction. The second model is still much
worse than MINN-DTI, which shows that the Interformer model is
more effective than transformer in DTI prediction. As MINN-DTI
shows considerable performance advantage over the third model,
we believe that the iterative use of Interformer in Inter-CMPNN is
beneficial to the extraction of drug and protein interaction informa-
tion. The ablation results show that MINN-DTI combining
Interformer with Inter-CMPNN can indeed improve the prediction
performance to a considerable extent.

3.6 Interpretability and visualization
Two representative DTIs were selected to illustrate the interpretabil-
ity of our model. By inputting the target distance map and the com-
pound graph representations, the model generates multi-head
attentions of the target and the compound, and the weights of each
amino acid residue and each atom in the target and drug molecule
are calculated to identify their importance in the prediction. Protein
distance maps and attention bars representing attention weights of
residues and ligand atoms are shown in Figure 6. Here, we visualize
the top-5 weighted residues of the example target as pink skeletons,
and highlight the top-10 weighted atoms by red dots. We found that
the significantly weighted residues and atoms are highly consistent
with the actual interacting residues and atoms. In CXCR4 protein
co-crystal complex 3ODU, GLU288, ASP97 and CYS186 form
polar interactions with the drug molecule, and HIS113 and TYR116
form hydrophobic interactions with the drug molecule. These resi-
dues and atoms that form the interactions have larger attention
weights, which can also be seen in the target ALK5 with co-crystal
3HMM. Meanwhile, there are also residues or atoms with low

Table 4. Performance comparison between our model and existing

methods on the scaffold-based splitting human dataset

Model AUC Recall Precision

k-NN 0.841 0.803 0.892

RF 0.885 0.890 0.832

L2 0.881 0.832 0.827

SVM 0.892 0.857 0.883

GNN 0.921 6 0.002 0.843 6 0.004 0.855 6 0.003

GCN 0.905 6 0.010 0.823 6 0.012 0.902 6 0.008

GraphDTA 0.926 6 0.008 0.855 6 0.004 0.898 6 0.006

TransformerCPI 0.948 6 0.005 0.930 6 0.003 0.933 6 0.005

DrugVQA 0.952 6 0.002 0.925 6 0.004 0.928 6 0.006

MINN-DTI 0.967 6 0.003 0.922 6 0.013 0.931 6 0.021

Best results of the corresponding experiments were represented in bold.

Table 5. Performance comparison between our model and existing

methods on the BindingDB dataset

Task AUC PRC

GNN 0.909 6 0.002 0.901 6 0.005

GCN 0.912 6 0.003 0.907 6 0.002

GraphDTA 0.923 6 0.003 0.916 6 0.004

DrugVQA 0.936 6 0.005 0.928 6 0.007

TransformerCPI 0.950 6 0.002 0.949 6 0.005

MINN-DTI 0.961 6 0.009 0.956 6 0.002

Best results of the corresponding experiments were represented in bold.

Fig. 5. Performance comparisons on seen and unseen protein targets from the

BindingDB dataset. Error bars indicate the standard deviations

Table 6. Ablation results on the DUD-E and human datasets

Model DUD-E Human

Without Interformer 0.953 6 0.003 0.967 6 0.004

Transformer & CMPNN 0.975 6 0.004 0.971 6 0.007

Single Interformer 0.978 6 0.006 0.969 6 0.005

MINN-DTI 0.992 6 0.007 0.981 6 0.003

Best results of the corresponding experiments were represented in bold.
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weight, which are considered to have low contribution to the forma-
tion of interactions. For example, in the drug attention bar of com-
plex 3ODU, atoms 21–26 of ligand have small weights, and this

group is actually exposed to the solvent without participating in the
formation of interaction. The above exploration shows that our

model can learn and highlight the important target amino acid
residues and drug atoms. This helps us to understand DTIs more
comprehensively, which is beneficial to the study on the

structure-activity relationship and action mechanism of drugs.

4 Conclusion

In this article, we proposed a novel model MINN-DTI to boost DTI

prediction by comprehensively mining the mutual impacts between
the targets and drugs, which are represented by protein distance

maps and molecular graphs, respectively. To this end, a MINN was
designed by combining a newly designed Interformer with an
improved CMPNN (called Inter-CMPNN) to capture the interacting

context of drugs and targets. Compared with the existing models,
MINN-DTI achieves the best performance on three public datasets,
due to the fact that MINN-DTI can more effectively exploit the

interacting information between targets and drugs. We believe that
the Interformer and Inter-CMPNN-based MINN should be also ef-

fective in other related tasks, including target–target, target–peptide
and drug–drug interaction prediction.
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