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Since its identification in 1999, ghrelin has been identified in all vertebrate groups. The “active core” of ghrelin is highly conserved
among vertebrates, suggesting its biological activity to be also conserved. In fish, both acylated forms of ghrelin have been
identified; however, the ratio of the ghrelin-C8 to ghrelin-C10 is not as great as observed in mammals. In the tilapia (Oreochromis
mossambicus), ghrelin-C10 is the major form of ghrelin. Since fish are known to inhabit every ecological niche on earth, studies
on fish have provided valuable insight into vertebrate physiology in general; it is likely that understanding the role of both acylated
forms of ghrelin, in more detail, in fish will result into novel insights in the biology of ghrelin within vertebrates. In this paper we
discuss ghrelin’s role in regulating appetite and metabolism in fish, in general, and provide evidence that the two tilapia ghrelins
exhibit different biological roles.

1. Introduction

The discovery of ghrelin in 1999 [1] broadened our under-
standing of energy metabolism in vertebrates, resulting in a
shift in our approach to investigat the regulation of energy
homeostasis in vertebrates. In mammals, two major forms of
ghrelin are found in circulation: octanoylated ghrelin at Ser-
3 and des-acyl ghrelin [2]. The acyl modification is essential
for biological activity [1]; however, some findings provide
evidence that des-acyl ghrelin exhibits some biological action
[3–7]. Ghrelin has also been identified in all vertebrate classes
including sharks [8]. As seen in mammals, the ghrelins
identified in other vertebrates are uniquely acylated by
either octanoic or decanoic acid on the third amino acid
residue from the N-terminus. Indeed, the first seven amino
acids of N-terminal region—“active core”—in all vertebrate
ghrelins display high sequence homology [8], suggesting
that the biological actions of ghrelin are highly conserved
across vertebrates. Interestingly, fish ghrelins possess an
amide structure on the C-terminus which is not found
in tetrapod and shark ghrelins [8]. In the Mozambique
tilapia (Oreochromis mossambicus), a warm water teleost
(fish), we have identified two forms of ghrelin, with identical

amino acid sequences, acylated by octanoic or decanoic
acid, ti-ghrelin-C8 and ti-ghrelin-C10, respectively [9]. It
appears that ti-ghrelin-C10 is the primary form of ghrelin
in tilapia. A recent report in goldfish identified 11 different
forms of ghrelins; a 17-residue octanoylated form being the
predominate form [10]. This finding in goldfish is similar
to other vertebrates, with ghrelin-C8 being the major form
of ghrelin. In humans, 25% of the ghrelin isolated from the
stomach is ghrelin-C10 [11], in the bullfrog, ghrelin-C10
represents 33% of the total ghrelin [12], and in the Japanese
eel, ghrelin-C10 represents 44% of the total ghrelin [13]. Due
to the evolutionary diversity and breadth of ecological niches
occupied by fish; studies using fish as a model have been a
rich source of information on the mechanisms that regulate
vertebrate growth, metabolism, and development [14–17].
Furthermore, the fact that the ghrelin gene and peptide
exhibit high structural similarities and biological actions
across vertebrates, suggest that ghrelin is an evolutionary
conserved, essential hormone in vertebrates. However, our
understanding of ghrelin’s basal biological role in vertebrates
is unclear. Therefore, studies on fish will provide an evolu-
tionary role for ghrelin and provide insight into the basal
function of ghrelin within all vertebrates. This paper will
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Figure 1: The effect of tilapia ghrelin-C8 and ghrelin-C10 on
brain NPY mRNA levels. Two different doses of both ghrelins, low
(1 ng/gm) and high (10 ng/gm), were administered by a single i.p.
injection and samples were collected a 2, 4, and 8 h postinjection.
mRNA levels were normalized to the house keeping gene, acidic
ribosomal phosphoprotein P0 (ARP). Vertical bars represent mean
± SEM (n = 8–10). ∗, ∗∗ are significantly different from time-
matched control at P < .05 and < .01, respectively (2-way ANOVA).

highlight our current understanding of ghrelin’s role in food
intake and metabolism in fish and provide evidence on how
the decanoylated ghrelin plays a significant role in regulating
overall energy homeostasis. The reader is directed to reviews
focusing on ghrelin sequence identity and other biological
actions in nonmammalian vertebrates [8, 18].

In mammals, ghrelin has been shown to exhibit a range
of actions on cardiovascular, gastrointestinal, and pancreatic
functions, as well as lipogenic and glucogenic actions [19].
In mammals, it is suggested that the main physiological
function of ghrelin is to stimulate growth hormone release
from the pituitary and increase food intake [20]. However,
some reports demonstrate that ghrelin does not play a
primary role in initiating feeding nor as a regulator of
feeding patterns [21]. Indeed, accumulating data suggests
that ghrelin’s role may be directed to maintain overall energy
homeostasis as observed in humans [22, 23] and in pigs [24].

Ghrelin’s first reported action was as a potent growth
hormone (GH) secretagogue [1]. Since then, similar findings
have been reported in fish. We first reported in fish that rat
ghrelin-C8 stimulated the release of GH from cultured tilapia
pituitaries after 8 h of incubation [25]. Both eel and tilapia
ghrelin-C8 stimulated the release of GH from static tilapia
pituitary cultures after 2 h of incubation [9, 13]. Recently,
we demonstrated that ti-ghrelin-C10 appears to be more
effective than ti-ghrelin-C8 in elevating plasma GH levels
and in stimulating GH release from tilapia pituitaries [26].
However, these responses occur 4-5 h after treatment. Unlike
the delayed response observed in tilapia, intraperitoneal
(i.p.) injections of homologous ghrelin-C8 in goldfish and

rainbow trout significantly elevated plasma GH levels within
30 min [18, 27]. At least in fish, only the tilapia pituitary
releases prolactin (PRL) after ghrelin treatment. Both eel and
tilapia ghrelins stimulated the release of PRL from cultured
tilapia pituitaries [9, 13, 25]. Similar findings were observed
in the bullfrog [12], but not in dispersed rat pituitary
cells [1]. These findings clearly suggest that the response
to ghrelin is species specific, but what needs to be more
clearly investigated in fish is; does ghrelin exhibit the same
stimulatory effect on GH release during altered physiological
states (i.e., fasting or stress). We have recently reported
for the first time using the hybrid striped bass model that
ghrelin was equally effective in stimulating GH release from
pituitaries of fed and starved animals. Furthermore, both
plasma levels of ghrelin and GH were significantly elevated
in fasted cold-banked animals [28]. Suggesting that ghrelin
is driving the elevation of plasma GH levels during fasting as
proposed in mammals [29] or regulating energy partitioning
during catabolic states [28].

As mentioned above, several reports in mammals have
demonstrated that acute ghrelin treatment stimulates food
intake [20]. However, in teleosts, ghrelin’s orexigenic actions
have not been well studied and appear not to be widespread.
The only report of ghrelin exhibiting rapid orexigenic
actions—as seen in mammals—is in goldfish [30, 31], whose
actions have been shown to be mediated by neuropeptide
Y (NPY) [32]. In tilapia, we have been unable to observe
an acute increase in food intake following ti-ghrelin-C8
or ti-ghrelin-C10 treatment (unpublished observations).
However, we have observed in tilapia given a single i.p.
injection of ti-ghrelin-C10 (10 ng/gm BW) a significant
increase in brain NPY mRNA levels 4 and 8 h (P < .01
and P < .05, resp.) postinjection was observed, whereas
ti-ghrelin-C8 did not alter NPY mRNA levels (Figure 1).
The inability of ti-ghrelin to stimulate acute food intake
may likely be a result from the site of treatment. Centrally
administered ghrelin is very potent in stimulating food
intake in mammals [30, 33] and goldfish [10, 30], whereas
peripherally injection of ghrelin is less effective in stimulating
food intake [33]. It may be likely that orexin, which has not
yet been identified in tilapia, is mediating acute food intake in
tilapia. In goldfish, it has been shown that ghrelin and orexin
interact to stimulate feeding [34]. It is of interest to identify
orexin in tilapia and investigate its action on food intake.
We have shown previously that 21 days of ti-ghrelin-C10 (ti-
ghrelin-C8 had no effect) treatment significantly increased
food intake and adiposity in liver and muscle tissue in tilapia
[35]. Similar findings have been observed in rodent models
[33]. In addition, 21 days of ti-ghrelin-C10 treatment did
not alter plasma GH levels, but plasma levels of insulin-
like growth factor-I (IGF-I) were significantly reduced,
suggesting that ti-ghrelin-C10 is inhibiting growth in favor of
storing metabolic energy as fat; generating a positive energy
balance. Interestingly, ti-ghrelin-C8 treatment significantly
increased pituitary GH mRNA levels [35]. In rats receiving a
continuous i.c.v. infusion of ghrelin for 12 days, plasma GH
levels were not altered [36]. Furthermore, in rainbow trout,
a single i.p. injection of ghrelin failed to stimulate appetite,
however, plasma ghrelin levels were positively correlated with
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Figure 2: The effect of tilapia ghrelin-C8 and ghrelin-C10 on
plasma glucose levels. Two different doses of both ghrelins, low
(1 ng/gm) and high (10 ng/gm), were administered by i.p. injection
and samples were collected a 2, 4, and 8 h postinjection. Vertical bars
represent mean ± SEM (n = 8–10). ∗, ∗∗ are significantly different
from time-matched control at P < .05 and < .01, respectively (2-way
ANOVA).

growth rate and negatively correlated with plasma GH and
IGF-I, suggesting that ghrelin may be linked to growth and
metabolism and not appetite [37]. It would be of interest to
see if the two acylated forms of ghrelin identified in other
vertebrates exhibit different biological effects as we have
observed in tilapia. What is interesting in tilapia is that we
have shown that the GHS-R antagonist, [D-Lys3]-GHRP-6,
completely abolished the stimulation of GH release by both
forms of tilapia ghrelin from dispersed pituitary cells [26].
These findings suggest that there is likely a second ghrelin
receptor exhibiting higher specificity for ti-ghrelin-C10 with
a different tissue distribution pattern than the one currently
identified (GRLN-R). In the rat, ghrelin and des-octanoyl
ghrelin but not a GHS-R1a agonists (L-163-255) induced
adipogenesis independent of GH secretion, suggesting that
ghrelin’s adipogenic action is likely mediated by a novel
receptor that is distinct from GHS-R1a [3].

In mammals, ghrelin has been shown to play a role in
glucose homeostasis by exhibiting diabetogenic actions, by
inducing hyperglycemia in humans [38]. We have observed
similar effects in tilapia. In tilapia given a single i.p. injection
of ti-ghrelin-C8 (1 ng/gm BW) plasma glucose levels were
significantly elevated at 4 and 8 h (P < .01 and P < .05, resp.)
postinjection; the high dose (10 ng/mL) was without effect
(Figure 2). It is possible that the most effective dose of ti-
ghrelin-C8 on plasma glucose levels is in the picogram range.
It would be of interest to determine the dose response range
of ti-ghrelin-C8 on plasma glucose levels. In cultured tilapia
hepatocytes, ti-ghrelin-C8 (0.1 nM) significantly (P < .05)
stimulated glucose release, whereas at 100 nM ti-ghrelin-C8
significantly (P < .05) reduced the release of glucose after
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Figure 3: The effect of tilapia ghrelin-C8 (a) and ghrelin-C10 (b)
on glucose release from cultured tilapia hepatocytes. Hepatocytes
were exposed to ti-ghrelins for 6 h at that time culture media was
collected and analyzed for glucose content. Vertical bars represent
mean ± SEM. ∗, ∗∗ are significantly different from control at P <
.05 and < .01, respectively (1-way ANOVA). n = 8–10.

a 6 h incubation (Figure 3(a)). Interestingly, ti-ghrelin-C10
(0.1–10 nM) significantly stimulated the release of glucose
from cultured tilapia hepatocytes (Figure 3(b)), but without
altering plasma glucose levels (Figure 2). This is the only
report in any teleost describing the effect of ghrelin on
glucose metabolism. Future work is needed to elucidate
ghrelin’s role in glucose metabolism in fish, especially since
fish are considered to be glucose intolerant [39], and
therefore fish could be an ideal alternative model for diabetes
research. We have been able to detect both GHS-R1a and
GHS-R1b transcripts in tilapia liver [26]. In both porcine
and rat hepatocytes, ghrelin stimulated the release of glucose
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Figure 4: Effect of ghrelin-C8 and ghrelin-C10 on muscle GLUT4
(a) and insulin-R (b) mRNA levels 2 h post-injection. mRNA
levels were normalized to the house keeping gene ARP. Vertical
bars represent mean ± SEM (n = 5-6). ∗,∗∗, ∗ ∗ ∗ significantly
different from control at P < .05,.01, and .001, respectively (1-way
ANOVA).

[4]. However, a potent GHS, hexarelin, failed to alter plasma
glucose levels. Gnanapavan and colleagues failed to identify
the GHS-R1a in human liver, whereas the GHS-R1b was
highly expressed; suggesting that the hyperglycemic action
of ghrelin in mammals may be mediated through GHS-R1b
or an unknown orphan GHSR [40]. Therefore, it is likely
that the observed differential response of tilapia hepatocytes
to the tilapia ghrelins is that an unknown orphan GHSR is
present in tilapia that exhibits higher affinity to one ghrelin
over the other. In spite of the differential effects of the tilapia
ghrelin’s on plasma glucose levels, we have observed that
both ti-ghrelin-C8 and ti-ghrelin-C10 significantly reduced
muscle mRNA levels of a putative tilapia glucose transport
protein (GLUT4) and the insulin receptor (Figure 4). To our
knowledge this is the first report in any vertebrate. Whether
protein levels of GLUT4 and insulin receptor are changed
following ghrelin treatment needs to be investigated.

The existence of ghrelin, GHS-R1a and GHS-R1b in fish
suggests that the actions of ghrelin and GHSRs are conserved
across vertebrate species and likely exhibit fundamental
biological functions within vertebrates [41, 42]. Our data
show that the two forms of tilapia ghrelin (octanoylated
and decanoylated) exhibit different biological actions but
that they may function together to maintain overall energy
homeostasis in tilapia. It is of interest to investigate if the
decanoylated form of ghrelin found in other vertebrates
exhibits different biological activity than the octanoylated
form. Furthermore, how different physiological states within
the animal alter the circulating levels of these two different
tilapia ghrelin’s needs to be investigated. Currently, however,
we are unable to differentiate between circulating ti-ghrelin-
C8 and -C10 levels in our radioimmunoassay.
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