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Prior to birth, the neonate has limited exposure to pathogens. The transition from the intra-
uterine to the postnatal environment initiates a series of complex interactions between the
newborn host and a variety of potential pathogens that persist over the first few weeks of
life. This transition is particularly complex in the case of the premature and very low birth
weight infant, who may be susceptible to many disorders as a result of an immature and
underdeveloped immune system. Chief amongst these disorders is necrotizing
enterocolitis (NEC), an acute inflammatory disorder that leads to necrosis of the
intestine, and which can affect multiple systems and have the potential to result in long
term effects if the infant is to survive. Here, we examine what is known about the interplay
of the immune system with the maternal uterine environment, microbes, nutritional and
other factors in the pathogenesis of neonatal pathologies such as NEC, while also taking
into consideration the effects on the long-term health of affected children.

Keywords: NEC = necrotizing enterocolitis, TL4 – Toll-like receptor 4, microbiota (microorganism), prematurity and
low birth weight, pediatric sepsis
INTRODUCTION

The characteristic underdevelopment of the neonatal immune system predisposes infants to
inflammatory disorders, including necrotizing enterocolitis (NEC), an acute inflammatory disease
that develops in up to 10% of premature infants (1). NEC is characterized by the sudden
development of inflammation and necrosis of the intestine leading to overwhelming sepsis and
death in up to half of all patients (2, 3). Unique characteristics of the neonatal immune system that
confer a susceptibility to the development of diseases like NEC include the potential exposure of
priming antigens within the maternal uterine environment (4), changes in cytokine, growth factor
and hormone signaling pathways (5, 6), nutritional effects related to exposure to probiotics and
breastmilk (7), as well as patterns of microbial colonization in the gut and other mucosa that are
specific to the neonatal period (8). These changes may have long-term effects on the immune
system, creating immune activation or tolerance that determine whether pathology will develop (9).
Importantly, NEC and other inflammatory neonatal conditions typically also affect the lungs and
brain (10–12) resulting in long-term sequelae that may be underappreciated initially. In infants who
are fortunate to survive NEC, lifelong problems may develop, including short bowel syndrome (13),
nutritional deficiencies impact growth (14), and persistent white matter injury associated with
cognitive impairment (10, 15–17) among others.
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While many important human clinical studies, as well as
preclinical studies in clinically relevant animal models (18), have
made important gains in elucidating the complexities of the
cellular and biological processes associated with immunological
disorders including NEC, many gaps in knowledge in this field
remain. We will review available studies that explore the
pathogenesis of neonatal gut inflammation and its short- and
long-term impacts on various secondary organ systems. We will
assess existing research gaps, and the potential future directions
for investigations in the field.
Impaired Immunity in the Neonate

Impairment of many components of the immune system is well
documented in neonates and is especially exacerbated in preterm
infants (19). This is due to a relative lack of antigenic exposure
and enhanced self-modulatory immunosuppressive mechanisms
that make way for beneficial microbial colonization and prevent
potentially harmful inflammation and autoimmunity (19). As a
result, preterm infants are exposed to increased risk of infections
from a variety of potential pathogens (20, 21). Known
deficiencies include decreased physical integrity of the
pulmonary and gastrointestinal epithelial barriers (22, 23),
reduced numbers of goblet cells and thinner mucus secretions
(24, 25), low numbers of Paneth cells with decreased
antimicrobial producing function (26), lower levels of
circulating maternal IgG with low opsonic activity (27–29),
complement protein deficiency in the setting of reduced
activity (30–32), and reduction in numbers and function of
neutrophils and monocytes (33–36). As a result of these
characteristics, multiple levels of susceptibility to bacterial, viral
and fungal infection exist. The implications of these impairments
in immunity are reflected in data from clinical studies that report
up to five-fold higher risk of sepsis in preterm infants compared
with their term counterparts (37, 38). Preterm infants diagnosed
with sepsis are, in turn, at significantly higher risk of respiratory
and neurological complications such as respiratory distress
syndrome, severe intraventricular hemorrhage and
periventricular leukomalacia (39). These findings contribute
considerably to prolonged neonatal hospital stays (40),
increased numbers of rehospitalizations and overall mortality
compared with term infants (41, 42).

Deficiencies that allow pathogenic invasion from colonized
sites such as the respiratory and gastrointestinal tract in preterm
infants are compounded by a tendency toward exaggerated
immune activity (43–45). Certain components of the immune
system have been noted to be reach a heightened degree of
activation, resulting in pathogenic inflammation that has severe
ramifications for disease pathogenesis. For instance, Th17 cells
are abundant lymphocytes at the intestinal mucosa of the
premature newborn (46) and contribute to host defense against
extracellular microbial pathogens (47, 48). This subset of CD4+
T cells mainly produce IL-17, which has been shown to induce a
pro-inflammatory state, leading to infection-induced
immunopathology in many human autoimmune diseases,
including multiple sclerosis, rheumatoid arthritis, psoriasis and
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Lyme arthritis (49–51). In the preterm infant, the relative
abundance of IL-17 signaling dampens the effect of counter-
inflammatory mechanisms such as Foxp3+ Treg cell activity and
in fact, downregulates Foxp3+ Treg expression (52). The net
result of this skew towards a pro-inflammatory lymphocyte state
is the finding of impaired enterocyte tight junctions, increased
enterocyte apoptosis, and decreased enterocyte proliferation,
culminating in global mucosal injury as observed in
necrotizing enterocolitis (46).
Innate Immune Signaling and Downstream
Consequences

The exaggerated signaling in response to TLR4 in the premature
infant represents an important example of immature immune
activation that leads to disease (53). The cell walls of gram-
negative bacteria like Escherichia coli and Helicobacter pylori
contain endotoxins which mediate host recognition and
inflammatory response to infection. Lipopolysaccharide (LPS),
which is the main endotoxin encountered, binds to an
intramembrane complex made up of TLR4 and CD14 and
initiates the recruitment of myeloid differentiation primary
response gene 88 (MyD88), signaling an inflammatory response
involving the activation of nuclear factor-kB (54). This response is
accompanied by cellular stress responses, leading to the release of
pro-inflammatory cytokines including IL-6, IL-1b, TNF-a and
other cellular stress markers including nitric oxide (54), as well as
the expression of co-stimulatory molecules (55). It should be
pointed out that other TLR4 ligands exist, including viral proteins,
endogenous proteins such as low-density lipoprotein, beta-
defensins, and heat shock proteins (56–59). TLR4 signaling may
also occur via an alternative adapter protein TRIF (60, 61). In
leukocytes, the downstream effects of TLR4 activation are critical
for host defense against infection (62, 63) via NF-kB activation
and downstream cytokine-mediated responses (63). However, in
the gut, TLR4 is notably an essential component for normal
intestinal development via the Notch signaling pathway (64, 65).
For this reason, TLR4 is expressed at higher levels in the
premature (and thus still developing) gut as compared to the
full-term gut, which does not result in an inflammatory response
given the bacteria-free environment of the developing fetus. By
contrast, when the premature infant is born and exposed to the
microbiota of the environment, colonization of the intestine
occurs, leading to activation of TLR4 by LPS, whereupon TLR4
switches from a developmental to an inflammatory role, leading
to the induction of NEC.

In full-term neonates, TLR4 expression in the intestine is
notably downregulated around the time of delivery and then
slowly increases as the immune system matures (66, 67). It
follows that full-term neonates are protected from NEC
compared to those that are born preterm, since TLR4
activation in the intestinal epithelium has been shown to be
critical for NEC development (68) (Figure 1). TLR4 activation
results in increased intestinal epithelial death by both apoptosis
(69) and necroptosis (70), the induction of ER stress (71) and
enhanced autophagy (72–74). Other critical features of TLR4
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activation in the intestine include decreased mucosal healing
both in vitro and in vivo (67), reduced goblet cell production and
thus loss of a mucin barrier for defense (68), increased expression
of proinflammatory cytokines leading to increased barrier
permeability, decreased tight junction function, and increased
epithelial cell apoptosis (75). These direct effects of TLR4
activation cumulatively promote bacterial translocation (76),
which leads to further TLR4 activation on the endothelium,
leading to loss of endothelial nitric oxide synthase (eNOS) and
associated vasoconstriction (77), which in turn contributes to the
development of ischemic necrosis in NEC. The premature
intestine, which has increased expression of TLR4, is therefore
more susceptible to NEC due to the factors described above (64,
65, 78).

It is important to note that other TLRs have been implicated
in NEC pathogenesis. TLR5 and TLR9, particularly, have been
demonstrated to be protective in NEC pathogenesis. On the
other hand, TLRs 2 and 8 have been demonstrated to be
upregulated in NEC intestinal tissue from experimental animal
models, as well as those samples obtained in the clinical setting
Frontiers in Immunology | www.frontiersin.org 3
from infants. However, functional pathways related to the role of
these latter TLRs in pathogenesis have not been clearly defined
(79, 80). Similarly, other pattern recognition receptors including
nucleotide‐binding domain and leucine‐rich repeat containing
(NLR) proteins, RIG-I-like receptor and antimicrobial mediators
such as mannose-binding lectin are upregulated in NEC and
studies are ongoing to elucidate the associated pathways in order
to identify viable therapeutic targets (81–84). Interestingly,
emerging data suggests that one such mediator, NLR pyrin
domain containing 3 (NLRP3) likely acts via a TLR4
dependent pathway (83).
Mucosal Dysbiosis and Associated
Disruptions in Immune Function

It has been long established that the intestinal microbiome,
consisting of many millions of microbes inhabiting the gut, has
a significant impact on disease processes (24). Normally, bacteria
that compose the microbiome synthesize several mediators
FIGURE 1 | Immune Manifestations in NEC. Schematic illustrating immune signaling involving toll-like receptor 4 (TRL4) in necrotizing enterocolitis (NEC)
pathogenesis. The premature immune system leaves the neonate prone to infectious and inflammatory diseases such as NEC. Mediated by exaggerated TLR4
signaling on the intestinal epithelium, the onset of NEC leads to mobilization of an endogenous TLR4 ligand, high mobility group box 1 (HMGB1) from the intestine to
the lungs and brain where TLR4 activation on the pulmonary epithelium and microglia respectively leads to phenomena such as neutrophil infiltration, reactive oxygen
species (ROS) buildup, and other downstream effects that exacerbate pathology in the lungs, brain and other organ systems.
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including lipopolysaccharides, peptidoglycans, short-chain fatty
acids (SCFA), signaling molecules such as nitric oxide and
essential vitamins which influence host physiology by
regulating the mucosal immune system (85, 86). Preclinical
data derived from studies in germ-free mice have shown that
lymphoid follicles in the gut require peptidoglycan from gram
negative bacteria for maturation, reflecting the importance of
bacterial colonization for immune development (87). Other
studies have shown that bacteria-naïve mice have fewer T cells
and Paneth cells (88), lower expression of secretory IgA, lower
levels of intestinal epithelial cells compared to conventional mice.

From clinical data, premature infants have been described to
have an immature microbiome, with amniotic fluid, placenta,
and meconium of premature neonates containing variations in
microbes compared to full-term infants (89–91). The specific
characteristics of the immature microbiome include well-
described characteristic progressions from one dominant
microbial population to the next (92). However, the preterm
microbiome overall remains consistently less diverse compared
to the variations in microbial classes observed in full term
neonatal stool (92–94). For instance, in one 16S rRNA study,
four bacterial classes accounted for more than 90% of the
microbial sequence reads derived from preterm infant stool
(92, 95). Other studies have verified lower alpha-diversity in
preterm stool microbiota compared to full-term controls (96,
97). The immature preterm microbiome has also been
demonstrated to impact metabolism and metabolomics,
resulting in a metabolic state analogous to fasting, in spite of
adequate caloric intake. Hence, metabolic derangements likely
present another mediator of the relationship between microbiota
disruption in preterm infants and functional immune
deficiencies, which may persist and impact long-term health
(98). Other factors that modulate the microbiota of premature
infant include the use of antibiotics and h2-blockers, the
administration of breast milk, and practices within the NICU
(98–101).

Microbial dysbiosis is considered to play important roles in
the complex etiology of NEC (92, 102, 103). Alterations in the
microbiome have the ability to cause disruptions in immune
function and result in a shift in balance to pathogenic bacterial
colonization (104, 105). Further, activation of TLR4 by LPS
present on potentially pathogenic gram-negative bacteria is an
important aspect of NEC pathogenesis as discussed earlier. The
tendency towards pathogenic microbial colonization results in
TLR4 mediated phagocytosis and translocation of these Gram-
negative bacteria across the intestinal mucosal barrier (106),
resulting in activation of NF-kB and caspases, which triggers
inflammation (107).

Overall, similar bacterial species have been identified in
infants diagnosed with NEC compared to control infants.
However, neonates with NEC have been described to have
microbiomes that are temporally dynamic (with more changes
in composition over time), but feature lower variations of strains
within species (108, 109). Preterm infants with relatively lower
alpha-diversity have higher risk of a later propensity for NEC
development (95, 97). More specifically, 16S rRNA and
Frontiers in Immunology | www.frontiersin.org 4
metagenomic sequencing studies have reported an association
between phylum Proteobacteria overrepresentation and
increased NEC incidence (95, 110). Of note, this phylum
consists of gram-negative pathogens that express high levels of
LPS and are overproducers of SCFA including propionic acid
wh i ch i s though t t o exa c e rba t e NEC-a s so c i a t ed
neurodevelopmental conditions including movement disorders,
seizure, and developmental delay (111).

While these data are compelling, reports outlining the
constitution of NEC and non-NEC associated microbiota
continue to vary, and further studies are needed to shed more
light on this field. Ongoing studies examining how specific
human milk oligosaccharides (HMOs) exert a protective effect
on neonates against development have also focused in part on
the microbiome. HMOs may promote the growth of bacteria
from phyla Bacteroidetes, the latter of which is mainly
represented by the Bifidobacterium genus (112, 113). These
bacteria have been demonstrated to have a beneficial effect on
immunity and are associated with positive outcomes with respect
to NEC, as well as respiratory complications in neonates (112,
114). For this reason, probiotic therapy remains an active
research area in NEC therapeutics. The influence of breast
milk derived HMOs on the airway microbiome in preterm
infants and its potential effects in reducing airway
inflammation for instance, also remains an open question
under investigation.
In Utero Influences and Immune Tolerance

Various studies reveal that there are important maternal effects
on immune system development during the in utero period (103,
115, 116). Ongoing work continues to establish that important
events and influences may be exerted during this time that
precede post-natal influences such as breastmilk, enteral feeds
and antibiotic exposure (117–119). The maternal microbiome
and related factors such as maternal diet, antibiotic use and
maternal infections all remain active areas of research to find
potential mechanisms to guide development of targeted
interventions that can impact early colonization patterns in
infants to prevent early pathology such as NEC as well as
longer term diseases that may persist into adulthood (120).

One such study has demonstrated that transiently exposing
germ-free mice to E. coli during pregnancy results in pups with
increased intestinal type 3 innate lymphoid cells (ILC3) and F4/
80 mononuclear cells (121), an effect that persisted 8 weeks
postpartum. This effect was associated with altered intestinal
transcriptional profiles and increased production of epithelial
antibacterial peptides compared to those offspring from germ-
free dams. Similarly, a pig model in which chorioamnionitis was
induced by LPS administration resulted in higher intestinal
endotoxin and neutrophil/macrophage density, with shorter
villi in the offspring, accompanied by upregulation of various
innate immune response, neutrophil chemotaxis and antigen
processing genes after 5 days (122). Unfortunately, this and
other existing studies are limited, in that they do not evaluate
April 2021 | Volume 12 | Article 650709
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longer term outcomes of these alterations in the immune system.
These studies also are limited by not accounting for the specific
site of LPS signaling (immune versus epithelial). A longer term
study has been performed in a murine model of colitis where
developing mice were exposed in utero to LPS (123). Subsequent
chemical induction in adulthood, at age 5 weeks, revealed
protection from development of colitis in those pups exposed
to endotoxin during development. Notably, this protection was
not present when mice received LPS postnatally at 7 days of age.

While a preponderance of the studies described above involve
animals, important data from human infants has also been
obtained. Studies that are able to be performed without harm to
infants include stool analyses in preterm neonates, which have
yielded robust metabolomic data (114) and include those studies
that have compared preterm neonates with NEC to healthy controls
to demonstrate that NEC does not have a uniform microbial
signature. Combined with emerging laboratory tools and
approaches that are able to probe regulation of the immune
system at the molecular level, it is becoming clearer that the
preterm immune system possesses in-built immune tolerance,
which is associated with impaired metabolism as described
earlier, including minimized glycolytic activity (124). Accordingly,
preterm naive CD4+ T cells have been found to have a higher
threshold for inducing inflammation compared to adults, with
impaired early Th1 differentiation including IFNg production
(125). Instead, Th2 and Th17 polarization are noted following
bacterial stimulation, accompanied by low innate antiviral type 1
interferon responses (79, 126, 127). Similarly, IFNg production by
stimulated naive cord blood CD4+ T cells has beenmeasured as 5 to
10-fold less relative to adult CD4+ T cells, resulting in a
characterization of the preterm CD4 response as Th2 skewed
(128). This allows baseline prioritization of energy for
replenishment and maintenance of organ functions over
inflammatory responses until a specific threshold is exceeded, as
seen in the mucosal and systemic perturbations characteristic of
NEC (129). This hyper-inflammatory status has been correlated
with the diagnostic phase of NEC and sepsis in preterm
infants (114).
Epithelial Barrier Dysfunction

One of the direct consequences of the local inflammation caused
by TLR4 activation is destruction of the intestinal epithelial
barrier (130, 131). Under physiologic conditions, epithelial
cells regulate the penetration of gut lumen contents including
bacteria and their components, digestive enzymes and degraded
food products such as ions, nutrients and water (132). This is
accomplished by the formation of tight junctions containing
complexes of proteins which bind the epithelial cells together
(133), as well as active transport mechanisms (134, 135). A
disruption of these tight junctions allows unregulated traverse of
pathogenic antigens which trigger mucosal injury and
inflammation leading to disorders such as NEC.

In the premature neonate, control of luminal contents is
complicated by a pre-disposition to intestinal epithelial injury
(25). It has been shown that proteins that make up the tight
Frontiers in Immunology | www.frontiersin.org 5
junction, including claudins and occludins, show a tissue-specific
distribution pattern including those patterns characteristic of GI
tract epithelium (136, 137). Further, some tight junction proteins
have downregulated expression in preterm infants (138, 139),
resulting in alterations in intestinal tight junction function (25,
140, 141). In one animal study, intestinal tissue obtained from
germ free mice colonized by microbiota from preterm infants
was found to express lower levels of occludin and tight junction
associated protein ZO-1 compared to controls, in addition to
disorganization in TJ protein assembly (139). Such imbalances of
tight junctions are thought to render the epithelium even more
susceptible to injury during NEC, during which expression of
these tight junction proteins are significantly impaired via
alterations to HIF-1 pathway signaling (142).

When TLR4 is activated during NEC, enterocyte migration
from the crypt to the villus can also be impaired via
modifications to the cell-extracellular matrix interactions (143,
144). Whereas TLR4 activation in the adult leads to increased
enterocyte proliferation, in the premature intestine, apoptosis is
instead induced, leading to reduced cell proliferation, impaired
epithelial regeneration (69, 144, 145), and dysfunction in the
epithelial barrier. In addition, autophagy – a mechanism by
which cells recycle their intracellular organelles but which can
also lead to cell death - is induced in intestinal epithelial cells as a
consequence of TLR4 activation during NEC, leading to
impaired migration (146). Strategies to block enterocyte
autophagy, including epidermal growth factor therapy, have
been found to reduce NEC severity in animal models (73, 147).

Interestingly, a unique pathway to epithelial injury mediated
by neutrophils has been described in murine models. Neutrophil
infiltration has long been noted histologically in murine and
human tissue samples as characteristic of NEC pathology (148,
149). While it has been hypothesized that neutrophil recruitment
may contribute to epithelial injury in NEC via the release of toxic
products and reactive oxygen species, definitive evidence from
murine models suggests that the formation of neutrophil
extracellular traps (NETosis) are important actors in
neutrophil-mediated epithelial damage and pathogenesis (150).
Patient Outcomes Following Inflammatory
Disorders of Premature Birth

Gut
The immunopathology of NEC presents clinically as a
devastating intestinal disease of high mortality and morbidity,
with associated complications including bowel necrosis and
perforation, leading to intestinal resections and resulting
nutritional disorders such as short bowel syndrome. These
sequelae may notably also have effects that last beyond the
acute period of illness, affecting nutritional status, susceptibility
to other illnesses and developmental delay. Premature infants
who survive NEC are at risk of long-term severe growth failure in
the years following infection (151). A number of multicenter
cohort studies have showed that premature infants that
underwent surgery for NEC were more likely to have
significant growth delay compared to those without NEC (152,
April 2021 | Volume 12 | Article 650709
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153). This is thought to be mainly due to impaired nutritional
delivery and loss of functional gastrointestinal mass secondary to
bowel resection (154). However, it has been demonstrated that
neonatal sepsis in premature infants also results in a
hypermetabolic state with increased energy expenditure and
protein catabolism that persists beyond the acute period of
illness (155–157). This is important, considering that even
premature infants with medical NEC are at increased risk for
growth failure. Importantly, adult and animal studies have
demonstrated that TNF-a, IL-1b and IL-6, which are globally
elevated in sepsis and are expressed downstream of TLR4
signaling in NEC, are likely modifiers of protein and energy
metabolism (158, 159). Hence while the molecular mechanisms
that mediate this phenomenon are yet to be fully elucidated, it is
clear that the devastating effects of exaggerated TLR4 signaling in
the premature infant gut persists beyond the acute period of
illness. Notwithstanding, clinical studies reviewing long-term
growth impairments and gastrointestinal sequelae of NEC
beyond three years are lacking. This is the case for longer term
laboratory studies examining longer term immune
manifestations, as previously outlined.

Brain
Recent clinical and experimental studies have established that
NEC is not only an intestinal condition (160, 161). Its broader
sequelae including systemic inflammation, hypoxia, ischemia
have the ability to trigger multisystem organ dysfunction,
notably in the brain and lungs (162). Systematic reviews have
noted that NEC is an independent risk factor for
neurodevelopmental delay and poor neurocognitive outcomes
in preterm infants (3, 163, 164). Importantly, these deficits may
continue to manifest, with children continuing to have poor
mental and psychomotor development around 2 years and in a
significant proportion, persistent cognitive deficits well into
school age (153, 165, 166). Proposed mechanisms for these
sequalae suggest a multifactorial etiology. For instance,
characteristic changes to the microbiome associated with NEC
affect the not only gut, but may also mediate preterm brain
development via the modulation of neurotransmitter levels
(167). As in the gut, endothelial barrier dysfunction in the
brain is a critical aspect of NEC pathophysiology, as the blood-
brain-barrier (BBB) has been found to be directly impacted by
dysbiosis. In this case, mouse models have demonstrated that low
levels of SCFA due to alterations in bacterial composition can
cause a permanent increase in BBB permeability due to
alterations in tight junction protein expression (168).

Most broadly, downstream intestinal injury and barrier
dysfunction discussed in prior sections promote bacterial
translocation into systemic circulation, accompanied by the
recruitment of inflammatory mediators and cytokines, leading
to systemic inflammation and sepsis. The brain’s own immune
cells, the microglia and astrocytes, modulate the development of
normal brain functions including synaptic pruning, synapse
formation and synaptic transmission regulate neurogenesis,
neuronal migration, and synaptic plasticity (169). However,
multiple animal studies have demonstrated that exposure to
inflammatory molecules disrupts brain development. For
Frontiers in Immunology | www.frontiersin.org 6
instance, exposure to IL-1b and TNF-a in one mouse study
resulted in long‐lasting disruptions in oligodendrocyte
maturation (170). In other animal studies, early exposure to
LPS has resulted in reduction in hippocampal volume,
disordered neurogenesis, increased microglia populations and
activity, axonal injury, and memory impairment (171, 172).
Accordingly, increased disease severity, for instance, surgical
NEC (173) and increased levels of pro-inflammatory cytokines
(160), are associated with worse neurodevelopmental outcomes
in preterm infants.

Finally, it is now known that TLR4 signaling is an important
part of NEC pathophysiology in the brain (17). Using a clinically
relevant murine NEC model, Nino et al. showed that TLR4
activation occurs during NEC, an endogenous TLR4 ligand, high
mobility group box 1 (HMGB1) is released from the intestinal
and activates TLR4 on microglia, leading to the accumulation of
reactive oxygen species (ROS), loss of oligodendrocyte
progenitor cells (OPCs), dysmyelination, and cognitive
impairments. Importantly, the administration of targeted
microglia anti-inflammatory and antioxidant therapy
ameliorated the degree of neurological dysfunction,
demonstrating a novel therapeutic target in NEC-associated
brain injury.
Lung
Extra-intestinal sequelae of NEC are well documented in the
pulmonary system. Up to half of premature infants born prior to
36 weeks gestation develop lung injury (174). However, lung
injury that occurs in the presence of infectious and inflammatory
neonatal conditions such as NEC tend to be more severe and
have longer term effects than in matched patients without (12).
Overall, approximately 15% of infants with NEC experience lung
damage that is characterized by neutrophil infiltration and
inflammatory cytokine upregulation.

Interestingly, recent insights into underlying causes of NEC-
induced lung injury have revealed a mechanism mediated by
TLR4 that is analogous to that seen in brain injury (175, 176).
Using a murine NEC model, Jia et al. have shown that TLR4,
highly expressed on the pulmonary epithelium in animals with
NEC, is activated by TLR4 ligand high-mobility group box 1
(HMGB1) derived from the gut epithelium. This leads to
downstream upregulation of CXCL5, a chemoattractant, and
subsequent recruitment of neutrophils. Importantly, the
aerosolized delivery of a novel TLR4 small molecule inhibitor
was sufficient to reverse this inflammatory cascade and prevent
the lung injury normally triggered by NEC in this model.
Fur ther , in NEC and other diseases wi th s imi lar
histopathology, Th17 skewed CD4 T cells have been shown to
drive the cytokine upregulation and immune cell infiltration that
constitute the mechanism of inflammation and lung injury (79,
177). The inflammation is typically via upregulation of the
chemokine CCL25, which is now known to be upregulated
downstream of TLR4 activation in the lung during NEC, a
phenomenon that simultaneously depletes the population of
protective regulatory T cells (Tregs) present in the lung
epithelium (176).
April 2021 | Volume 12 | Article 650709
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SUMMARY

The premature neonate has multiple levels predispositions to
infectious and inflammatory afflictions such as NEC. A dynamic
and complicated interface between pathogens, other microbiota,
the maternal environment and the immune system mediates
such pathology and has severe acute effects locally at the
intestinal epithelium, but importantly impacts multiple systems
secondary to systemic inflammation, as well as widespread effects
of important mediators such as TLR4. Short term disruptions to
intestinal cell renewal and homeostasis, metabolism and growth,
gut microbial colonization, neurodevelopment, and lung
physiology are evident from clinical studies. Longer term data
are largely deficient from even clinical literature. Yet, a growing
field of NEC and associated research continue to shed light on
how the above discussed monumental disruptions in the
immune system impact long term immune function and how
Frontiers in Immunology | www.frontiersin.org 7
knowledge gleaned from such phenomena can play a role in
prevention and treatment of such neonatal disorders.
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