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Sequencing the DNA or mRNA of multiple individuals 
of one or more species (that is, population-scale sequenc-
ing) aims to identify genetic variation at a population 
level to address questions in the fields of evolutionary, 
agricultural and medical research. Previous popula-
tion studies, including genome-wide association studies 
(GWAS), have not been able to exhaustively charac-
terize the genetic factors underlying human traits and 
diseases1. There has been much speculation about 
the source of this ‘missing heritability’, often pointing 
to both structural variants (SVs) and rare variants2,3. 
SVs account for a greater total number of nucleotide 
changes in human genomes than the far more numer-
ous single-nucleotide variants (SNVs)4. To date, such pop-
ulation studies have relied mostly on high-throughput 
short-read sequencing technologies, which produce reads 
ranging from 25 bp to 400 bp in length5. However, short 
reads have important limitations in characterizing repet-
itive regions6,7. DNA repeats act as the genomic substrate 
to facilitate SV formation8 while also hampering SV dis-
covery owing to read alignment inaccuracies. Even in 
a non-repetitive genome, variations such as insertions 
(especially for alleles longer than the read length7) or 
other modifications (for example, methylation) would 
be missed by an approach relying solely on short reads.

Long-read sequencing has emerged as superior to 
short-read sequencing and other methods (for example, 
arrays) for the identification of structural variation, as 
shown by the Genome in a Bottle (GIAB) and Human 
Genome Structural Variation (HGSV) consortia, which 
combined multiple technologies to comprehensively 
characterize structural variation in human genomes9,10. 

These studies highlighted that a substantial proportion 
of hidden variation can be discovered with long-read 
sequencing. Indeed, recent long-read sequencing stud-
ies of Icelandic and Chinese populations have already 
identified previously undetected variants associated with 
height, cholesterol level and anaemia11,12. Analysis of  
26 maize genomes13 revealed that more SVs are involved 
in causing diseases than in conferring agronomically 
important traits. In addition, long-read sequencing is 
beneficial for improving the continuity, accuracy and 
range of variant phasing14–16, assessing complex small 
variants17 and has been applied to find disease-associated 
alleles18–20. For de novo assemblies, multiple methods 
have been published over recent years to promote the 
use of long reads21–25.

Ongoing advances in sequencing technology 
and bioinformatics have paved the way to achieving 
long-read sequencing on a population scale26. The two 
main competitors driving innovation in the field are 
Pacific Biosciences (PacBio) and Oxford Nanopore 
Technologies (ONT). PacBio high fidelity (HiFi) reads 
are generated by their Sequel II system; HiFi reads are  
both long (15–20 kbp) and highly accurate27. The 
ONT PromethION platform can produce much longer 
reads (up to 4 Mbp28), has a higher throughput at lower 
cost, but produces less accurate reads than the Sequel II 
system. Recent comparisons show an equivalent per-
formance for SV calling with the two platforms29,30 
(in-depth technical review and further comparison of 
long-read sequencing platforms available elsewhere31). 
Within the past 2 years, multiple studies have applied 
long-read sequencing to answer various questions in 

Genome-wide association 
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(GWAS). Studies involving a 
statistical approach in genetics 
to identify variants that 
correlate with a certain 
phenotype (for example, a 
disease).
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Abstract | Long-read sequencing technologies have now reached a level of accuracy and yield 
that allows their application to variant detection at a scale of tens to thousands of samples. 
Concomitant with the development of new computational tools, the first population-scale 
studies involving long-read sequencing have emerged over the past 2 years and, given the 
continuous advancement of the field, many more are likely to follow. In this Review, we survey 
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summarize strategies for variant validation, genotyping and predicting functional impact and 
emphasize challenges remaining in achieving long-read sequencing at a population scale.
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multiple different organisms32–35 (Fig. 1; Table 1). The 
largest human-focused long-read sequencing study to 
date investigated the genomic diversity of 3,622 Icelandic 
genomes11, with many other studies to follow, such as 
the NIH All of Us research programme and the NIH 
Center for Alzheimer’s and Related Dementias (CARD) 
in the USA and similar efforts in China, Abu Dhabi 
and Qatar. Long-read sequencing of a global diversity 
cohort is also being carried out as part of the Human 
Pangenome project36. Aside from human studies, 
long-read sequencing has been applied on a population 
scale to discover structural variation associated with 
phenotypes in crops32,33, fruitflies34 and songbirds35, and 
increasingly has a role in metagenomic studies (Box 1). 
Here, we restrict our discussion to eukaryotic organisms, 
as long-read sequencing studies of bacteria and other 
prokaryotes require specific laboratory and bioinfor-
matics approaches, and the challenges are inherently 
different.

In this Review, we discuss the approach of long-read, 
population-scale, whole-genome sequencing and high-
light its advantages, point out challenges and provide an 
overview of different experimental setups. We define 
population-scale sequencing here as sequencing of more 
than five genomes, although in the case of more limited 
genomic diversity in some organisms, a lower number 
of individual genomes may be sufficient. We focus on 
technologies that produce continuous sequence reads 
and do not address other long-range technologies, such 

as linked reads or optical mapping (for example, Bionano 
Genomics). However, both these technologies may be 
useful and applicable in a population setting37,38. When 
sequencing of the highest number of samples is required, 
targeted sequencing may be a cost-efficient alterna-
tive to whole-genome approaches (Box 2). Similarly to 
most population-scale sequencing projects, we focus 
on germline variants, as somatic variants require higher 
genome coverage and access to the relevant tissues.

Project strategies
The total number of sequenced individuals (or rather 
chromosomes) should in general be as high as possible. 
However, the different underlying questions that moti-
vate population-scale sequencing studies have vastly 
different sample size requirements. Although estimat-
ing the degree of genetic differentiation or ancestral 
population size is already possible with a sample size 
as low as ten chromosomes (five individuals of a dip-
loid organism)39, the identification of rare variants (and 
potentially associated diseases) in a population usually 
requires sample sizes that are many orders of magnitude 
higher40. Regardless of the approach taken, it is crucial 
to keep track of metadata and control for covariates in 
the cohort selection.

There are multiple commonly applied strategies with 
specific budget requirements to be considered at the 
beginning of a large population-scale sequencing pro-
ject (Fig. 2a). Here, we discuss three main strategies that 
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Fig. 1 | Overview of population-scale studies using long-read sequencing. Studies published in 2019–2021 in which 
five or more samples were sequenced are included. Genome size of study organisms is viewed in three different categories 
(<500 Mbp, 500–2,000 Mbp and >2,000 Mbp), and the methodological approach taken to investigate genetic variation 
(comparison of assemblies, read mapping against a reference or both) is illustrated by the different colours. For further 
details, see Table 1.

Structural variants
(SVs). Genomic alterations that 
are 50 bp or larger, including 
deletions, duplications, 
insertions, inversions and 
translocations.

Single-nucleotide variants
(SNVs). Genomic alterations  
of 1–50 bp that are present  
at any frequency in the 
population. These variants 
include substitutions, insertions 
and deletions.

Short-read sequencing
Parallel sequencing of clonally 
amplified clusters of DNA 
molecules using optical or 
electrical methods, ranging 
from 25 bp to 400 bp per 
fragment.

Long-read sequencing
Continuous stretch of 
nucleotides derived from a 
sequencing machine, which 
usually exceed 1,000 bp and 
currently range up to 4 Mbp.

Phasing
In this Review, only per sample 
(physical) phasing is considered, 
which refers to the detection of 
co-occurrences of two or more 
variants on the same DNA 
molecule by their overlap on 
the same read. In contrast to 
statistical inference phasing 
(using linkage information), this 
approach can include phasing 
of private or de novo variants.

PacBio high fidelity
(PacBio HiFi). A type of PacBio 
sequencing that yields reads 
that are accurate (average 
99.9%) and long (15–25 kbp). 
These reads are produced as a 
consensus from multiple serial 
observations of the same DNA 
molecule in a row. Previous 
versions of this method  
are referred to as ‘circular 
consensus sequencing’ (CCS).

ONT PromethION
A sequencing platform that 
yields longer (up to 4 Mbp) but 
less accurate (average 3–8%) 
reads than the PacBio HiFi 
platform.

Mapping
The alignment of reads 
(sequences from shotgun 
sequencing) to a reference 
genome or de novo assembly.

Germline variants
Variants that are present in 
germline cells and therefore 
occur in every cell of an 
organism.
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Table 1 | An overview of long-read-based population studies

Study Organism and 
category

Technologya and analysis approach Sample 
sizeb

Genome 
size (Mbp)

Ref.

Kou et al. (2020) Rice

Agriculture

PacBio

Assembly comparison and read mapping

15 (LR); 
393 (SR)

430 129

Weissensteiner et al. 
(2020)

Crow

Evolution

PacBio

Read mapping

33 (LR); 
127 (SR)

1,300 35

Chakraborty et al. 
(2019)

Drosophila

Evolution

PacBio

Assembly comparison

14 (LR) 180 34

Jiao & Schneeberger 
(2020)

Arabidopsis

Evolution

PacBio

Assembly comparison

7 (LR) 135 130

Alonge et al. (2020) Tomato

Agriculture

ONT

Read mapping

100 (LR) 950 32

Beyter et al. (2020) Human

Human evolution

ONT

Read mapping

3622 (LR) 3,200 11

Tusso et al. (2019) Yeast

Evolution

ONT and PacBio

Assembly comparison and read mapping

17 (LR); 
161 (SR)

12 30

Liu et al. (2020) Soy bean

Agriculture

PacBio

Assembly comparison

26 (LR) 1,150 33

Chawla et al. (2020) Rapeseed

Agriculture

ONT and PacBio

Read mapping

12 (LR) 1,132 131

Hiatt et al. (2020) Human

Human evolution

PacBio

Assembly comparison and read mapping

18 (LR) 3,200 18

Mitsuhashi et al. 
(2020)

Human

Human evolution

ONT and PacBio

Read mapping

37 (LR) 3,200 132

Shafin et al. (2020) Human

Human evolution

ONT

Assembly comparison

11 (LR) 3,200 25

De Roeck et al. 
(2020)

Human

Human evolution

ONT

Read mapping

11 (LR) 3,200 133

Chaisson et al. 
(2019)

Human

Human evolution

ONT and PacBio

Assembly comparison

9 (LR) 3,200 10

Morena-Barrio et al. 
(2020)

Human

Human evolution

ONT

Read mapping

19 (LR) 3,200 19

Song et al. (2020) Rapeseed

Agriculture

PacBio

Assembly comparison

8 (LR) 1,132 134

Sone et al. (2019) Human

Human evolution

ONT and PacBio

Read mapping

17 (LR) 3,200 20

Kim et al. (2020) Drosophila

Evolution

ONT

Assembly comparison

101 (LR) 180 135

Pauper et al. (2020) Human

Human evolution

PacBio

Read mapping

15 (LR) 3,200 136

Ebert et al. (2020) Human

Human evolution

PacBio

Assembly comparison

64 (LR) 3,200 46

Quan et al. (2020) Human

Human evolution

ONT

Read mapping

25 (LR) 3,200 137

Hufford et al. (2021) Maize

Agriculture

PacBio

Assembly comparison

26 (LR) 2,200 13

Hu et al. (2021) Maize

Agriculture

PacBio

Assembly comparison

6 (LR) 2,200 138

Wu et al. (2021) Human

Human evolution

ONT and PacBio

Read mapping

405 (LR) 3,200 12

aTwo main platforms are used in long-read sequencing projects, Pacific Biosciences (PacBio) high fidelity (HiFi) and Oxford 
Nanopore Technologies (ONT) PromethION. bSample sizes for long-read (LR) and short-read (SR) sequencing are specified.
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allow for different scaling and budgeting and thus have 
an impact on the level of resolution in detecting genetic 
variation. Across virtually all sequencing technologies, 
the cost per sequenced base pair is consistently decreas-
ing. To be able to compare the strategies discussed below, 
we use the required long-read sequencing output as a 
proxy for costs (Supplementary table 1). Although we 
assume a diploid genome with a size similar to the hap-
loid human genome (3.2 Gbp), we note that for genomes 
with higher ploidy (for example, hexaploid plants), the  
overall coverage must be adapted to the ploidy of  
the organism (that is, the number of homologous chro-
mosomes). Furthermore, we assume a sample size of 
~2,500 individuals, similar to that of the 1000 Genomes 
project41. At the time of writing (early 2021), the least 
expensive option to generate long-read data is the 
ONT PromethION platform, with a yield of roughly 
100–150 Gbp per flow cell at a price between US$650 
and US$2,100, depending on the discount obtained 
when multiple flow cells are purchased simultaneously. 
Of note, PacBio HiFi reads are of adequate length and 
high accuracy, and although not formally assessed, it is 
reasonable to expect that lower coverage would be suffi-
cient with this technology. However, at the time of writ-
ing (early 2021) this still equates to a higher cost than 
with the ONT PromethION platform, as one PacBio 
single-molecule real-time (SMRT) cell costs ~US$1,300 
and yields ~500 Gbp (continuous long reads) or ~30 Gbp 
(HiFi) of data.

A full coverage approach. Although the most expensive 
of the three approaches, the highest level of resolution 
is obtained with a strategy that aims to sequence every 
sample of the population with medium to high coverage 

(a ‘full coverage’ approach; Fig. 2a). The main criterion 
for deciding on the coverage required per sample is 
whether a de novo assembly (>40-fold coverage required) 
or reference-based alignment approach (>12-fold cover-
age required42) is planned. The advantage of this strat-
egy is its comprehensiveness, the simplicity of the study 
design and the relatively straightforward computational 
workflow. Furthermore, samples receive similar cover-
age and are therefore equally well studied, and rare vari-
ations in each sample can be easily detected. Sequencing 
all 2,500 individuals at 20-fold coverage requires 150 Tbp 
of sequencing data.

A mixed coverage approach. In the ‘mixed coverage’ 
approach (Fig. 2a), a subset of samples that are repre-
sentative of the subgroups in the cohort (for example, 
ethnicities or subpopulations) are sequenced at high 
coverage (for example, 30-fold) and the remaining sam-
ples at low coverage (for example, >5-fold). Although this 
approach is generally less expensive than the full coverage 
approach, it still achieves high overall detection sensitivity 
and is thus particularly suitable for studies with a high 
number of individuals or a limited budget. However, sev-
eral analytical challenges remain, especially in achieving 
high accuracy of genotypes across multiple samples or 
differentiating somatic from heterozygous germline var-
iants, which is further complicated by regions exhibiting 
recurrent mutations. In addition, there will certainly be 
a bias towards common alleles with this mixed coverage 
approach, as many rare alleles can be missed, especially 
if a locus is heterozygous and the alternative allele is thus 
sparsely covered. Assuming that in this second strategy 
200 individuals are sequenced at 30-fold coverage and the 
remainder of the cohort at 8-fold coverage, this approach 
requires 73 Tbp of data and is thus potentially half as 
expensive as the full coverage strategy.

A mixed sequencing approach. The ‘mixed sequencing’ 
approach (Fig. 2a) involves long-read sequencing of just 
a few samples (for example, 10–20% of all samples) and 
short-read sequencing of the remaining samples to gen-
otype variants that are discovered by long-read sequenc-
ing. The rationale behind this approach, similar to the 
selection of individuals for high coverage in the mixed 
coverage strategy, is to identify a small subset of samples 
(either randomly or by known diversity43, ethnicity or 
phenotype) and sequence only these to higher coverage. 
This mixed sequencing approach was effective in eluci-
dating germline SVs that predispose to cancer, whereby 
short-read sequencing was used to identify evidence 
of SVs followed by long-read sequencing of selected 
samples44. Phylogenetic analysis of variants detected 
by short-read sequencing has also been used to select 
a representative set of soybean accessions for long-read 
sequencing and de novo assembly33. Other studies have 
used SVCollector43 to automatically select samples (this 
is done over iterations by selecting the most diverged 
sample and re-ranking remaining samples based on 
non-selected variation) for long-read sequencing to com-
plement existing short-read sequencing data25,32. Once a 
subset of samples have been sequenced with long-read 
technologies, yielding a set of identified SVs, their 

Box 1 | Long-read metagenomics

Metagenomic studies do not address populations in a traditional sense, yet they 
nevertheless assess genetic information stemming from separate (organismal) entities 
and chromosomes. Long-read sequencing is seemingly ideal to study prokaryotic 
organisms and viruses contained in metagenomic (for example, stool, gut and 
environmental) samples, since their genomes are usually much smaller than the 
currently achievable average read length in these technologies143. However, for 
metagenomics, factors such as the generally higher amount of required input DNA, 
high sequence similarity between taxonomic units and higher cost per base pair have 
thus far hampered the widespread application of long-read sequencing.

Recent improvements in high molecular weight (HMW) DNA extraction specific to 
metagenomic samples seem to hold the potential to facilitate a more widespread 
application of long-read sequencing in metagenomics. For example, a workflow to 
obtain improved yields of HMW DNA from human stool samples and furthermore 
provide a bioinformatic workflow incorporates base-calling, assembly, error correction 
and genome circularization with ONT reads144. Other efforts have been directed at 
improving the assembly step. metaFlye145 is the first metagenomics-specific genome 
assembler, dealing with highly uneven coverage as well as sequence similarity between 
closely related genomes typical of metagenomic samples, and it seems to greatly 
enhance the ability to generate bacterial genomes in single contigs. Furthermore, 
others have sequenced the 16S rRNA gene as a species identifier, benefitting from the 
longer read length to improve the classification146,147.

To improve cost efficiency, a hybrid approach using both short and long reads seems 
to be a valid approach for assessing metagenomic samples. Overholt et al.148 have 
demonstrated that by combining Illumina and ONT reads, twice and four times more 
high-quality assemblies were recovered from a water column sample than by using 
each technology alone, respectively. Although these hybrid approaches will continue to 
be used, long-read-only approaches are likely to succeed in the long run149.

Somatic variants
Variants that can occur in any 
tissue cells but not in the 
germline cells. They often vary 
in frequency because they 
usually occur in only a subset 
of cells.

De novo assembly
A method for constructing 
genomes from a large number 
of short-read or long-read DNA 
fragments, with no a priori 
knowledge of the correct 
sequence or order of the 
fragments.
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breakpoint coordinates can be genotyped (for example, 
insertions) across the short-read sequence data sets. In 
this way, robust allele frequencies for the identified var-
iants can be obtained, albeit with a bias towards variants 
identified by long-read sequencing, which means that 
rare variants contained in other samples may be missed. 
It may not be possible to directly genotype all types of 
SV using short reads, especially in repetitive regions, 
but knowledge of the haplotypes on which the SVs of 
interest are found will enable imputation of these vari-
ants based on short-read SNV genotypes11. This strategy 
has already been applied using diversity panels of human 
SVs to discover novel expression quantitative trait loci 
(eQTLs)45,46 and signatures of evolutionary adaptation47. 
If for this strategy no additional short-read data need to 
be generated, then this approach is likely to be the most 
affordable, as sequencing 200 of the 2,500 individuals to 
30-fold coverage only requires 18 Tbp of data.

Sequencing logistics
Efficiently operating long-read sequencers at scale, from 
logistics to sample preparation, loading optimizations 
and run monitoring, is not a trivial task. ONT and PacBio 

have different advantages but also challenges in almost 
every step in this process given their different designs 
of flow cells and sequencing instruments (Fig. 2b). The 
per-sample sequencing process and the characteristics 
of each technology are reviewed elsewhere31.

A substantial amount of high molecular weight DNA 
(HMW DNA) and highly pure input DNA is of crucial 
importance in these methods. Achieving this DNA qual-
ity requires specific extraction methods and is often chal-
lenging for samples for which only limited or degraded 
material is available (for example, non-contemporary 
samples or samples from very small organisms). 
Amplification-free low-input DNA kits exist for both 
PacBio48 and ONT (https://nanoporetech.com/products/
kits) sequencing platforms, with a minimum input DNA 
amount of 150 ng and 400 ng, respectively. However, 
these machines frequently require much more DNA to 
produce optimal sequencing yields. At the time of writ-
ing, it is often necessary to perform a nuclease flush and 
library reloading on an ONT flow cell to recover blocked 
pores to obtain the highest yield, which is an additional 
preparation step that is not necessary for PacBio cells. 
Importantly, ONT flow cells and PacBio SMRT cells have 
a limited shelf life, which is logistically challenging when 
sequencing many samples. Depending on the organism 
and its features, such as its physical size, the presence of 
a cell wall or secondary metabolites, high-quality DNA 
extraction can be a major constraint. Variability in  
DNA quality and molecular weight is a common issue 
and pre-sequencing quality control is necessary to ensure 
that inadequate samples are omitted and other techni-
cal covariates are recorded to be taken into account in 
downstream statistical analysis.

ONT sequencers store the raw data as hdf5 files (in 
the fast5 format), requiring base calling to obtain the 
more commonly used and much smaller fastq and 
BAM formats. Currently, incremental updates to the 
ONT base-calling algorithm regularly improve the read 
accuracy49, which suggests that repeating the base call-
ing of older data is valuable. This reanalysis requires 
long-term storage of the fast5 files, which can be up to 
1.5 TB for a single PromethION flow cell, although fur-
ther compression is possible50. By contrast, the PacBio 
base-calling process is highly mature, and BAM files 
containing unaligned reads are produced directly from 
the sequencing machine. For HiFi reads, post-processing 
of the subreads is essential to collapse consecutive 
sequenced DNA molecules down to a high-quality con-
sensus sequence, which is also done on the latest version 
of the machine (Sequel IIe system), and thus the overall 
data storage requirement is much reduced.

Analytical considerations
Arguably the main challenge in population-level studies 
is a scalable and streamlined analysis. Multiple recent 
reviews have discussed approaches at the single sam-
ple level6,7,21. Table 2 lists computational tools that are 
commonly used in long-read sequencing projects and 
these are reviewed in-depth elsewhere6,7. Of note, in this 
very rapidly developing area of genomics, new tools are 
introduced constantly while established ones quickly 
become outdated. As we do not assume that matching 

Box 2 | Targeted sequencing

Sample numbers can be scaled up at a lower cost using target enrichment approaches. 
Several methods have been introduced to enrich for a particular region of a genome, 
ranging from traditional capture and PCR amplicons150 to using the Cas9 system151 and 
an in silico sequencer-based selection (for example, Uncalled152 or Readfish153). These 
approaches typically can target 10–20 kbp regions, although sequencer-based selection 
methods potentially enable larger targets to be sequenced. The Cas9 system can enrich 
a region without amplification and thus also enables the assessment of methylation 
patterns and sequences that are hard to target, such as repeats151. All these laboratory 
enrichment methods work for both long-read sequencing platforms, namely Pacific 
Biosciences (PacBio) and Oxford Nanopore Technologies (ONT). However, the in  
silico enrichment is unique to the ONT platform and is of interest for many future 
applications, as it does not require laboratory enrichment. Both Uncalled and Readfish 
sequence the first ~1 kbp of every read and if this read does not overlap with a targeted 
region, the DNA molecule is ejected and the next molecule is read. However, if the read 
matches the sequence of the targeted region, sequencing continues, resulting in a 
modest on-target enrichment.

Multiple projects that use this more cost-efficient methodology to study specific 
diseases with known gene targets have been published150,154. The analysis of these data 
sets is often very similar to full genome analysis, but is computationally less demanding. 
The coverage per target typically exceeds that of whole-genome approaches, achieving 
hundreds of fold coverage for the targeted regions. Furthermore, off-target reads 
(sequences that have not been fully depleted) must be taken into account and filtered 
out so that they do not affect the analysis. Depending on the type of targeted sequence 
(for example, amplicon versus the Cas9 approach), these off-target reads can occur 
more frequently than others owing to the different efficiencies in off-target depletion. 
For example, a Cas9 system often has off-target reads as well as sequencer-based 
targeting of regions (~30% enrichment on target)151. By counting the reads within and 
outside the targeted region, it is possible to assess the efficiency of the chosen method.

Another very common application of these targeted sequencing approaches that has 
recently become very important is enriching for a specific pathogen or virus, such as 
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for 
the coronavirus disease 2019 (COVID-19) global pandemic. The most commonly applied 
protocol in this context is ARTIC, which aims to amplify ~200 bp RNA segments of the 
virus155. In addition, loop-mediated isothermal amplification (LAMP) and/or capture 
methods have been very effective in studying the diversity of SARS-CoV-2 isolates156,157. 
Another interesting development from ONT is a targeted approach to detect the 
presence of SARS-CoV-2 using the LAMP-based assay LamPORE. LamPORE targets 
three regions of the viral genome (ORF1a and the E and N genes) and a control (human 
actin), which allows testing of ~96 patients in a single MinION run in ~1 h (ref.158).

High molecular weight DNA
(HMW DNA). Extracted DNA 
containing long DNA molecules 
(typically ≥50 kbp average 
molecule size).
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short-read sequencing data are available for every indi-
vidual, the integration of long-read and short-read 
data is not discussed. Nevertheless, we highlight the 
important role of short reads for the polishing of long 
reads51 and assemblies52 or in fine-scale resolution of SV 
breakpoints11. These applications may lose their rele-
vance as the accuracy of long-read sequencing improves, 
as is already the case for PacBio HiFi data.

For population-scale projects, the choice of analytical 
tools often involves balancing sensitivity and computa-
tional efficiency. Before downstream analysis, it is crucial 
to perform quality control of experimental factors that 
directly affect the performance of assembly, SV detec-
tion and read phasing, such as DNA fragment length and 
sequencing yield. Multiple tools have been developed 
for this purpose53,54. Changes in sequencing chemistry 
or technical equipment during the project may lead to 
artefacts in the analysis and can thus potentially affect 
the findings. As such, it is important to randomly assign 
samples to batches, for example, sequencing runs, to 
reduce technical covariates.

Two main strategies for downstream analysis are 
available: aligning reads from individual samples to a 
single reference genome or comparing de novo assem-
blies (Fig. 2c). These two approaches are very different in 
their computational and coverage requirements, which 
in turn depend to a large extent on genome size and 
complexity. For both approaches, the goal is to apply the 
same set and versions of methods to all samples. The 
results need to be generated in a consistent way using 
correct version control and reproducible pipelines to 
avoid additional artefacts in the analysis. In the follow-
ing sections, we discuss alignment-based and de novo 
assembly approaches and graph genome-based methods.

Read alignment-based analysis. Alignment-based 
approaches are often the method of choice for 
population-scale studies, as they facilitate the compar-
ison of all samples against a common coordinate sys-
tem (that is, the reference genome), which is illustrated 
by the fact that more than half of population studies 
(Fig. 1; Table 1) employ these approaches. Furthermore, 
these approaches are often less computationally 
demanding and require substantially less coverage than 
assembly-based methods. Alignment-based approaches 
rely on matching sequencing reads with a reference 
genome, the overall correctness of which will affect the 
analysis of read data7. If the reference genome is incom-
plete, incorrect, fragmented or too divergent from the 
focal sample, it will lead to biases in the downstream 
analysis55,56.

The software for long-read sequence data analysis 
is under constant development, and alignment meth-
ods in particular have become much faster in recent 
years (Table 2). The NGMLR42 and LAST57 methods 
speed up the alignment process and improve the accu-
racy of long-read alignment. The minimap2 aligner is 
considerably faster than its competitors while often 
delivering similar results, and thus it is currently the 
most popular, widely accepted long-read aligner58. 
Two noteworthy recent innovations are Winnowmap, 
which improves alignments (specifically in repetitive 

regions)59, and lra, which improves the alignment in 
the presence of SVs60.

The choice of tools for the detection of genetic vari-
ation is arguably of equal importance. For SVs, several 
tools are currently available, such as Sniffles42, SVIM61, 
PBHoney62, CuteSV63 and pbsv (Table 2). One of the 
remaining challenges is the accurate representation of 
SV breakpoints, which is particularly difficult in the con-
text of more complex events involving multiple variants 
in repetitive regions, such as segmental duplications or 
large tandem repeat arrays (SV detection methods are 
comprehensively reviewed elsewhere7,64). Recently devel-
oped tools are removing the need for high sequencing 
coverage by enabling SV calling42,65 and genotyping42,66 at 
lower coverage, although the associated risk of incom-
plete or erroneous SV detection and genotyping cannot 
be ignored.

Owing to the different error profiles of long reads, 
naive pile-up approaches or SNV and small insertion–
deletion (indel) calling methods that were developed for 
short-read sequencing are usually inadequate or subop-
timal for long reads. Over the past few years, multiple 
strategies have been developed to improve the detection 
of small variants with sophisticated machine learning 
models for each of the long-read sequencing technol-
ogies (Table 2). Current methods include, for example, 
DeepVariant67 Pepper68, Clair69 (both using deep learn-
ing) and LongShot70 (which explicitly requires alleles to 
be concordant with the haplotype structure), which also 
outperforms Illumina-based SNV calling71. PacBio HiFi, 
in contrast to ONT, is also competitive with Illumina for 
small indels.

Expansions and contractions of tandem repeat arrays 
are a highly challenging and frequent type of variation72. 
As these repetitive DNAs, which include short tandem 
repeats (1–6 bp repeat unit) and minisatellites (>6 bp 
repeat unit), are known to contain disease-causing 
alleles, accurate characterization of them is crucial73. 
Some tools have been developed specifically for this 
purpose74, such as tandem-genotypes75 and TRiCoLOR76. 
Similar challenges remain for accurate characterization 
of other repeats. For example, the LPA locus (encod-
ing apolipoprotein(a)) consists of 8 kbp tandem repeat 
units (encoding kringle IV domains) that are repeated 
5–10 times in human genomes77, making it notoriously  
difficult to assess.

To date, most reference genomes consist of a 
haplotype-collapsed representation, in which two or 
more chromosomal haplotypes are collapsed during 
assembly to a single artificial consensus sequence. 
Phased genome assemblies, in which the haplotype 
structure of each chromosome is fully resolved, have 
the potential to more accurately represent the genome. 
The human Telomere-to-Telomere (T2T) consortium 
effort aims to produce the first full chromosome assem-
bly of the human genome from the essentially haploid 
complete hydatidiform mole (CHM13) genome and has 
already completed assembly of chromosome 8 (ref.78) 
and chromosome X (ref.79). In another example, a single 
haplotype from a haplotype-resolved de novo assem-
bly was used as the reference for read alignment in a  
population genetic study in crows35.

Segmental duplications
DNA sequences (typically 
>1 kbp in length) that are 
highly identical (90–100%) in 
sequence content and exist in 
multiple locations in a genome. 
They can also be considered a 
special form of duplication.
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Population-scale de  novo assemblies. Many refer-
ence genomes based on short-read sequencing are 
incomplete or highly fragmented with many gaps80. 
Furthermore, hundreds of megabases of population- 
and individual-specific sequences are absent from the 
human reference genome81. These missing sequences 
are often repetitive, but also include coding sequences. 
As a consequence, a fraction of reads derived from a 

sample cannot be aligned to the reference genome or 
they align to paralogous sequences, leading to tens of 
thousands of false-positive and false-negative variants 
for each individual82. Therefore, creating and comparing 
de novo assemblies is desirable (Fig. 1).

The increased availability and affordability of long- 
read sequencing data have led to an explosion of faster 
and more accurate genome assembly tools (Table 2), of 
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Fig. 2 | Overview of long-read population study design. a | The experimental  
design of three different approaches is outlined. In the first strategy (left), all samples  
are sequenced at medium to high coverage by long-read sequencing. In the second 
approach (middle), a proportion of the samples are sequenced with medium to high 
coverage and the remainder using low coverage by long-read sequencing (similar to the 
initial 1000 Genomes project). In the third approach (right), a proportion of the samples 
are sequenced at medium to high coverage by long-read sequencing and the remainder 
by short-read sequencing. The decision of which approach to take will affect the ability to 
detect common (red symbols) or rare (grey symbols) events in the population.  
The decision also depends on the available budget, existing data and the sample  
DNA availability. b | Overview of current established sequencing technologies based on 
CHM13 sequencing data79: Illumina, Pacific Biosciences (PacBio) High Fidelity (HiFi) reads 
or ultra-long reads from Oxford Nanopore Technologies (ONT). The N50 read length  
and average read accuracy are highlighted in orange. Although each technology  
has advantages and disadvantages, HiFi and ONT are the most promising for future 
applications. c | Overview of analysis strategies. Although multiple approaches are available, 
the main decision is whether to use an alignment-based approach or a de novo assembly- 
based approach, which has implications for sequencing requirements and the approaches, 
resolution and comprehensiveness of downstream computational analysis.

◀

which haplotype-resolved de novo assembly is commonly 
considered the most comprehensive representation of a 
genome. This competition to produce improved de novo 
assembly methods has led to the rapid development of 
new tools, usually focusing on either computational 
demand, contiguity, completeness or correctness, indi-
cating that genome assembly represents (at present) 
a trade-off between these key parameters. De novo 
assembly-based approaches are often more sensitive 
and better for reconstructing highly diverse regions 
of the genome than alignment-based approaches, but 
can also lead to a collapse of highly similar segmen-
tal duplications83. For such duplicated regions, specific 
algorithms have been developed that leverage SNVs 
that differentiate multiple copies of repeats and thereby 
can recover medically relevant duplicated genes84,85. The 
dependence of de novo assembly on high read coverage 
and more computationally demanding methods has made 
it historically very challenging for large population-scale 
sequencing. However, the ever-increasing yield of 
sequencing technologies will enable the sequencing of 
each sample to sufficient coverage to obtain a high-quality 
de novo assembly86 (Fig. 1; Table 1).

Single-genome projects iteratively test multiple 
parameters or different methods to optimize a de novo 
assembly, which is neither realistic nor desirable in 
a population context. Multiple projects have inte-
grated proximity-ligation or strand-specific short-read 
sequencing methods for substantial improvements of 
the contiguity of the assemblies25,46, but such approaches 
do not scale well to large populations. De  novo 
assembly-based approaches are typically also more 
computationally demanding, which becomes especially 
relevant for large numbers of samples. Large cloud stor-
age infrastructures might improve the scalability, but the 
computing cost will rise substantially. The recent devel-
opment of less computationally demanding assemblers 
may be able to mitigate this limitation25.

Another important consideration is the scalability  
of the downstream computational approaches. Although 
the process of genome assembly already requires consid-
erable computational resources, these demands increase 
linearly with the addition of more individuals. To infer 

genomic variation, de novo assemblies are usually com-
pared with a chosen reference genome, yielding a stand-
ard variant call format (VCF) file. Currently, genomic 
alignment tools and dedicated variant callers (such as 
MUMmer87, Assemblytics88, minimap2 or dipcall89 and 
SVIM-asm61) are designed to provide a pairwise com-
parison of two genomes, such as the assembled and a 
reference genome (Table 2). However, in a project with 
multiple (diploid) genomes, this is clearly not ideal, as a 
whole-genome alignment-based approach likely suffers 
from the same biases as a read alignment-based approach. 
For example, in the case of novel sequence insertions in 
samples compared with a single reference genome, these 
variants will often be more challenging to compare across 
all samples of the population (Fig. 3a). This issue might 
be further amplified by gaps in the reference assembly, 
which potentially reduces the number of regions that can 
be compared across the population. Although trouble-
some for comparisons across samples, assembly-based 
SV calling will more likely correctly represent complex 
SVs that are longer than the read length and therefore 
harder to correctly identify with alignment-based meth-
ods (Fig. 3b). The likely most comprehensive option 
would be a compare-all-with-all approach (Fig. 3a), in 
which unique pairwise comparisons increase quadrati-
cally, meaning that with 100 samples there are already 
4,950 possible ways to compare samples with each other. 
Clearly, such an approach would currently not be feasible 
for most projects, and alternative strategies have to be 
developed. Most recently, the introduction of progressive 
Cactus90, a tool that constructs an ancestral genome when 
comparing two assemblies based on a guide tree, has ena-
bled comparison across multiple genomes. However, to 
date this tool has mainly been tested across species and 
not between individuals of a species.

Another, perhaps even greater, challenge in de novo 
assembly approaches is the correct representation of 
ploidy. Many organisms have diploid genomes (for 
example, humans and many animals) and even higher 
ploidies exist, such as in some crops. Tools optimized 
for diploid (that is, haplotype-aware) de novo assem-
bly are available to reconstruct both haplotypes22. This 
reconstruction is essential to recover all heterozygous 
variation, as two different haplotypes may otherwise be 
collapsed to a single artificial and incorrect representa-
tion of the chromosome. However, haplotype-resolved 
de novo assemblies often require higher coverage and 
computational cost. The correct genotyping of both 
heterozygous and homozygous variants is of utmost 
importance for subsequent population genetic anal-
ysis. A recent solution is to first create an unphased 
assembly, then identify variants and partition reads into  
haplotypes before creating phased contigs86,91.

Even if complete and accurate haplotype-resolved 
assembly is achieved, then SV calling from assembly- 
to-assembly comparison might not be straightforward in 
highly complex regions. For example, the human LPA77 
and SMN1 and SMN2 (ref.92) loci with their highly repet-
itive structure lead to problems in genomic alignments. 
As such, the main challenge may shift to genomic align-
ments and methods to interpret the detected differences 
between multiple assemblies.

Variant call format
(VCF). A tabular file consisting 
of a header and entries that 
hold information about each 
variant detected.
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Table 2 | An overview of software tools for analysing long-read sequencing data

Category Tool name Description Ref.

De novo 
assembly

(Hi)Canu Versatile de novo assembler 23

Flye Fast de novo assembler that can also operate on low coverage data 24

Shasta Fast ONT assembler 25

Falcon Unzip PacBio assembler for phased assemblies 22

Peregrine Optimized assembler for HiFi data only 128

hifiasm Optimized assembler for HiFi data only 139

PGAS Phased assembly including strand seq 46

Genomic 
alignment

LAST Versatile method to align contigs or genomes 57

MUMmer Long-standing genomic aligner 87

minimap2 Pairwise alignment method for long reads up to genomes 58

Cactus Progressive genomic alignment method allowing integration of more than two 
genomes at a time

90

SibeliaZ Fast genome aligner of multiple genomes 140

Read 
alignment

minimap2 Pairwise alignment method for long reads up to genomes 58

NGMLR Convex gap cost implementation 42

Winnowmap Improvements for mapping in repetitive regions 59

lra Efficient convex-cost gap penalty sequence and contig aligner 60

Graph 
genome 
methods

Giraffe Rapid reads to graph aligner 45

vg Toolkit to construct and convert graphs with methods to genotype and call 
variants

96

minigraph A sequence-to-graph mapper and graph constructor based on minimap2 97

GraphAligner Sequence-to-graph aligner for long reads 141

GraphTyper2 Genotyping variants in a graph genome from short reads 100

Paragraph Genotyping structural variants in a regional graph genome from short reads 101

PanGenie k-mer-based genotyping of short reads in a haplotype-resolved graph 99

Phasing WhatsHap Phasing method for SNVs and smaller indels 15

HapCut2 Phasing method for SNVs 16

SV calling 
from 
alignment

pbsv Joint calling of SVs across samples 62

Sniffles Automatic parameter estimation 42

CuteSV Highly parallelized SV calling 63

SVIM Uses graph-based clustering of candidates 61

SV calling 
from 
assemblies

dipcall Deletion and insertion calling from de novo assembly 89

SVIM-asm SV calling from (diploid) de novo assembly 142

PAV Compares phased assemblies with a reference genome 46

SNV calling Clair Uses a convolutional neural net 69

DeepVariant Neural network-based SNV caller 67

Longshot Partitioning reads in haplotypes and calling variants in accordance with those 
haplotypes

70

Pepper Phasing-based SNV calling 68

SV merging SURVIVOR Merging that allows breakpoint inaccuracies 113

SVanalyzer Assembly based, two samples only 98

Truvari Parameterized stepwise merging including sequence similarity 9

Jasmine Merging SV based on sequence similarity 32

SV 
genotyping

cuteSV Force-calling of variants from a VCF file 63

Sniffles Uses split reads to identify known SVs over shared breakpoints 42

SVJedi Compares the alignment of reads against the reference genome and 
alternative contigs representing the SV to determine the best match

66

LRcaller Genotypes variants of long reads 11
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Category Tool name Description Ref.

Other TRiCoLOR Detects and genotypes repeat lengths separated by phase 76

Iris Local assembly of insertions 32

SVCollector Optimized sample selection 43

NanoComp Comparison of sequencing data 53

HiFi, high fidelity; indel, insertions–deletions; ONT, Oxford Nanopore Technologies; PacBio, Pacific Biosciences; SNV, single-nucleotide 
variant; SV, structural variant; VCF, variant call format.

Table 2 (cont.) | An overview of software tools for analysing long-read sequencing data

Graph genome methods. Both read alignment and 
de novo assembly approaches can have systematic 
issues with complex structural variation, inserted 
sequences missing from the reference genome, repeat 
variability and highly polymorphic loci (Fig. 3). Linear 
reference genomes only represent one allele and thus, 
do not incorporate polymorphisms and complexity of a 
population. Reference pan-genome approaches, which 
combine genomes from multiple individuals within a 
species, are a better fit to represent genomic diversity93,94 
(Fig. 3c). Variant catalogues for pan-genome structures 
are obtained by ongoing projects using high-quality 
haplotype-resolved assemblies of diversity panels for 
the discovery of variants46. A reduction of the alignment 
bias against non-reference alleles is achieved by explic-
itly taking known population variants into account in 
the read alignment step. As such, the analysis does not 
rely on a single reference genome. This goal is realized 
by graph genome-based tools and their associated data 
formats, as a way to represent a collection of possible 
(alternative) sequences95. Examples of tools for this 
purpose include vg96, minigraph97, the SevenBridges 
Graph Genome Pipeline98, the DRAGEN Graph Mapper 
and PanGenie99. These implementations provide tools 
to build graphs based on the linear reference genome 
and a collection of known variants, or alternatively use 
(haplotype-resolved) assembled contigs. Although a 
detailed discussion of the methods to construct such 
pan-genome graphs is beyond the scope of this Review, 
we note that there are important differences in imple-
mentation and data format with regard to compatibility 
with coordinates on the linear reference genome and 
storing information of the individual haplotypes that 
contributed to the included variation97. An additional 
benefit of graph genome methods is that they enable a 
more correct representation of nested variation, such as 
smaller variants within inserted sequences94.

A major benefit of graph genomes is the genotyp-
ing of SVs using short reads. Multiple tools, such as 
GraphTyper2100, Paragraph101 and tools from the vg 
package45,96, have been developed specifically for align-
ment of short-read sequencing data to graph genome 
structures. SNVs, small indels or SVs within a sample 
are genotyped as reads following a certain path (‘walk’) 
through the pan-genome graph96,101 (Fig. 4a). Graph 
genotyping methods enable the assessment of variants 
that remain undetected by the current state-of-the-art 
short-read SV discovery methods46. In the next step, var-
iants that were not yet explicitly encoded in the graph 
can be identified, with the option to incrementally aug-
ment the graph structure with the newfound variation to 

further improve accuracy98,102. Graph genome methods 
are reviewed in greater depth elsewhere94,95,103.

With such graph-based approaches, the often dis-
cussed dichotomy of either using an existing reference 
genome for alignment or constructing a novel refer-
ence genome through de novo assembly can potentially 
be avoided for population studies, as downstream of this 
step all sequences have to be compared with a single (ref-
erence) assembly or a backbone of a pangenomic graph, 
for identification of variation, annotation and statistical 
evaluation. However, these approaches are less straight-
forward in practice than the use of a linear reference 
genome and are not entirely mature, with competing 
implementations and data formats. Although graph 
genome methods are good candidates to solve biases 
when assessing (structural) genomic diversity, it remains 
unclear whether these methods will become mainstream 
in clinical or diagnostic applications, in which a single 
reference genome is an attractive simplification.

Variant validation and genotyping. To determine 
whether any given variant constitutes the biological 
reality and is not just an artefact, it is important to per-
form validation. Ideally, this is done using orthogonal 
approaches, to capitalize on the strengths of different 
technologies. Traditionally, PCR validation of variants 
has been the method of choice104; however, for com-
plex SVs that contain highly repetitive regions, other, 
non-sequencing-based methods such as optical map-
ping might be more suitable46. Visual inspection of 
alignments and subsequent manual curation of variant 
sets are arguably a very accurate validation approach but 
certainly not feasible for more than a few hundred var-
iants. A semi-automated pipeline, SV-plaudit, has been 
developed to enable rapid, streamlined and efficient 
curation of thousands of SVs105.

Of similar importance is variant genotyping, which 
we define as determining the presence and zygosity of 
a variant. Although the initial discovery of variation is 
relatively straightforward, obtaining reliable genotypes 
for a given variant across a population is usually much 
more difficult. However, knowing the alleles (that is, the 
genotypes) of variants for a given sample is particularly 
important in population genetic and evolutionary stud-
ies, in which population size estimation and measures 
of genetic differentiation (such as the fixation index 
FST) rely on obtaining accurate allele frequencies of 
variants106. In particular, variants in repetitive regions 
are more readily genotyped using long reads than using 
short reads (Fig. 4b). For SNVs, sophisticated geno-
typing approaches have been developed that consider 
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important parameters such as mutation dynamics (for 
example, transition to transversion ratios) and infor-
mation about non-variant sites to improve genotype 
accuracy107. The concept of a genomic variant call format 
(gVCF) has been implemented in applications such as 
freebayes108 and GATK109, which has improved the effi-
ciency of the comparison and made multiple rounds of 
genotyping obsolete. Another approach is to completely 
abandon genotype calling and instead calculate poste-
rior probabilities of genotypes to directly incorporate 
uncertainty in the downstream analysis (for example, 
ANGSD110). Merging SNVs is typically done with tools 
such as bcftools111 and RTGTools112.

For SVs, the situation is much more complicated, as 
establishing homology of variants between samples is 
not straightforward. One of the first approaches to be 
developed is based on 50% reciprocal overlap, which 
allows two SVs to be merged if they overlap substan-
tially. Although this works well for large copy number 
variation events, there may be some limitations for 
smaller SVs (for example, 50 bp to 1 kbp) with more 
localized breakpoints. Another approach is to require 
breakpoints from each individual to be approximately 
in agreement to establish that a variant in two samples is 
indeed homologous (for example, SURVIVOR merge113). 
In some cases, such as when two insertions are homol-
ogous, but their sequence slightly deviates, an approach 
based on breakpoints may be too conservative, and some 
tools have been used to attempt to address this issue (for 
example, Truvari9, SVanalyzer and Jasmine32). However, 
at present, no universal standards are available for the 
thresholds. Thus, approaches rely on arbitrary thresh-
olds of breakpoint distances and sequence similarity. 
Deletions are arguably the most straightforward type 
of variation to genotype, but calling heterozygotes for 
even this seemingly simple type of SV can be difficult114. 

Tools such as Sniffles and SVJedi are capable of gen-
otyping SVs based on a candidate VCF file, following 
an initial step of SV discovery based on the long-read 
alignments66.

Another potentially very powerful approach to 
improve SV genotypes is to harness the information con-
tained in a sampling scheme consisting of phylogeneti-
cally distant populations (Fig. 4c). In this approach, basic 
population genetic assumptions are made to reduce the 
number of false positives for genotyped SVs. After a 
sufficient number of generations (4Ne, where Ne = effec-
tive population size), variation is likely fully sorted and 
no polymorphisms should occur across lineages any 
more, assuming that there are no repeated mutations 
at the same locus (that is, the infinite sites model)115. 
Any variants exhibiting polymorphic genotypes across 
the divergent lineages are excluded. Although this 
approach neglects the fact that certain types of SV have 
much higher mutation rates and thus indeed have the 
potential for repeated mutations (for example, variation 
within tandem repeat arrays), it provides a first step 
towards more reliable SV genotyping. This approach has 
recently been successfully applied in the corvids crows 
and jackdaws35.

Prediction of functional impact. The mathematical 
framework for the analysis of (small) genetic variants 
predates the advent of high-throughput sequenc-
ing by almost a century and is therefore well estab-
lished. Large-scale single-nucleotide polymorphism 
(SNP)-array-based GWAS projects enabled the interro-
gation of thousands of variants and haplotypes for their 
association with disease. Although quality assessment 
steps such as principal component analysis and testing 
for Hardy–Weinberg equilibrium still hold for indel var-
iants (that is, >50 bp), these models do not necessarily 
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in a de novo assembly-based approach. The presence of a novel segment N1 in two de novo assemblies, at different 
locations and, even more so, a sequence variant (red x), poses a challenge to correct reporting by current state-of-the-art 
methods and variation formats. b | Similar representation of the N1 problem in an alignment-based approach, where t 
he coordinates of N1 are shared, but remain challenging for the identification of the single-nucleotide variant (SNV) or the 
entire N1 sequence. c | A graph-based representation of N1, which enables a clearer comparison of the variant across  
the samples, illustrating the potential benefits of graph genomes. R1–R3 represents the backbone of the graph genome  
and N1, and its SNV represents novel sequencing for a given sample set.

Genomic variant call format
(gVCF). Includes not only 
alternative alleles (standard 
VCF) but also information 
about reference allelic position 
that enables merging and full 
genotyping of variants.

Single-nucleotide 
polymorphisms
(SNPs). Genomic alterations of 
1–50 bp that are present in 
1% or more of the population.
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(for example, variant 3) can be removed. Although this approach is certainly very conservative and ignores the fact that 
some types of variation exhibit repeated mutations on the same locus, it can be considered a first step towards more 
reliable genotyping of SVs.

cover all types of SV, for example, in the case of a con-
tinuous spectrum of repeat lengths116. A solution, albeit 
with loss of resolution, would be to binarize the distri-
bution into ‘reference’ and ‘expanded’ alleles, but histor-
ically it has been difficult to unambiguously establish 
a cut-off length. Association testing of the role of par-
tially overlapping variants for a certain trait requires an 
approach conceptually similar to that used for burden 
analysis in rare variant association studies.

Whereas classification of the functional impact of 
small variants on protein function for synonymous, 
missense and loss-of-function variants is relatively 
mature with tools such as the Ensembl VEP117, it is 
less straightforward to judge the impact of SVs on the 

expression of nearby genes. This is mainly because it is 
unclear how the length of an SV impacts the surround-
ing genomic region and it is often hard to obtain robust 
allele frequencies for SVs114. For functional annotation 
and pathogenicity prediction, approaches using joint 
linear models118, supervised learning119 and existing 
databases120 have been developed, and there are prom-
ising examples demonstrating that SVs are indeed  
associated with important traits of interest118,119.

Conclusions
Ongoing significant technological improvements 
have paved the way to apply long-read sequencing to 
population-scale sequencing projects and demonstrate 
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that this sequencing approach is here to stay. This pro-
cess already started with the first larger data sets gen-
erated by targeted sequencing of certain genes (Box 2) 
and continues with an increasing number of projects 
that leverage long reads at scale (Fig. 1; Table 1). The 
analysis of population-scale long-read sequencing data 
sets remains challenging, with the read alignment-based 
approach currently being the most feasible. Nevertheless, 
we anticipate this to change to alignment of either 
haplotype-resolved de novo assemblies or individual 
sequencing reads to graph genome structures. This 
development will have a profound impact on the field 
and holds the promise of improved variant representa-
tion and complexity of the underlying biology, but would 
require a paradigm shift from a linear to a more complex 
version of the reference genome.

PacBio and ONT lead the current development of 
long-read sequencing for multiple applications. However, 
other companies (for example, Base4, Quantapore and 
Omniome) are developing novel long-read technologies, 
the viability of which remains to be evaluated in the 
coming years. Although not discussed here, improved 
DNA extraction, conservation and library preparation is 
also adding to the rapid growth of long-read sequencing 
population studies31. Among the biggest achievements in 
recent years is the generation of sequence reads of 4 Mbp 
and longer; although this is not yet routinely possible 
without compromising yield28. Once sequencing reads 
routinely approach chromosome length, the process 
of de novo assembly seems obsolete; however, whether 
such reads can be directly used in a framework that is 
based on de novo assemblies instead of read alignment 
remains to be seen.

Future directions
The future of long-read population-scale sequencing 
holds many opportunities for multiple types of omics 
assays. For example, both the PacBio and ONT platforms 
are able to simultaneously detect the nucleotide sequence 
and modifications of DNA such as 5-methylcytosine121. 
The identification of such modifications has unprece-
dented implications for epigenetics and the analysis of 
DNA damage. More recent versions of the ONT base 
callers are trained to detect common nucleotide mod-
ifications, which together with the plateauing accuracy 
potentially alleviates the need to store raw data. Several 
studies have shown excellent reproducibility and cor-
relation with bisulfite sequencing, suggesting that nan-
opore sequencing could become the gold standard for 
detecting methylation patterns122. Although methods 
tailored to short-read bisulfite sequencing exist, there is 
a lack of statistical methods for differential methylation 
assessment that leverages the unique features of large dis-
tance phasing of modifications in parental haplotypes. 
Detection of nucleotide modifications further opens up 
a wealth of opportunities for specialized assays such as 
chromatin accessibility profiling123 and replication fork 
detection124.

Complementary to DNA-based population sequenc-
ing, long-read sequencing of mRNA and complementary 
DNA (cDNA) also enable the identification of isoform 
diversity125. Multiple pipelines have been developed to 

investigate known and novel isoforms, but the field is 
far from mature. A survey of multiple tissues has already 
been undertaken125, and an extension of this to the pop-
ulation scale, such as in the short-read GTEx project, is 
highly likely to yield valuable information about tran-
script structure and the influence of regulatory (struc-
tural) variation. Long-read sequencing approaches 
have also been extended to the direct sequencing of 
proteins126 and single-cell transcriptomics127. Although 
these applications are likely to lead to biologically fasci-
nating insights, the implications for population studies 
remain unclear127.

Alongside the technological improvements in 
long-read sequencing, computational analysis has also 
improved, which is key to enabling population-scale pro-
jects. Analyses that took weeks to months to accomplish 
a year ago can now be completed within a day to a week 
and at a lower cost24,86,128. However, some conceptual 
challenges remain, such as the representation of nested 
and highly complex variation97. Recent advances, such 
as pan-genome graphs, have the potential to address this 
challenge97. Furthermore, the use of pan-genome graphs 
could indeed improve the analysis itself, as they over-
come the problem of a linear reference bias by including 
different alleles96,100,101. Another related computational 
challenge is the accurate and rapid genotyping of com-
plex alleles. Here, graph genomes have already shown 
significant benefits, although the process of obtain-
ing a fully genotyped population-level VCF is still far 
from trivial. This is due to the lack of a gVCF for SV 
representation, to represent information not only about 
the alternative alleles (that is, SV) but also about refer-
ence alleles. For SNV, this allows the easy comparison of  
samples and is a requirement for future SV studies.

Despite significant advances in long-read sequenc-
ing, several challenges remain to be addressed. The fre-
quently discussed issue regarding the lack of precision 
and lack of sensitivity in identifying SNVs and small 
indels, especially involving homopolymers, is likely to 
be resolved by advancements in sequencing accuracy27,68. 
However, difficulties remain in assessing variation 
in complex regions such as segmental duplications, 
ribosomal DNA (rDNA) tandem arrays, telomeres or 
centromeres. Spurred by the efforts led by the T2T con-
sortium, which aims to provide the full linear nucleo-
tide sequence of all human chromosomes, new software 
tools are being developed that specifically aim to resolve 
these large tandem arrays and also to assess the allelic 
variation within them. However, whether this solves the 
problem completely remains to be determined, as at the 
time of writing even the T2T reference genome has a 
few gaps remaining and only represents one ethnicity.

In this Review, we provide a snapshot of the pres-
ent state of large-scale long-read sequencing and dis-
cuss the exciting developments in biotechnology and 
bioinformatics. Despite its challenges, we argue that 
long-read sequencing has contributed immensely to 
the advancement of genomics in humans, model organ-
isms and beyond, and that this is the way forward for 
population-scale studies.
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