
Submitted 23 March 2021
Accepted 18 November 2021
Published 15 February 2022

Corresponding author
Hilmar Lapp, hilmar.lapp@duke.edu

Academic editor
Jun Chen

Additional Information and
Declarations can be found on
page 21

DOI 10.7717/peerj.12618

Copyright
2022 Vaidya et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

A new phylogenetic data standard
for computable clade definitions: the
Phyloreference Exchange Format (Phyx)
Gaurav Vaidya1,2, Nico Cellinese2,3 and Hilmar Lapp4

1Renaissance Computing Institute (RENCI), University of North Carolina at Chapel Hill, Chapel Hill, NC,
United States of America

2 Florida Museum of Natural History, University of Florida, Gainesville, FL, United States of America
3 Informatics Institute, University of Florida, Gainesville, FL, United States of America
4Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, United States of America

ABSTRACT
To be computationally reproducible and efficient, integration of disparate data depends
on shared entities whose matching meaning (semantics) can be computationally
assessed. For biodiversity data one of the most prevalent shared entities for linking data
records is the associated taxon concept. Unlike Linnaean taxon names, the traditional
way in which taxon concepts are provided, phylogenetic definitions are native to
phylogenetic trees and offerwell-defined semantics that can be transformed into formal,
computationally evaluable logic expressions. These attributesmake themhighly suitable
for phylogeny-driven comparative biology by allowing computationally verifiable and
reproducible integration of taxon-linked data against Tree of Life-scale phylogenies.
To achieve this, the first step is transforming phylogenetic definitions from the natural
language text in which they are published to a structured interoperable data format
that maintains strong ties to semantics and lends itself well to sharing, reuse, and
long-term archival. To this end, we developed the Phyloreference Exchange Format
(Phyx), a JSON-LD-based text format encompassing rich metadata for all elements
of a phylogenetic definition, and we created a supporting software library, phyx.js, to
streamline computational management of such files. Together they form a foundation
layer for digitizing and computing with phylogenetic definitions of clades.

Subjects Bioinformatics, Evolutionary Studies, Taxonomy, Computational Science, Data Science
Keywords Phylogenetics, Data standard, Clade definitions, JSON-LD, Computational semantics,
Data curation, Semantic web

INTRODUCTION
Asmany other scientific disciplines, biology has become inundated with data. This includes
biodiversity science and fields related to it. For example, species occurrence databases and
repositories of digitized museum specimens house hundreds of millions of records (Ariño,
2010; Page et al., 2015). Integrating such data with genomic, phenomic and other biological
data can be very powerful for discovering and understanding large-scale patterns (Beaman
& Cellinese, 2012; Ellwood et al., 2020), but doing so requires the use of computer programs,
i.e., machines, that connect records by shared entities (Parr et al., 2012; Heberling et al.,
2021). The most common shared entity among biodiversity data is the taxon, or more

How to cite this article Vaidya G, Cellinese N, Lapp H. 2022. A new phylogenetic data standard for computable clade definitions: the
Phyloreference Exchange Format (Phyx). PeerJ 10:e12618 http://doi.org/10.7717/peerj.12618

https://peerj.com
mailto:hilmar.lapp@duke.edu
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.12618
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://doi.org/10.7717/peerj.12618

specifically the taxonomic concept (Berendsohn, 1995) to which the data or specimens were
identified by those who collected them.

Such identification is almost always recorded as a Linnaean name, which serves as a
proxy for the taxonomic concept it points to. However, Linnaean names suffer from a
number of shortfalls that are inherent in their nature andmake them highly problematic for
computation-driven data science. Chiefly, a Linnaean name is a mere text string decoupled
from its original concept, which over time is subject to changing interpretations, making its
meaning (semantics) often difficult or impossible to reconcile between different data sets.
Even where a Linnaean name can be traced unequivocally to a published taxon concept, its
semantics are not accessible to computation, and thus full computational reproducibility
(i.e., without the need to invoke human expert judgement) is often impossible to achieve
(Cellinese, Conix & Lapp, 2022).

In contrast, the advent of tree-thinking (Zimmermann, 1934; Hennig, 1950; Hennig,
1966) gave rise to the establishment of phylogenetic systematics, and subsequently the
development of phylogenetic taxonomy (De Queiroz & Gauthier, 1990; De Queiroz &
Gauthier, 1992; Queiroz, 1992). A phylogeny is a hierarchical system of nested clades,
where a clade is a group that includes an ancestor and all of its descendants. Within this
framework, clades, not Linnaean groups, represent natural taxa. Phylogenetic definitions
are an approach to unambiguously define taxa by shared ancestry rather than by trait
similarity. Defining taxa in this way has been increasingly adopted in the wild, and a
nomenclatural code (called the ‘‘PhyloCode’’) governing rules for definitions and naming
has been established as well (De Queiroz & Cantino, 2020). Phylogenetic definitions come
in the following three basic types (Fig. 1): (1) minimum clade definitions, which designate
the smallest clade that originates with the most recent common ancestor of two or more
internal specifiers; (2) maximum clade definitions, which designate the largest clade that
includes one or more internal specifiers but excludes one or more external specifiers;
and (3) apomorphy-based definitions, which designate the clade that arises from the first
appearance of a specified trait that is synapomorphic with an internal specifier. Specifiers
are reference points in the phylogeny that serve as anchors for the clade definition. They
can be references to a taxon concept, such as a species, specimen, or a molecular sequence,
or they can also be an apomorphy.

In recent years, very large phylogenetic trees, including the synthetic Open Tree of
Life (Hinchliff et al., 2015), have become available as the basis for aggregating biodiversity
data for comparative biology questions. Integrating Linnaean taxon concepts, which are
defined by trait similarity, not ancestry, with a phylogeny requires repurposing them for
nodes on a tree (Cellinese, Baum &Mishler, 2012), a fraught process for which verifying
the match in semantics will be difficult or impossible. In contrast, phylogenetic definitions
are native to tree-thinking (Cellinese, Conix & Lapp, 2022). Although usually published as
unstructured natural language text, they lend themselves to transformation to structured
data and to formal logic expressions that allow machines to understand and compute with
their semantics. As a consequence, they can enable automated computational verifiability
(do two taxon concepts mean the same thing?) and thus reproducibility in large-scale
biodiversity data integration.

Vaidya et al. (2022), PeerJ, DOI 10.7717/peerj.12618 2/24

https://peerj.com
http://dx.doi.org/10.7717/peerj.12618

(1) (2) (3)

A B C A B C A B C

D

Figure 1 The three basic types of phylogenetic definitions. (1) Minimum clade definitions, which desig-
nate the smallest clade that includes at least two internal specifiers (in this case, ‘B’ and ‘C’); (2) Maximum
clade definitions, which designate the largest clade that includes one or more internal specifiers (‘B’) but
excludes one or more external specifiers (‘A’), and (3) apomorphy-based definitions, which designate the
clade that arises from the first appearance of a specified trait (‘D’) that is synapomorphic with an internal
specifier (‘C’). Redrawn from De Queiroz & Gauthier (1990).

Full-size DOI: 10.7717/peerj.12618/fig-1

We have created a standard, called Phyloreferencing, for representing clade definitions
with fully machine-processable semantics, using the Web Ontology Language (OWL)
(W3C OWLWorking Group, 2012). We refer to such representations as phyloreferences,
in analogy to georeferences as fully computable geographic locations. We have also
created supporting tools, methods, and a structured data exchange format for digitizing
phylogenetic definitions from their original natural language text form to a phyloreference.
In this paper we describe the structured exchange format, which we call Phyloreference
Exchange Format (Phyx), its supporting software library (phyx.js), and tools and methods
we use for automatic testing of whether the encoded semantics of a phyloreference
indeed match (and only match) the expected clade on a phylogenetic tree. In Methods
we explain the rationale for digitizing clade definitions first to the structured exchange
format rather than directly to OWL, and give the requirements for the design of the format
to properly support the digitization process as well as automatic testing of the resulting
phyloreference records. In Results we present the Phyx format, the principal algorithm
for converting Phyx records to an OWL representation of phyloreferences, the phyx.js
supporting software library, and how we conduct automatic correctness testing of the OWL
conversion result. Taken together, the results presented here provide a reusable foundation
layer for digitizing clade definitions in an intermediate format that is easy to work with,
suitable for technology-agnostic permanent archival, and which can be converted into
computable, testable, semantically-rich OWL ontologies. Most of the resources we present
here, including in particular the Phyx data standard and its supporting software library,
are primarily aimed at developers building tools, although some tools directly suitable for
end-users are included, such as for resolving phyloreferences against the Open Tree of
Life.

Vaidya et al. (2022), PeerJ, DOI 10.7717/peerj.12618 3/24

https://peerj.com
https://doi.org/10.7717/peerj.12618/fig-1
http://dx.doi.org/10.7717/peerj.12618

METHODS
The need for a structured exchange format
OWL ontologies are ideally suited for stating the semantics of the clade definition as logical
expressions, as well as for associating provenance and othermetadata of the clade definition,
such as authorship information, citations to published forms of the clade definition, and
information about the reference phylogeny. OWL ontologies are also ideal for making the
logical clade definition testable: with phyloreferences and their reference phylogenies in the
same OWL ontology, an OWL reasoner could compare the resolution of a phyloreference
on a reference phylogeny with the expected resolution as previously recorded by a curator,
ensuring that the logical definition of a phyloreference continues to correctly represent the
semantics of the corresponding clade definition.

In the typical life cycle, phyloreferences are not instantiated from scratch as logically
defined OWL ontology classes, but are the product of digitizing a clade definition published
in natural language text. As such, they form a complex data structure, and a format most
suitable and versatile for their exchange, databasing, and long-term digital archival should
meet the following desiderata:

• Text-based and editable with a non-specialized basic text editor
• Support for hierarchical, nested, key-value structures, where values can be of different
data types
• Ability to include phylogenies in standard and widely supported formats, in particular
Newick (https://evolution.genetics.washington.edu/phylip/newicktree.html)
• Validatable for correct syntax, so syntactical errors can be detected early and
automatically
• Reading, writing, and manipulation well supported in a wide array of programming
languages, in particular those used for programming the web
• Standard toolchain and specification for converting to a semantic web format,
specifically the Resource Description Format (RDF) (Brickley & Guha, 2014) and OWL.

Obviously, the last of these would be a given with OWL as the digitization product and
exchange format, but the serialization formats of OWL (see W3C OWLWorking Group,
2012) are all a poor match for the other criteria. We therefore designed an intermediate
format for digitizing clade definitions that would have all the information needed to
generate a full OWL ontology, including the logical expressions that capture a clade
definition’s precise semantics. Given the desiderata enumerated above, we based this
format on JSON, more specifically JSON-LD (Sporny et al., 2014), and named it the
Phyloreference Exchange (or Phyx) Format.

JSON is the native data exchange format for JavaScript. It is also a widely used and
well-supported ISO standard data exchange format (https://tools.ietf.org/html/rfc8259),
and allows leveraging existing software support libraries and tools in many programming
languages, including using JSON Schema (Jackson, 2016) to validate a particular JSON file
for compliance with a schema. JSON-LD, which parses as JSON but has some conventions
layered on top that allows assigning semantics to property keys and their values, is one of

Vaidya et al. (2022), PeerJ, DOI 10.7717/peerj.12618 4/24

https://peerj.com
https://evolution.genetics.washington.edu/phylip/newicktree.html
https://tools.ietf.org/html/rfc8259
http://dx.doi.org/10.7717/peerj.12618

the serialization formats for OWL ontologies (see Sporny et al., 2020), thus providing for a
standard conversion path. To convert a Phyx file to an OWL ontology in JSON-LD format
requires adding only a few additional components:

• Metadata on the ontology itself, such as which other ontologies to include.
• The conversion of phyloreferences from key-value pairs into OWL logical expressions.
• The conversion of phylogenies from the Newick format into an ontological
representation that can be understood by an OWL2 reasoner.

To simplify many routine programming tasks when working with Phyx files, and to
better control that the Phyx JSON-LD is in proper form for converting to an OWL ontology
(such as for all entities generating and assigning unique IRI identifiers if needed), we created
a supporting software library for the format, phyx.js (see Results).

Minimum requirements for digitizing phyloreferences
To ensure that a Phyx record can be converted to a fully defined OWL class expression
for the phyloreference, a certain minimum amount of information must be present. We
determined that this minimum information is constituted by the clade type and the list of
included and excluded taxonomic units (i.e., the ‘‘specifiers’’), and identified four kinds of
specifiers required to be supported:
1. A taxon concept, represented either by an IRI (https://tools.ietf.org/html/rfc3987) or

by a combination of a scientific name and an optional publication to indicate which
circumscription is indicated.

2. A specimen, represented by a specimen identifier or an IRI.
3. An apomorphy, represented by a textual description or an IRI.
4. Any other definition for a taxon, such as another clade definition, represented by an

IRI.
Each phyloreference should also allow additional provenance metadata to be recorded,

such as information about the authorship and publication status of the Phyx file, the
phyloreferences, or the clade definitions.

Testing and validation
One of our goals was to make Phyx files automatically testable for whether the implied
logical expression for the phyloreference would, when applied to the original reference
phylogeny, indeed resolve to the same clade as the one intended by the original author. To
facilitate visually inspecting the resolution result, the Phyx format needs to be able to store
phylogenies side-by-side with phyloreferences in formats commonly used by tree-rendering
tools, in particular the Newick format. In addition, the format needs to store an annotation
to the phylogeny to indicate which clade the original author intended to define, and several
related metadata, including a citation to the source of the phylogeny, and any curator notes
about the phylogeny and the expected resolution, such as documenting clarifications about
taxon substitutions made if one or more of the exact specifiers used in the clade definition
are not present in the original phylogeny as a leaf node annotation.

For implementing an automated test suite, our aim was that it could perform tests at
three main levels of abstraction:

Vaidya et al. (2022), PeerJ, DOI 10.7717/peerj.12618 5/24

https://peerj.com
https://tools.ietf.org/html/rfc3987
http://dx.doi.org/10.7717/peerj.12618

1. At the level of unit tests, testing whether individual components of the Phyx format,
such as taxonomic units, citations and phylogenies are represented syntactically correct.

2. At the level of integration tests, testing whether entire Phyx files (i.e., digitized
phyloreference records) could be interpreted and processed correctly as an OWL
ontology and through OWL reasoning.

3. At the level of data validation, testing that a schema describing the Phyx format in the
JSON Schema language can be used to correctly identify well-formed Phyx files and to
provide useful errors when presented with badly-formed Phyx files.
Finally, we aimed to test that resolution of a particular phyloreference does not depend

in some way on the presence or absence of certain tree topologies, of which the original
reference phylogeny presents only one possibility. To ensure that resolution can identify
clades across every possible tree topology, we generate every possible tree topology
where the number of unique tips was between n= 2 (1 possible binary rooted tree, 0
possible multifurcating trees) to n= 6 (945 possible binary rooted trees, 1,807 possible
multifurcating trees (see Balding, Bishop & Cannings, 2007)), and test whether simple
minimum and maximum clade definitions resolve correctly on all topologies.

RESULTS
The Phyx format
Every Phyx document is a JSON-LD document that uses the ‘@context‘ of a particular
version of the Phyx specification (currently http://www.phyloref.org/phyx.js/context/v1.0.
0/phyx.json). The Phyx document includes metadata that describe the document itself,
as described in Table 1. The relationships and cross-references between different data
elements in a Phyx document are shown in Fig. 2.

Phyx documents contain entities of four types, which we will define in the following
sections:

• Citations are used to record references to literature or online resources. Both phylogenies
and phyloreferences may include citations to their sources, and taxonomic concepts use
citations to reference a particular circumscription.
• Taxonomic units are parts of taxa being referenced by phylogenies and phyloreferences.
• Phylogenies are evolutionary hypotheses used for testing phyloreferences.
• Phyloreferences are computable clade definitions. They are primarily defined in terms
of specifiers, which are taxonomic units that eithermust be included ormust be excluded
from the clade being defined.

Citations
Citations are widely used to ensure that the sources of phylogenies and clade definitions
are recorded. We created a standard type for citations based on the BibJSON format
(http://okfnlabs.org/bibjson/), which is itself based on the BibTeX format (Patashnik, 1988).
While none of these fields are required, Phyx editors should ensure that URLs and DOIs
are included so that relevant documents can be accessed quickly and without ambiguity.
Citations are described in Table S1.

Vaidya et al. (2022), PeerJ, DOI 10.7717/peerj.12618 6/24

https://peerj.com
http://www.phyloref.org/phyx.js/context/v1.0.0/phyx.json
http://www.phyloref.org/phyx.js/context/v1.0.0/phyx.json
http://okfnlabs.org/bibjson/
http://dx.doi.org/10.7717/peerj.12618#supp-1
http://dx.doi.org/10.7717/peerj.12618

Table 1 Fields in the Phyx document. Fields indicated with * are for use by supporting software (such as phyx.js) but are not mapped to RDF
properties, and will thus not be converted into RDF.

Field name Description Type Example

@context Required. The JSON-LD context, nec-
essary to interpret this JSON file as an
RDF file.

IRI Depends on the version of the Phyx
standard being used. Currently, this
should be http://www.phyloref.org/
phyx.js/context/v1.0.0/phyx.json

@type Additional RDF types for the top level
object. (‘‘owl:Ontology’’ will be added
automatically.)

Array of either
IRIs or CURIEs

[‘‘ https://schema.org/
DigitalDocument’’]

owl:imports A list of OWL ontologies to be im-
ported during reasoning. (See Ontol-
ogy metadata for the list of ontologies
that will be automatically added to this
field.)

Array of IRIs [‘‘ http://purl.obolibrary.org/obo/pato.
owl’’]

doi The Digital Object Identifier (doi) for
this Phyx file.

DOI 10.5281/zenodo.4562685

source A citation to this Phyx file. Citation See example of Citation below.
defaultNomenclaturalCodeIRI* The default nomenclatural code to be

used in this file, for both phylogenies
and phyloreferences. This will only
be used for nodes and taxon concept
specifiers that don’t have a nomenclat-
ural code set.

IRI http://rs.tdwg.org/ontology/voc/
TaxonName#ICZN

phylogenies A list of phylogenies in this Phyx file. Array of Phylogenies See example of Phylogeny below.
phylorefs A list of phyloreferences in this Phyx

file.
Array of Phyloreferences See example of Phyloreference below.

Taxonomic units
A taxonomic unit describes a unit of taxonomy that can be matched somewhere on a
phylogeny. Three types of taxonomic units can currently be described using the Phyx
format.

IRI
Any taxonomic unit may be described with a single field called ‘@id’ with an IRI that points
to a definition of a taxonomic unit. This allows complex taxonomic units to be defined in
any way the user wants.

Taxon or taxon concept
A taxon concept is a taxonomic grouping defined and described by taxonomists (Kennedy
et al. (2006), identified with a scientific name described under a particular nomenclatural
code (for example, the International Code of Zoological Nomenclature). Taxon concepts
not identifiable in this waymay reference a specific circumscription bymeans of a citation to
a publication in which that circumscription is defined (a ‘‘potential taxa’’ sensu Berendsohn,
1995), conventionally specified after the taxon name as a secundus (abbreviated to ‘‘sec.’’).
This can be specified in Phyx by using the nameAccordingTo field. Where no explicit
circumscription is provided, the ‘‘nominal taxon concept’’ (sensu Kennedy et al. (2006))
will be assumed. The Phyx format supports both explicit and implicit circumscriptions.

Vaidya et al. (2022), PeerJ, DOI 10.7717/peerj.12618 7/24

https://peerj.com
http://www.phyloref.org/phyx.js/context/v1.0.0/phyx.json
http://www.phyloref.org/phyx.js/context/v1.0.0/phyx.json
https://schema.org/DigitalDocument
https://schema.org/DigitalDocument
http://purl.obolibrary.org/obo/pato.owl
http://purl.obolibrary.org/obo/pato.owl
https://doi.org/10.5281/zenodo.4562685
http://rs.tdwg.org/ontology/voc/TaxonName#ICZN
http://rs.tdwg.org/ontology/voc/TaxonName#ICZN
http://dx.doi.org/10.7717/peerj.12618

Document-level information
@context
doi
defaultNomenclaturalCodeIRI
citation
phylogenies
phylorefs

Phylogeny
@id
label
newick
source
additionalNodeProperties

Phyloreference
@id
label
phylorefType
internalSpecifiers
externalSpecifiers
scientificNameAuthorship
namePublishedIn
definitionSource
definition
apomorphy

@type
phenotypeBearer
phenotypicQuality
definition

expectedResolution
Citation

type
title
year
authors
editors
series_editors
identifier
link
journal
publisher
city
pages
figure

Taxonomic Unit
@id

Taxon
@type
hasName

@type
nomenclaturalCode
nameComplete
genusPart
specificEpithet
label

nameAccordingTo

Specimen
@type
basisOfRecord
institutionCode
collectionCode
catalogNumber
occurrenceID
hasName (see Taxon)

Figure 2 Relationships and references between different types in the Phyx format.Note that not all ci-
tation objects are fully expanded.

Full-size DOI: 10.7717/peerj.12618/fig-2

Specimen
A specimen can be described using specimen identifiers following the Darwin Core
(Wieczorek et al., 2012) term occurrenceID (http://rs.tdwg.org/dwc/terms/occurrenceID).
If not a globally unique identifier (GUID), this is often constructed from the so-called
Darwin Core Triplet, which is composed of the institution (e.g., museum) code, the
code of the collection within the institution, and the code of the specimen within the
collection (‘‘catalog number’’) (Biodiversity Information Standards, TDWG)(2016, sec.
2.7.3). Specimens are described in Table S2.

Phylogenies
Phyx files may contain rooted phylogenies, i.e., a tree-based representation of the
evolutionary relationships between units of taxonomy. Each phylogeny must include
the tree topology as a Newick string, stored in the ‘newick’ property. The Newick format
allows both internal and terminal nodes to be labeled. It can also express polytomies, which
are fully supported by the accompanying phyx.js programming library. Extended Newick
formats for expressing phylogenetic networks (for example Than, Ruths & Nakhleh, 2008)
resulting from, e.g., reticulation events are, however, not currently supported by phyx.js.

Vaidya et al. (2022), PeerJ, DOI 10.7717/peerj.12618 8/24

https://peerj.com
https://doi.org/10.7717/peerj.12618/fig-2
http://rs.tdwg.org/dwc/terms/occurrenceID
http://dx.doi.org/10.7717/peerj.12618#supp-2
http://dx.doi.org/10.7717/peerj.12618

Table 2 Fields in taxonomic unit objects identified solely by IRI.

Field name Description Type Example

@id Required. An opaque identifier for this taxonomic unit. IRI https://avibase.bsc-eoc.org/species.jsp?avibaseid=
C600B65C997827CD (referring to a particular
circumscription of a taxon concept labeled the ‘‘Canada or
Cackling Goose’’)

Each phylogeny can also include a label and a full citation to the published version using
the ‘citation’ property.

When converted to an OWL ontology, each node in the phylogeny will be represented
by a named individual of the class cdao:Node in the Comparative Data Analysis Ontology
(CDAO) (Prosdocimi et al., 2009) data model. To add additional properties to nodes in
the phylogeny, the additionalProperties field may be used. This is a dictionary mapping
node labels to an object whose properties are copied into the Node object once it has been
created. This can be used for example to indicate that a single node in the phylogeny refers
to multiple taxonomic units by using cdao:represents_TU (see example in the table below).

Phyloreferences
Phyloreferences are digitized clade definitions that capture in a structured and machine-
processable way the semantics of the clade concept. To generate phyloreferences as OWL
classes with formal logic definitions from the Phyx format, depending on the type of
phyloreference two to three pieces of information are necessary:
1. The type of the clade definition (see Fig. 1).
2. One or more internal specifiers: the taxonomic unit(s) that must be included within

the defined clade. Apomorphy-based phyloreferences must give exactly one.
3. Maximum-clade phyloreferences require one ormore external specifiers: the taxonomic

unit(s) that must be excluded from the defined clade.
4. Apomorphy-based phyloreferences must have exactly one apomorphy, exhibited by

members of the taxonomic unit represented by the internal specifier.
Phyloreferences can also include additional metadata, such as a label for the

phyloreference and citations for the clade definition as well as for the name (if the
name is published according to a nomenclatural code). To store information on where the
original author expected the clade definition to resolve on the reference phylogeny, each
phyloreference can include an ‘expectedResolution‘ dictionary. The keys of this dictionary
are IRIs that refer to phylogenies, which must be present in the same Phyx document.

Converting Phyx files to OWL ontology
Since Phyx documents are JSON-LD documents, they can be converted to other RDF
formats by JSON-LD tools such as rdfpipe (https://rdflib.readthedocs.io/). In the following
sections, we use a number of RDF prefixes to refer to terms in various ontologies. We
list these prefixes in Table 6. The mapping of terms to RDF properties is defined by the
Phyx JSON-LD context as given above; it is also reproduced in expanded form in Table S3
alongside the columns from Tables 1 to 5 and Tables S1–S2.

To be readable as OWL ontologies, some additional steps are necessary:

Vaidya et al. (2022), PeerJ, DOI 10.7717/peerj.12618 9/24

https://peerj.com
https://avibase.bsc-eoc.org/species.jsp?avibaseid=C600B65C997827CD
https://avibase.bsc-eoc.org/species.jsp?avibaseid=C600B65C997827CD
https://rdflib.readthedocs.io/
http://dx.doi.org/10.7717/peerj.12618#supp-3
http://dx.doi.org/10.7717/peerj.12618#supp-1
http://dx.doi.org/10.7717/peerj.12618#supp-2
http://dx.doi.org/10.7717/peerj.12618

Table 3 Fields in a taxon or taxon concept object.

Field name Description Type Example

@type Required.We use the TDWG Taxon
Concept ontology (http://rs.tdwg.org/
ontology/voc/TaxonConcept) for types
and properties.

IRI Must be http://rs.tdwg.org/ontology/voc/TaxonConcept#
TaxonConcept

hasName Required. The taxonomic name of
this taxon or taxon concept. It is de-
scribed with the following fields:

Object

- @type Required.We use the TDWG Taxon
Name ontology (http://rs.tdwg.org/
ontology/voc/TaxonName) for types
and properties.

IRI Must be http://rs.tdwg.org/ontology/voc/TaxonName#
TaxonName

- nomenclaturalCode The nomenclatural code under which
this taxon name was created.

IRI http://rs.tdwg.org/ontology/voc/TaxonName#ICZN

- nameComplete Required. The complete uninomial,
binomial or trinomial name without
any authority or year components.

String Alligator mississippiensis

- genusPart The genus portion of the taxon name. String Alligator
- specificEpithet The specific epithet portion of the

taxon name.
String mississippiensis

- label The full taxon name, including an au-
thority or year components.

String Alligator mississippiensis (Daudin, 1802)

nameAccordingTo Publication or authors whose circum-
scription of the taxon is intended to
be used. If omitted, the nominal taxon
concept (in the sense of Kennedy et al.,
2006) will be assumed.

String Brochu (2003)

• Adding metadata on the ontology itself, such as which other ontologies to include.
• Converting all taxonomic units (on both phyloreferences and phylogenies) to OWL
logical expressions.
• Converting phylogenies into an OWL representation.
• Converting phyloreferences into OWL logical expressions.

Below we detail each of these steps.

Ontology metadata
A Phyx document will not be recognized as an OWL ontology, because it is not typed as
‘owl:Ontology’. Therefore, conversion to OWL must include the following:

• Setting the document’s ‘@type’ JSON-LD property to an OWL ontology
(‘owl:Ontology’).
• If reasoning needs to be enabled, then two application ontologies from the
Phyloreferencing project must be included (using ‘owl:imports’): ‘http://ontology.
phyloref.org/phyloref.owl’ and (if taxonomic units are used) ‘http://ontology.phyloref.
org/tcan.owl’. These ontologies include the other ontologies mentioned in this file, such
as CDAO, the TDWG ontology, NOMEN and others.

Vaidya et al. (2022), PeerJ, DOI 10.7717/peerj.12618 10/24

https://peerj.com
http://rs.tdwg.org/ontology/voc/TaxonConcept
http://rs.tdwg.org/ontology/voc/TaxonConcept
http://rs.tdwg.org/ontology/voc/TaxonConcept#TaxonConcept
http://rs.tdwg.org/ontology/voc/TaxonConcept#TaxonConcept
http://rs.tdwg.org/ontology/voc/TaxonName
http://rs.tdwg.org/ontology/voc/TaxonName
http://rs.tdwg.org/ontology/voc/TaxonName#TaxonName
http://rs.tdwg.org/ontology/voc/TaxonName#TaxonName
http://rs.tdwg.org/ontology/voc/TaxonName#ICZN
http://ontology.phyloref.org/phyloref.owl
http://ontology.phyloref.org/phyloref.owl
http://ontology.phyloref.org/tcan.owl
http://ontology.phyloref.org/tcan.owl
http://dx.doi.org/10.7717/peerj.12618

Table 4 Fields in a phylogeny object. Fields marked with * are for use by supporting software (such as phyx.js) but are not mapped to RDF proper-
ties, and will thus not be converted into RDF (or OWL).

Field name Description Type Example

@id The identifier for this phy-
logeny.

IRI #phylogeny0

label A label describing this phy-
logeny.

String Fig 1 from Brochu (2003)

newick Required. The Newick
string.

String (Parasuchia,(rauisuchians,Aetosauria,(sphenosuchians,
(protosuchians,(mesosuchians,(Hylaeochampsa,
Aegyptosuchus,Stomatosuchus,(Allodaposuchus,(‘Gavialis
gangeticus’,((‘Diplocynodon
ratelii’,(‘Alligator mississippiensis’,‘Caiman
crocodilus’)Alligatoridae)Alligatoroidea,(‘Tomistoma
schlegelii’,(‘Osteolaemus tetraspis’,‘Crocodylus
niloticus’)Crocodylinae)Crocodylidae)Brevirostres)
Crocodylia))Eusuchia)Mesoeucrocodylia)
Crocodyliformes)Crocodylomorpha))

source The source of this phy-
logeny.

Citation See above for an example Citation.

additionalNodeProperties* A dictionary mapping node
labels to properties that
should be added to the
node when converting this
Phyx file into an OWL on-
tology.

Object ‘‘additionalNodeProperties’’: {
‘‘Exodictyon incrassatum’’: {
‘‘representsTaxonomicUnits’’: [{
‘‘@type’’:
‘‘http://rs.tdwg.org/dwc/terms/Occurrence’’,
‘‘institutionCode’’: ‘‘UC’’,
‘‘catalogNumber’’: ‘‘Wall 2527, Fiji’’
]}
}
}

Convert specifiers to OWL logical expressions
All taxonomic units can be converted into OWL logical expressions as below:
1. Taxon concepts are converted into an OWL expression in the form ‘tc:hasName

some (tn:nomenclaturalCode value tn:ICZN and tc:nameComplete value ‘scientific
name’). The ‘tn:nomenclaturalCode’ property can be removed if no nomenclatural
code is specified. If the optional citation is a publication in which this taxon concept
is circumscribed, the additional specification ‘and tc:accordingTo ‘circumscription
citation’ may be added to this expression.

2. Specimen identifiers are converted into an OWL expression in the form
‘dwc:occurrenceId value ‘occurrenceID’’. See the ‘‘occurrenceID’’ field in the Specimen
description above for how this is constructed from specimen record properties if a
native identifier is not present.

3. Apomorphies are not currently supported for converting to an OWL expression
accessible to reasoning.

4. Other phyloreferences can be referenced by using their ‘@id’.

Phylogenies
In order to connect phyloreferences to phylogenies, we reuse the concept of ‘‘taxonomic
units’’ from the CDAO ontology (Prosdocimi et al., 2009). We use CDAO:0000187

Vaidya et al. (2022), PeerJ, DOI 10.7717/peerj.12618 11/24

https://peerj.com
http://dx.doi.org/10.7717/peerj.12618

Table 5 Fields in a phyloreference object. Fields indicated with * are for use by supporting software (such as phyx.js) but are not mapped to RDF
properties, and will thus not be converted into RDF (or OWL). The phyx.js software copies the value of the ‘phylorefType‘ field into the ‘rdf:type‘
property during transformation to RDF.

Field name Description Type Example

@id The identifier for this phyloreference. IRI #Alligatoroidea
label A name for the clade defined by the

phyloreference. For clade definitions
digitized from the PhyloCode, the
name will follow PhyloCode naming
conventions (De Queiroz & Cantino,
2020).

String Alligatoroidea

phylorefType The type of this phyloreference. Enumeration One of
phyloref:PhyloreferenceUsing
Maximum Clade,
phyloref:PhyloreferenceUsing
MinimumClade or
phyloref:PhyloreferenceUsing
Apomorphy

scientificNameAuthorship The authors who created this clade
definition.

Citation See the Citations section above for an
example citation.

namePublishedIn If the label is a scientific name, then
this field records the publication in
which that name was first published.

Citation See the Citations section above for an
example citation.

definitionSource The publication in which this clade
definition was first published.

Citation See example citation above.

definition Required. A free-text field for storing
the verbatim clade definition.

String Alligator mississippiensis and all
crocodylians closer to it than to
Crocodylus niloticus or Gavialis
gangeticus.

internalSpecifiers* A list of internal specifiers (defined
as taxonomic units) that must be in-
cluded in the clade.

Array of
taxonomic
units

See taxonomic unit examples above.

externalSpecifiers* A list of external specifiers (defined
as taxonomic units) that must be ex-
cluded from the clade.

Array of
taxonomic
units

See taxonomic unit examples above.

apomorphy If used, indicates that this phyloref-
erence designates the clade that arises
from the first appearance of this trait
that is synapomorphic with an internal
specifier. In this case, exactly one in-
ternal specifier and no external speci-
fiers must be provided. The trait is de-
scribed with the following fields:

Object

- @type Required. Used to indicate the type of
this trait.

IRI Must be https://semanticscience.org/
resource/SIO_010056 (‘‘phenotype’’)

- bearingEntity* An IRI that identifies the entity bear-
ing the phenotypic quality if the phe-
notype referenced by this apomor-
phy can be decomposed into a quality
and the entity bearing the quality (EQ
model).

IRI http://purl.obolibrary.org/obo/
UBERON_0008271

(continued on next page)

Vaidya et al. (2022), PeerJ, DOI 10.7717/peerj.12618 12/24

https://peerj.com
https://semanticscience.org/resource/SIO_010056
https://semanticscience.org/resource/SIO_010056
http://purl.obolibrary.org/obo/UBERON_0008271
http://purl.obolibrary.org/obo/UBERON_0008271
http://dx.doi.org/10.7717/peerj.12618

Table 5 (continued)

Field name Description Type Example

- phenotypicQuality* An opaque IRI that identifies the phe-
notypic quality if the phenotype refer-
enced by this apomorphy can be de-
composed into entity and quality (EQ
model). See bearingEntity.

IRI Defaults to http://purl.obolibrary.org/
obo/PATO_0000467 if one is not pro-
vided.

- definition Required. A definition of the apomor-
phy.

String A complete turtle shell as inherited by
Testudo graeca

expectedResolution* A dictionary of phylogeny identifiers
to objects that record the nodeLabel
(the node label on that phylogeny this
phylogeny is expected to resolve to)
as well as an optional description (de-
scribing why that node was chosen).

Dictionary ‘‘expectedResolution’’: {
‘‘#phylogeny0’’: {
‘‘nodeLabel’’: ‘‘Gavialis gangeticus’’,
‘‘description’’: ‘‘Only representative
of Gavialoidea in this phylogeny.’’
}
}

Table 6 RDF prefixes used in phyloreferencing.

Prefix Ontology or vocabulary Expands to

rdf Resource Description Framework (RDF) http://www.w3.org/1999/02/22-rdf-syntax-ns#
owl Web Ontology Language (OWL) http://www.w3.org/2002/07/owl#
CDAO Comparative Data Analysis Ontology (CDAO)

(Prosdocimi et al., 2009)
http://purl.obolibrary.org/obo/CDAO_

dwc Darwin Core (Wieczorek et al., 2012 http://rs.tdwg.org/dwc/terms/
tc TDWG Taxon Concept LSID Ontology http://rs.tdwg.org/ontology/voc/TaxonConcept#
tn TDWG Taxon Name LSID Ontology http://rs.tdwg.org/ontology/voc/TaxonName#
phyloref The Phyloreferencing Ontology http://ontology.phyloref.org/phyloref.owl#
tcan Ontology for Taxon Concepts And Names http://ontology.phyloref.org/tcan.owl#

(‘‘represents_TU’’) to indicate that a particular node in the phylogeny represents a
particular taxonomic unit. For example, wemight say that ‘:node1 rdf:type [CDAO:0000187
(‘‘represents_TU’’) some (tc:hasName some (tn:nomenclaturalCode value tn:ICZN and
tc:nameComplete value ‘<scientific name>’))]’’.

Phyloreferences
We use the following algorithm to transform the information in a Phyx file to generate
OWL class expressions for logically defining the phyloreference class. This algorithm is
implemented in and thus published in the phyx.js library (see below).

To generate the OWL model of a phyloreference, we utilize a series of properties and
other terms drawn from the Phyloreferencing Ontology (prefix ‘‘phyloref:’’, see Table 6).
Fully explaining and discussing the semantics of these terms is the subject of a future paper
and beyond the scope of this one.
1. phyloref:has_Sibling is a symmetrical property that relates a phylogeny node to all

other children of its parent, i.e., if ‘node1’ and ‘node2’ share a parent, then ‘node1
phyloref:has_Sibling node2’ and ‘node2 phyloref:has_Sibling node1’.

2. phyloref:excludes_lineage_to is a property defined such that if ‘node1 phy-
loref:excludes_lineage_to node2’ then node2 is a sibling of node1, or node2 is a

Vaidya et al. (2022), PeerJ, DOI 10.7717/peerj.12618 13/24

https://peerj.com
http://purl.obolibrary.org/obo/PATO_0000467
http://purl.obolibrary.org/obo/PATO_0000467
http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://www.w3.org/2002/07/owl#
http://purl.obolibrary.org/obo/CDAO_
http://rs.tdwg.org/dwc/terms/
http://rs.tdwg.org/ontology/voc/TaxonConcept#
http://rs.tdwg.org/ontology/voc/TaxonName#
http://ontology.phyloref.org/phyloref.owl#
http://ontology.phyloref.org/tcan.owl#
http://dx.doi.org/10.7717/peerj.12618

descendant (given by property CDAO:0000174, ‘‘has_Descendant’’) of a sibling of
node1.

3. phyloref:excludes_TU is defined such that ‘node1 phyloref:excludes_TU otu1’ if node1
has a sibling that represents TU (property CDAO:0000187, ‘‘represents_TU’’) otu1,
or if a descendant of a sibling of node1 does. In practice, this is a convenience
property, defined as a property chain over phyloref:excludes_lineage_to, to make
OWL restrictions underlying phyloreferences more readable.

4. phyloref:includes_TU is defined such that ‘node1 phyloref:includes_TU otu1‘ if node1
represents TU (property CDAO:0000187, ‘‘represents_TU’’) otu1, or if a descendant
of node1 (given by property CDAO:0000174, ‘‘has_Descendant’’) does.
Phyloreference with one internal and one external specifiers:This is the simplestOWL

property restriction to generate for a phyloreference. It is true (which we call ‘‘resolves to’’)
for the node that includes a particular taxonomic unit (internal1) and excludes another
taxonomic unit (external1). Using the terms defined above, this can be expressed as:
‘phyloref:includes_TU some internal1 and phyloref:excludes_TU some external2’.

Phyloreference with two internal specifiers: As per the semantics of phylogenetic
definitions, this is equivalent to the parent of the node that includes one of the specifiers
and through its sibling excludes the other specifier. Using ‘internal1’ and ‘internal2’
as specifiers, this can therefore be defined as ‘CDAO:0000149 (‘‘has_Child’’) some
(phyloref:includes_TU some internal1 and phyloref:excludes_TU some internal2)’’.
Because the phyloref:has_Sibling property is symmetric, it does not matter which of the
two specifiers is chosen for inclusion, and which for exclusion.

Phyloreference with more than two specifiers: Phyloreferences with more than two
specifiers can be converted into OWL property restrictions using the algorithm described
below. To avoid repetition of complex logical expressions and to improve debugging by
allowing resolution of components of the phyloreference to be examined, we create in
many cases OWL classes defined as equivalent to components (i.e, parts) of the full logical
expressions of a phyloreference.We refer to these below as component classes. For example,
when defining a phyloreference with one internal specifier (A) and two external specifiers
(B and C), we would create a component class each for logical expressions that resolve to
(includes: A, excludes: B) and (includes: A, excludes: C). While describing the algorithm
we use to generate the phyloreferences below, we indicate where these component classes
are created.

Minimum clade phyloreferences with multiple internal specifiers: Generate logical
expressions using the following recursive algorithm:
1. Define createClassExpressionsForInternals as a function that takes two arguments:

a. selected : The set of chosen internal specifiers,
b. remainingInternals: The set of internal specifiers that remain to be chosen.
This function consists of the following steps:
a. Generate a class expression for the provided sets of selected and remaining internal

specifiers as follows:
i. Generate selectedExpr, the logical expression for the internals that have already

been selected:

Vaidya et al. (2022), PeerJ, DOI 10.7717/peerj.12618 14/24

https://peerj.com
http://dx.doi.org/10.7717/peerj.12618

1. If only a single internal specifier has been selected (specifier1) in selected,
generate ‘phyloref:includes_TU some specifier1’’.

2. If two internal specifiers have been selected (specifier1, specifier2) in
selected, generate the expression for a phyloreference with two internal
specifiers: ‘CDAO:0000149 (‘‘has_Child’’) some (phyloref:includes_TU
some specifier2 and phyloref:excludes_TU some specifier1’).

3. If selected consists of more than two internal specifiers, generate a
component class for this logical expression by calling createClassExpres-
sionsForInternals(selected, []).

ii. Generate remainingInternalsExpr, the logical expression for the internals that
remain to be selected:
1. If only a single internal specifier remains to be selected (specifier1) in

remainingInternals, generate ‘phyloref:includes_TU some specifier1 ‘.
2. If two internal specifiers remain to be selected (specifier1, specifier2)

in remainingInternals, generate the expression for a phyloreference
with two internal specifiers: ‘CDAO:0000149 (‘‘has_Child’’) some
(phyloref:includes_TU some specifier2 and phyloref:excludes_TU some
specifier1)‘.

3. If remainingInternals consists of more than two internal specifiers, generate
a component class for this logical expression by recursively calling
createClassExpressionsForInternals(remainingInternals, []).

iii. Generate a class expression in the form ‘CDAO:0000149 (‘‘has_Child’’) some
(selectedExpr and phyloref:excludes_lineage_to some remainingInternal-
sExpr)‘.

b. Generate class expressions for every combination of remaining specifiers as follows:
i. Stop if there is only a single remainingInternal (the class expressions generated

above fully cover this case), or if the size of the set remainingInternal is greater
than the size of the set selected (otherwise previously generated class expressions
would be duplicated).

ii. For every remaining internal specifier remaining1, we generate a list of
class expressions by calling createClassExpressionsForInternals(selected union
remaining1, remainingInternals minus remaining1).

c. Return the union of the class expressions generated in steps (a) and (b).
2. To generate the set of logical expressions for a phyloreference with a set of internal

specifiers internalSpecifiers, we invoke the createClassExpressionsForInternals()
functionwith the empty set as the selected specifiers: createClassExpressionsForInternals(
[], internalSpecifiers).

3. The phyloreference is equivalent to the union of the generated logical expressions, of
which there will be n (n−1)/2 with n being the number of internal specifiers. However,
logical disjunction is outside of the OWL2 EL profile, and is hence not used by the
highly efficient reasoners available for this profile. To stay within the OWL2 EL profile,
we create a separate subclass of this phyloreference as a component class for each

Vaidya et al. (2022), PeerJ, DOI 10.7717/peerj.12618 15/24

https://peerj.com
http://dx.doi.org/10.7717/peerj.12618

logical expression. Due to OWL subclass semantics, any nodes resolved by any of these
subclasses are necessarily a valid resolution of their phyloreference superclass.
Maximum clade phyloreferences using multiple internal and/or external specifiers: We

generate a logical expression for such phyloreferences using the following algorithm:
1. For every external specifier selectedExternal, generate an OWL restriction that is the

intersection of:
a. All the internal specifiers (in the form ‘phyloref:includes_TU some specifier ‘).
b. The selected external specifier (in the form ‘phyloref:excludes_TU some

selectedExternal ‘).
c. All the external specifiers except for selectedExternal, in the form ‘CDAO:0000144

(‘‘has_Ancestor’’) some (phyloref:excludes_TU some externalSpecifier)‘.
2. The phyloreference is equivalent to the union of the generated logical expressions, of

which there will be as many as there are external specifiers. As noted for minimum
clade phylorferences, to remain within OWL2 EL we instead create a separate subclass
of this phyloreference as a component class for each logical expression.

phyx.js library
The implementation of the conversion algorithm described above is included in a
supporting JavaScript library we created, called phyx.js. It is available as open source code
under the MIT license on Github at http://github.com/phyloref/phyx.js, and is published
on NPM, the JavaScript package repository, at https://www.npmjs.com/package/@phyloref/
phyx. In addition to the conversion algorithm, this library includes wrapper classes for
most of the Phyx file components described above. The wrapper classes are not intended
to completely abstract these elements, but to provide helper functions to help access
them in standardized ways. Most wrapper classes are low-level, wrapping a single citation,
taxon name or specimen. Intermediate wrapper classes wrap entire phylogenies and
phyloreferences. A single high-level class wraps an entire Phyx document, and provides
methods to convert it into an OWL ontology in JSON-LD when needed.

There are three sets of classes included in this library:

• The ‘utils’ classes are helper classes for the other parts of the library, for example
a collection of OWL term names needed across the library (‘owlterms.js’), and a
simple cache to enhance the performance of classes that have to manage mappings
(‘PhyxCacheManager.js’).
• The ‘wrapper’ classes wrap individual parts of the Phyx document. These are:

– ‘TaxonomicUnitWrapper‘ wraps any taxonomic unit. It can determine what type
of taxonomic unit it has wrapped, and returns either a SpecimenWrapper or
TaxonConceptWrapper depending on that type.

– ‘SpecimenWrapper’ wraps taxonomic units that consist of a single specimen. It can
return specimen identifier information, as well as the scientific name if this is also
included.

Vaidya et al. (2022), PeerJ, DOI 10.7717/peerj.12618 16/24

https://peerj.com
http://github.com/phyloref/phyx.js
https://www.npmjs.com/package/@phyloref/phyx
https://www.npmjs.com/package/@phyloref/phyx
http://dx.doi.org/10.7717/peerj.12618

– ‘TaxonConceptWrapper’ wraps taxonomic units that consist of a taxon name and
optionally a citation to a publication in which it is defined. It can wrap the taxon
name using the TaxonNameWrapper class.

– ‘TaxonNameWrapper’ wraps a single taxon name. It provides methods to determine
the name’s nomenclatural code and to parse a string as a taxon name.

– ‘PhylogenyWrapper’: wraps a single phylogeny. It contains methods for converting
the Newick string into its CDAO-based ontology form, as described above.

– ‘PhylorefWrapper: wraps a single phyloreference. It contains methods for iterating
over the internal and external specifiers, and for converting the phyloreferences into
an ontological representation, as described above.

– ‘PhyxWrapper’ wraps an entire Phyx document and can convert it into an OWL
ontology in JSON-LDas described above. It does this by adding the necessarymetadata,
and then invoking methods in the PhylorefWrapper and PhylogenyWrapper to wrap
all phyloreferences and phylogenies.

• The ‘matcher’ classes provide methods for checking whether two different entities refer
to the same entity. Currently, this includes

– The ‘TaxonomicUnitMatcher’ method, which provides three different methods for
checking whether two taxonomic units refer to the same unit of taxonomy:

– matchByNameComplete() checks whether the two nameComplete fields in the
taxonomic units are identical.

– matchByExternalReferences() checks whether the two ‘@id’s for the two taxonomic
units are identical.

– matchByOccurrenceID() checks whether the occurrence IDs –representing a
specimen identifier –are identical.

– ‘match()’ attempts to use all three of the above methods to check whether the two
taxonomic units match by any of the three criteria.

More formal descriptions of these methods and their arguments are available online at
http://www.phyloref.org/phyx.js. The repository on GitHub includes an automatic test suite
(Taschuk & Wilson, 2017), which provides low-level testing of components of this format
to ensure that the library can parse a number of well-formed components and recognize
a number of malformed ones. These include tests for phylogenies, phyloreferences,
specimens, taxon names and taxonomic units. The repository also includes several example
Phyx files, including one based on a set of clades published in Brochu (2003), which
is archived at Zenodo (https://doi.org/10.5281/zenodo.4562685), and a tutorial (see also
Supplemental Information) that demonstrates major features using one of the example
Phyx files. The test suite converts these example Phyx files into OWL ontologies expressed
in the n-triples RDF format and confirms that they are identical to the expected output.
We built a Java program for testing the resolution of these OWL ontologies, named
JPhyloRef (Vaidya, Cellinese & Lapp, 2021). The test suite downloads JPhyloRef and tests
the generated OWL ontologies to ensure that all phyloreferences contained in them resolve
as expected, ensuring that the logical expressions were generated correctly.

Vaidya et al. (2022), PeerJ, DOI 10.7717/peerj.12618 17/24

https://peerj.com
http://www.phyloref.org/phyx.js
https://doi.org/10.5281/zenodo.4562685
http://dx.doi.org/10.7717/peerj.12618#supplemental-information
http://dx.doi.org/10.7717/peerj.12618

Systematic testing of phyloreference generation
In order to test whether the OWL expressions are being generated correctly, we generated
every possible topology for phylogenies containing:

• 2 leaf nodes (1 topology)
• 3 leaf nodes (4 topologies, 3 of which are bifurcating)
• 4 leaf nodes (26 topologies, 15 of which are bifurcating)
• 5 leaf nodes (236 topologies, 105 of which are bifurcating)
• 6 leaf nodes (2,752 topologies, 945 of which are bifurcating)

We verified that the number of trees for a given number of leaf nodes matched
the number expected (see Balding, Bishop & Cannings, 2007). To confirm that we had
enumerated the topologies correctly, we wrote a Python script using the DendroPy library
(Sukumaran & Holder, 2010) to check that every run yielded the expected number of
bifurcating and multifurcating trees, that every tree had the expected number of leaf
nodes, and that no two generated topologies were isomorphic as measured by a non-zero
Robinson-Foulds distance (Robinson & Foulds, 1981).

For each topology, we named leaf nodes with letters from ‘A’ to ‘F’, and labeled every
node in the tree based on which leaf nodes are descended from it, and, separated by an
underscore, which nodes are descended fromall of its sibling nodes, arranged in alphabetical
order, starting with an initial letter ‘‘N’’. For example, given the tree (((A, B)x, C, D), E),
the node x would be labeled as ‘‘NAB_CD’’ to indicate that the node’s descendant leaf
nodes are A and B, and that it has sibling nodes C and D. Note that the root node for every
tree with five leaf nodes will be labeled ‘‘NABCDE_’’ under this scheme.

We then test phyloreference resolution on these topologies using two phyloreferences:
a minimum clade phyloreference that resolves to the most recent common ancestor of ‘A’
and ‘B’, and a maximum clade phyloreference that resolves to the maximum clade that
includes ‘A’ but excludes ‘C’. Using the node labeling scheme described above, we can
determine where each of these phyloreferences would be expected to resolve to:
1. The minimum clade example phyloreference should resolve to the node with the

shortest label (i.e., containing the fewest leaf nodes) starting with the characters
‘‘NAB’’.

2. The maximum clade example phyloreference should resolve to the node with the
shortest label matching the regular expression pattern ‘‘NA.*_.*C.*’’ (where ‘‘.*’’
matches any character zero or more times).
We named the phyloreferences with the labels of the nodes where we expected them to

resolve. We then converted the Phyx files into OWL ontologies and executed them using
JPhyloRef (https://github.com/phyloref/jphyloref), a command-line Java wrapper for testing
phyloreference resolution using the ELK reasoner (Kazakov, Krötzsch & Simančík, 2014).
We found that for each topology ELK inferred the correct tree nodes as instances of the
two phyloreferences.

The script for generating these phylogenies, named ‘generate-topologies.js‘, is included
in the Github repository, as are Nexus (Maddison, Swofford & Maddison, 1997) files
containing the generated trees.

Vaidya et al. (2022), PeerJ, DOI 10.7717/peerj.12618 18/24

https://peerj.com
https://github.com/phyloref/jphyloref
http://dx.doi.org/10.7717/peerj.12618

phyx.js command line tools for end-users
The phyx.js package includes two command line tools suitable for end-users. One is
‘phyx2owl.js’, which converts Phyx files into OWL ontologies.

The other, ‘resolve.js’, resolves phyloreferences on the Open Tree of Life (Hinchliff et al.,
2015). It is currently limited to phyloreferences whose specifiers are taxa identified with
taxonomic names. The tool employs a two-step process: First, it uses the Open Tree of Life
API to translate the taxonomic names of each specifier to their corresponding Open Tree
Taxonomy Identifier (using the ‘/tnrs/match_names’ endpoint). If any taxonomic name
cannot be translated, the phyloreference is skipped. In the second step, it requests from the
Open Tree of Life API to determine (via the ‘/tree_of_life/mrca’ endpoint) the most recent
common ancestor of all the internal specifiers, excluding, in the case of a maximum clade
definition, all of the external specifiers. The response to this query is a list of nodes on the
Open Tree of Life synthetic tree, starting with the earliest node that excludes the external
nodes and the descendants between that node and the most recent common ancestor of
the internal specifiers. For maximum clade phyloreferences it is therefore the first node in
this list that is the correct ancestor node of the clade. For minimum clade phyloreferences,
there will be only one node in the list, which will also be the correct ancestor node of the
desired clade. ‘resolve.js’ will report the Open Tree of Life identifier for the ancestor node,
as well as its node label if one is present.

‘resolve.js’ prints resolution results to standard output as a JSON document. The
‘–write-table’ command line argument can also be used to write all resolution results to a
tab-delimited file.

DISCUSSION
In this paper we have described three main contributions: an exchange and archival format
for phyloreferences called Phyx; a supporting software library written in JavaScript and
published as open-source on the NPM package repository; and the testing framework we
use to ensure that the content of Phyx files is syntactically correct and its semantics match
expectations.

Among the key strengths of a phyloreference as the digitized form of a phylogenetic
definition are that its semantics are computable, meaning that machines can digest and
compute with the (evolutionary) meaning of the phylogenetic definition and apply it to
phylogenetic hypotheses, i.e., phylogenetic trees. Consequently, initially our digitization
target was an OWL ontology. However, as explained earlier, it became clear that an OWL
ontology as the direct product of digitizing a phylogenetic definition faces a number
of problems, including a still relatively poor software support ecosystem; challenges
with editing the serialization formats; and inherent limitations of OWL (and in fact any
first-order logic system) for properly representing clade definitions utilizing more than the
minimally required set of specifiers. As David Wheeler’s famous aphorism, a.k.a. as the
fundamental theorem of software engineering, goes ‘‘All problems in computer science
can be solved by another level of indirection’’ (Spinellis, 2007). Indeed, our decision to
devise Phyx as a distinct format allowed us to decouple the tasks of managing, exchanging,

Vaidya et al. (2022), PeerJ, DOI 10.7717/peerj.12618 19/24

https://peerj.com
http://dx.doi.org/10.7717/peerj.12618

and long-term archiving the products of digitizing phylogenetic definitions on the one
hand, and applying machine reasoning to them on the other hand. As a result, using the
Phyx format instead of an OWL ontology as the initial serialization product has greatly
simplified the workflow of curating phyloreferences from published clade definitions, and
the development of curator-supporting tools (which we will report in future papers). At
the same time, as a JSON-LD format most content in a Phyx file remains tightly tied to
ontology-defined semantics of properties and types, which has also allowed us to build a
powerful testing framework that can catch syntactic as well as semantic errors early on.

Another consequence of devising the Phyx format as essentially a level of indirection
is that by design we can record phyloreferences in the Phyx format that will be difficult
to properly represent in an OWL ontology, as we explain in describing the algorithm that
generates class equivalency expressions from the attributes of phyloreferences in Phyx
format. We consider this an advantage rather than a downside: it allows us to record in a
fully structured, semantically explicit, and machine parseable way the information about a
phylogenetic definition without having to commit to it having to be representable in OWL
or more generally in some first-order logic language. In this way, Phyx allows for lossless
management and archival of the information, while allowing for different ways, including
first-order logic reasoning, to be developed for resolving phyloreferences of various kinds
and complexity.

The phylogenetic hypotheses to which one may want to apply a phylogenetic definition
may contain polytomies (multifurcations), for example, as a result of insufficient resolution
of the branching order, and they can also include reticulation events, representing processes
such as hybridization, lateral gene transfer, etc. Phylogenetic definitions are agnostic to
both polytomies and the presence of reticulation, and thus, by extension, so is Phyx as
a machine-readable data standard. When reticulation events are present in a phylogeny,
which is then often referred to as a phylogenetic network, some clades will overlap
with others rather than be mutually exclusive. The PhyloCode as the nomenclator for
phylogenetic definitions explicitly allows this, and it does not alter the formalism and
elements from which a phylogenetic definition is constructed. Whether the presence of
reticulation events in a phylogeny presents an issue for computational resolution of a
phyloreference will necessarily depend on the chosen mechanism, which Phyx as the data
standard intentionally does not prescribe. Answering this question is therefore beyond the
scope of this paper, and is a subject for future work.

Phyx is not the first approach to digitizing phylogenetic definitions. Earlier efforts
include in particular mor (Hibbett et al., 2005) and Names On Nodes (Keesey, 2007), and
more recently the Phlora application (http://phlora.org/) allows clades to be visualized
on a tree. Names on Nodes uses MathML (https://www.w3.org/Math) (an XML format),
which in contrast to JSON-LD is not well supported by software tooling, arguably does not
qualify as human-readable text, and lacks a mechanism for tight integration with formal
semantics in the form of ontologies. The format itself also does not cover the various
structured metadata we describe for Phyx, and instead focuses on how to define different
groups of organisms (not all of which form clades). Other efforts (such as mor and Phlora)

Vaidya et al. (2022), PeerJ, DOI 10.7717/peerj.12618 20/24

https://peerj.com
http://phlora.org/
https://www.w3.org/Math
http://dx.doi.org/10.7717/peerj.12618

provide only a limited means of expressing a clade definition, and don’t publish a more
encompassing format specification.

CONCLUSIONS
We present Phyx, an interoperable exchange and archival format for digitized clade
definitions (called phyloreferences). The format accommodates not only the phylogenetic
definition itself, but also a comprehensive set of metadata and an optionally accompanying
reference phylogeny. By virtue of being based on JSON-LD, the data and metadata it
represents are tightly linked to well-defined semantics, allowing the semantics of the clade
definition to be fully computable, such as in the form of an OWL ontology. We also present
phyx.js, a supporting software library in JavaScript that greatly simplifies programming
common tasks in composing and managing Phyx documents in end-user applications.
Other features of the software library include generating OWL ontologies from Phyx
documents; an end-user application for resolving phyloreferences in Phyx files against
the synthetic Open Tree of Life; and a testing framework to validate both the syntactic
and semantic correctness of the content of Phyx files. Although not the first approach to
digitizing clade definitions, Phyx is to the best of our knowledge the first digitization format
for clade definitions that is comprehensive, maintains tight links to formal semantics, and is
suitable for technology-agnostic permanent archival. At the same time, the accompanying
software makes the format easy to work with for developers, while also supporting complex
tasks such as converting Phyx documents into computable and testable OWL ontologies.

ACKNOWLEDGEMENTS
We thank Daniel Caetano and an anonymous reviewer for helping to improve this
manuscript through their thoughtful and constructive comments.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work was supported by the US National Science Foundation through collaborative
grants DBI-1458484 and DBI-1458604. The funders had no role in study design, data
collection and analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
The US National Science Foundation through collaborative grants: DBI-1458484, DBI-
1458604.

Competing Interests
Hilmar Lapp is an Academic Editor for PeerJ.

Vaidya et al. (2022), PeerJ, DOI 10.7717/peerj.12618 21/24

https://peerj.com
http://dx.doi.org/10.7717/peerj.12618

Author Contributions
• Gaurav Vaidya conceived and designed the experiments, performed the experiments,
analyzed the data, prepared figures and/or tables, authored or reviewed drafts of the
paper, developed the Phyx format and wrote the supporting software, and approved the
final draft.
• Nico Cellinese conceived and designed the experiments, authored or reviewed drafts of
the paper, and approved the final draft.
• Hilmar Lapp conceived and designed the experiments, analyzed the data, authored or
reviewed drafts of the paper, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

All software is available under the MIT License at https://github.com/phyloref/phyx.js.
The release coinciding with this submission is v1.0.1 (https://github.com/phyloref/phyx.js/
releases/tag/v1.0.1), and is archived at Zenodo (https://doi.org/10.5281/zenodo.5576557).

The Brochu (2003)-derived example Phyx file (and its conversion to RDF/OWL) is
available on Zenodo at: Vaidya, Gaurav. (2021). Digital representation of some of the clade
definitions in Brochu (2003) in the Phyloreference Exchange (Phyx) format (1.0.0) [Data
set]. Zenodo. https://doi.org/10.5281/zenodo.4562685.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj.12618#supplemental-information.

REFERENCES
Ariño AH. 2010. Approaches to estimating the universe of natural history collections

data. Biodiversity Informatics 7(2)81–92 DOI 10.17161/bi.v7i2.3991.
Balding DJ, BishopM, Cannings C. 2007.Handbook of statistical genetics. Hoboken:

Wiley DOI 10.1002/9780470061619.
Beaman RS, Cellinese N. 2012.Mass digitization of scientific collections: new opportuni-

ties to transform the use of biological specimens and underwrite biodiversity science.
ZooKeys 7–17 DOI 10.3897/zookeys.209.3313.

BerendsohnWG. 1995. The concept of potential taxa in databases. Taxon 44:207–212.
Biodiversity Information Standards (TDWG). 2016. Darwin Core RDF guide. Available

at http://rs.tdwg.org/dwc/terms/guides/rdf/.
Brickley D, Guha RV (eds.) 2014. RDF schema 1.1. W3C. Available at http://www.w3.

org/TR/rdf-schema/.
Brochu CA. 2003. Phylogenetic approaches toward crocodylian history. Annual Review of

Earth and Planetary Sciences 31:357–397
DOI 10.1146/annurev.earth.31.100901.141308.

Cellinese N, BaumDA,Mishler BD. 2012. Species and phylogenetic nomenclature.
Systematic Biology 61:885–891 DOI 10.1093/sysbio/sys035.

Vaidya et al. (2022), PeerJ, DOI 10.7717/peerj.12618 22/24

https://peerj.com
https://github.com/phyloref/phyx.js
https://github.com/phyloref/phyx.js/releases/tag/v1.0.1
https://github.com/phyloref/phyx.js/releases/tag/v1.0.1
https://doi.org/10.5281/zenodo.5576557
https://doi.org/10.5281/zenodo.4562685
http://dx.doi.org/10.7717/peerj.12618#supplemental-information
http://dx.doi.org/10.7717/peerj.12618#supplemental-information
http://dx.doi.org/10.17161/bi.v7i2.3991
http://dx.doi.org/10.1002/9780470061619
http://dx.doi.org/10.3897/zookeys.209.3313
http://rs.tdwg.org/dwc/terms/guides/rdf/
http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/rdf-schema/
http://dx.doi.org/10.1146/annurev.earth.31.100901.141308
http://dx.doi.org/10.1093/sysbio/sys035
http://dx.doi.org/10.7717/peerj.12618

Cellinese N, Conix S, Lapp H. 2022. Phyloreferences: tree-native, reproducible, and
machine-interpretable taxon concepts. Philosophy, Theory, and Practice in Biology
14:7 DOI 10.3998/ptpbio.2101.

DeQueiroz K, Cantino PD. 2020. International code of phylogenetic nomenclature
(PhyloCode): a phylogenetic code of biological nomenclature. Boca Raton, Florida:
CRC Press.

DeQueiroz K, Gauthier J. 1990. Phylogeny as a central principle in taxonomy: Phyloge-
netic definitions of taxon names. Systematic Zoology 39:307 DOI 10.2307/2992353.

DeQueiroz K, Gauthier J. 1992. Phylogenetic taxonomy. Annual Review of Ecology and
Systematics 23:449–480 DOI 10.1146/annurev.es.23.110192.002313.

Ellwood ER, Sessa JA, Abraham JK, Budden AE, Douglas N, Guralnick R, Krimmel E,
Langen T, Linton D, Phillips M, Soltis PS, Studer M,White LD,Williams J, Monfils
AK. 2020. Biodiversity science and the twenty-first century workforce. Bioscience
70:119–121 DOI 10.1093/biosci/biz147.

Heberling JM, Miller JT, Noesgaard D,Weingart SB, Schigel D. 2021. Data integration
enables global biodiversity synthesis. Proceedings of the National Academy of Sciences
of the United States of America 118:e2018093118 DOI 10.1073/pnas.2018093118.

HennigW. 1950.Grundzüge einer Theorie der phylogenetischen Systematik. Berlin:
Deutscher Zentralverlag.

HennigW. 1966. Phylogenetic systematics. Urbana: University of Illinois Press.
Hibbett DS, Henrik Nilsson R, Snyder M, Fonseca M, Costanzo J, Shonfeld

M. 2005. Automated phylogenetic taxonomy: an example in the homoba-
sidiomycetes (Mushroom-Forming Fungi). Systematic Biology 54:660–668
DOI 10.1080/10635150590947104.

Hinchliff CE, Smith SA, Allman JF, Burleigh JG, Chaudhary R, Coghill LM, Crandall
KA, Deng J, Drew BT, Gazis R, Gude K, Hibbett DS, Katz LA, Laughinghouse 4th
HD,McTavish EJ, Midford PE, Owen CL, Ree RH, Rees JA, Soltis DE,Williams T,
Cranston KA. 2015. Synthesis of phylogeny and taxonomy into a comprehensive tree
of life. Proceedings of the National Academy of Sciences of the United States of America
112:12764–12769 DOI 10.1073/pnas.1423041112.

JacksonW. 2016. The JSON schema: JSON structure validation. In: JSON quick syntax
reference. Berkeley: Apress, 21–29 DOI 10.1007/978-1-4842-1863-1_3.

Kazakov Y, KrötzschM, Simančík F. 2014. The incredible ELK. From polynomial
procedures to efficient reasoning with EL ontologies. Journal of Automated Reasoning
53:1–61 DOI 10.1007/s10817-013-9296-3.

Keesey TM. 2007. A mathematical approach to defining clade names, with potential
applications to computer storage and processing. Zoologica Scripta 36:607–621
DOI 10.1111/j.1463-6409.2007.00302.x.

Kennedy J, Hyam R, Kukla R, Paterson T. 2006. Standard data model representation
for taxonomic information. OMICS: A Journal of Integrative Biology 10:220–230
DOI 10.1089/omi.2006.10.220.

Maddison D, Swofford D, MaddisonW. 1997. NEXUS: an extensible file format for
systematic information. Systematic Biology 46:590–621.

Vaidya et al. (2022), PeerJ, DOI 10.7717/peerj.12618 23/24

https://peerj.com
http://dx.doi.org/10.3998/ptpbio.2101
http://dx.doi.org/10.2307/2992353
http://dx.doi.org/10.1146/annurev.es.23.110192.002313
http://dx.doi.org/10.1093/biosci/biz147
http://dx.doi.org/10.1073/pnas.2018093118
http://dx.doi.org/10.1080/10635150590947104
http://dx.doi.org/10.1073/pnas.1423041112
http://dx.doi.org/10.1007/978-1-4842-1863-1_3
http://dx.doi.org/10.1007/s10817-013-9296-3
http://dx.doi.org/10.1111/j.1463-6409.2007.00302.x
http://dx.doi.org/10.1089/omi.2006.10.220
http://dx.doi.org/10.7717/peerj.12618

Page LM,MacFadden BJ, Fortes JA, Soltis PS, Riccardi G. 2015. Digitization of bio-
diversity collections reveals biggest data on biodiversity. Bioscience 65:841–842
DOI 10.1093/biosci/biv104.

Parr CS, Guralnick R, Cellinese N, Page RDM. 2012. Evolutionary informatics: unifying
knowledge about the diversity of life. Trends in Ecology & Evolution 27:94–103
DOI 10.1016/j.tree.2011.11.001.

Patashnik O. 1988. BibTeXing. Comprehensive tex archive network (CTAN). Available
at http://mirrors.ctan.org/biblio/bibtex/base/btxdoc.pdf .

Prosdocimi F, Chisham B, Pontelli E, Thompson JD, Stoltzfus A. 2009. Initial im-
plementation of a comparative data analysis ontology. Evolutionary Bioinformatics
Online 5:47–66 DOI 10.4137/ebo.s2320.

Queiroz K de. 1992. Phylogenetic definitions and taxonomic philosophy. Biology &
Philosophy 7:295–313 DOI 10.1007/bf00129972.

Robinson DF, Foulds LR. 1981. Comparison of phylogenetic trees.Mathematical
Biosciences 53:131–147 DOI 10.1016/0025-5564(81)90043-2.

Spinellis D. 2007. Another level of indirection. In: Oram G, Wilson A, eds. Beautiful
code: leading programmers explain how they think. Sebastopol, California: O’Reilly
and Associates, 279–291.

SpornyM, Longley D, Kellogg G, Lanthaler M, Champin P-A, LindströmN. 2020.
JSON-LD 1.1: A JSON-based serialization for linked data. W3C. Available at https:
//www.w3.org/TR/json-ld/.

SpornyM, Longley D, Kellogg G, Lanthaler M, LindströmN. 2014. JSON-LD 1.0.W3C
Recommendation 16:41.

Sukumaran J, Holder MT. 2010. DendroPy: a Python library for phylogenetic comput-
ing. Bioinformatics 26:1569–1571 DOI 10.1093/bioinformatics/btq228.

Than C, Ruths D, Nakhleh L. 2008. PhyloNet: a software package for analyzing and
reconstructing reticulate evolutionary relationships. BMC Bioinformatics. 322
DOI 10.1186/1471-2105-9-322.

TaschukM,Wilson G. 2017. Ten simple rules for making research software more robust.
PLOS Computational Biology 13:e1005412 DOI 10.1371/journal.pcbi.1005412.

Vaidya G, Cellinese N, Lapp H. 2021. JPhyloRef: a tool for testing and resolving phy-
loreferences. Journal of Open Source Software 6:3374 DOI 10.21105/joss.03374.

W3COWLWorking Group. 2012. OWL 2 web ontology language document overview.
World Wide Web Consortium (W3C).

Wieczorek J, BloomD, Guralnick R, Blum S, DöringM, Giovanni R, Robertson T,
Vieglais D. 2012. Darwin Core: an evolving community-developed biodiversity data
standard. PLOS ONE 7:e29715 DOI 10.1371/journal.pone.0029715.

ZimmermannW. 1934. Research on phylogeny of species and of single characters. The
American Naturalist 68:381–384 DOI 10.1086/280558.

Vaidya et al. (2022), PeerJ, DOI 10.7717/peerj.12618 24/24

https://peerj.com
http://dx.doi.org/10.1093/biosci/biv104
http://dx.doi.org/10.1016/j.tree.2011.11.001
http://mirrors.ctan.org/biblio/bibtex/base/btxdoc.pdf
http://dx.doi.org/10.4137/ebo.s2320
http://dx.doi.org/10.1007/bf00129972
http://dx.doi.org/10.1016/0025-5564(81)90043-2
https://www.w3.org/TR/json-ld/
https://www.w3.org/TR/json-ld/
http://dx.doi.org/10.1093/bioinformatics/btq228
http://dx.doi.org/10.1186/1471-2105-9-322
http://dx.doi.org/10.1371/journal.pcbi.1005412
http://dx.doi.org/10.21105/joss.03374
http://dx.doi.org/10.1371/journal.pone.0029715
http://dx.doi.org/10.1086/280558
http://dx.doi.org/10.7717/peerj.12618

