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Abstract
High-throughput, ‘omic’methods provide sensitive measures of biological responses to per-

turbations. However, inherent biases in high-throughput assays make it difficult to interpret

experiments in which more than one type of data is collected. In this work, we introduce

Omics Integrator, a software package that takes a variety of ‘omic’ data as input and identifies

putative underlying molecular pathways. The approach applies advanced network optimiza-

tion algorithms to a network of thousands of molecular interactions to find high-confidence,

interpretable subnetworks that best explain the data. These subnetworks connect changes

observed in gene expression, protein abundance or other global assays to proteins that may

not have beenmeasured in the screens due to inherent bias or noise in measurement. This

approach reveals unannotatedmolecular pathways that would not be detectable by searching

pathway databases. Omics Integrator also provides an elegant framework to incorporate not

only positive data, but also negative evidence. Incorporating negative evidence allows Omics

Integrator to avoid unexpressed genes and avoid being biased toward highly-studied hub pro-

teins, except when they are strongly implicated by the data. The software is comprised of two

individual tools, Garnet and Forest, that can be run together or independently to allow a user

to perform advanced integration of multiple types of high-throughput data as well as create

condition-specific subnetworks of protein interactions that best connect the observed

changes in various datasets. It is available at http://fraenkel.mit.edu/omicsintegrator and on

GitHub at https://github.com/fraenkel-lab/OmicsIntegrator.

This is a PLOS Computational Biology Software paper.
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Introduction
High-throughput technologies are now able to provide comprehensive and quantitative mea-
surements of molecular changes in response to perturbations or disease. Measurements of the
transcriptome, epigenome, proteome, etc. serve to complete the opaque picture of the many
active pathways and processes in cellular systems. However, no single dataset fully captures all
aspects of cellular activity in a given experimental setting. For example, transcriptional datasets
allow us to see which genes are up- or down-regulated relative to a control state, but do not
provide information about post-translational modifications that are critical for signaling. In
addition, high-throughput datasets often contain many ‘hits’ (i.e. species that change signifi-
cantly between conditions in a given omic dataset) that either lie in unexpected pathways [1,2]
or fail to map to any existing canonical pathways [1–5]. Thus, in order to discover novel bio-
logical processes associated with specific perturbations or disease [6–8] we need to consider
data from complementary high-throughput datasets jointly.

Network modeling approaches allow us to overcome such limitations because they can com-
bine multiple types of data without requiring prior pathway information. These approaches
can either use user-generated or publicly available data, such as protein-protein interactions
and epigenetic data, to find either direct or indirect (i.e. via unobserved molecules) connections
between experimental hits. Critical to these approaches are protein-protein interaction data-
bases, which collate data from multiple experimental platforms and cell types to provide net-
works of experimentally detected interactions [9–12]. In addition, recently generated protein-
metabolite and protein-small molecule interaction networks, including HMDB [13], DrugBank
[14] and STITCH [15], allow for richer assessment of molecular interaction types that occur in
cellular systems. These collections of physical molecular interactions, or interactomes, enable
researchers to apply network modeling approaches to a wide variety of data.

Measurements of transcriptional changes in response to perturbation or disease are a com-
monly generated omic data type. However, the proper approach for including transcriptional
measurements in networks requires some thought. Since these data do not directly measure
protein abundance or activity, it is misleading to map them directly to their corresponding pro-
teins in the interactome. Instead, Omics Integrator combines such transcriptional data with
epigenetic data to identify putative changes in the activity of DNA binding proteins that influ-
ence transcriptional changes [16].

This wealth of interaction data gives rise to new challenges. The published interactions
between proteins, DNA, and small molecules comprise a network of millions of connections that
is a ‘hairball,’ or a network that is too dense to interpret [5]. There are numerous individual tools
that are now available to analyze these networks, each with different capabilities and intended
application areas [1,4,17–25] (see Fig 1). Many network optimization methods that aim to reduce
hairball interactomes to higher confidence subnetworks exist; however, many of these have limi-
tations that inhibit their general applicability, such as requiring predefined source and target sets
[1,4,20,26–29], which is not applicable in cases where omic data do not fit a ‘source-target’ frame-
work. There are also methods that map mRNA expression datasets to protein interaction net-
works (MATISSE [30]), methods that identify transcription factor binding sites from epigenetic
data (Centipede [22] and PIQ [24]), and methods that relate chromatin features and DNA-bind-
ing motifs to gene expression via multivariate/univariate regression (REDUCE [23] andMOTIF
REGRESSOR [18]) or support vector regression [31]. These methods fall into two general classes:
methods that attempt to reconstruct signaling pathways or interaction networks from data hits
or methods that focus specifically on transcriptional regulatory networks. These two classes of
tools are both essential to fully integrate diverse types of high-throughput data.
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The tools currently available for omic data integration provide only a subset of the features
provided by Omics Integrator (Fig 1). Furthermore, there is no existing algorithmic framework
that enables the incorporation of weighted negative evidence. We define negative evidence in this
context as any data or feature that supports potential exclusion of a species (protein, metabolite,
etc.) from a network model solution (e.g. due to lack of expression in the system of interest, etc.).
Supporting negative scores can help avoid misleading results in network analysis. KeyPathway-
Miner [17] allows a list of negative nodes as input, but these are hard cut-offs. By contrast, Omics
Integrator allows for weighted negative scores so the user can balance the prior evidence for
excluding a node against the benefits of using it to connect nodes with positive scores.

In summary, we introduce Omics Integrator, a software package that fills a noticeable gap
in omics data analysis by providing a unified framework for integrating transcriptomic data
together with other omic data using interactome data. Although the individual components,
Garnet and Forest, have similarities with existing tools, uniting expression analysis and net-
work analysis in a single package makes it substantially easier to model multiple types of omic
data. Omics Integrator expands upon and combines the prize-collecting Steiner forest (PCSF)
algorithm [2,5,32] and methods similar to those implemented in previous network algorithms
[4,33].

Fig 1. Summary of features differentiating Omics Integrator from existing tools and which features are available when Garnet and Forest are used
individually. 1 Some network algorithms model TFs by including protein-DNA interactions in the network or generating TF scores for the protein nodes. 2

Some network algorithms optimize the transmission of information from source nodes to target nodes and require the sources to be identified in advance. 3

Time series analysis algorithms require omic data from three or more time points. 4 Intermediate proteins, like the Steiner nodes predicted by Forest, are not
assigned condition-specific scores but are important for connecting other scored nodes in the subnetwork. 5 Negative evidence discourages network
algorithms from selecting particular nodes due to prior knowledge or a bias, such as node degree.

doi:10.1371/journal.pcbi.1004879.g001
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Design and Implementation
The Omics Integrator package (Fig 2) consists of two distinct tools: Garnet and Forest. These
tools work together to enable the integration of data derived from measurements of mRNA,
proteins, genetic perturbations or metabolites.

Garnet takes chromatin accessibility data (e.g. DNase-Seq, histone modification ChIP-Seq),
either generated by the user or acquired from public repositories (e.g. the ENCODE consor-
tium [34], the NIH Roadmap Epigenomics Mapping Consortium [35]), and identifies a set of
transcriptional regulators that potentially explain observed gene expression levels or changes
between conditions in an experiment of interest (Fig 2A). From the chromatin accessibility
data, Garnet scans regions proximal to transcribed genes for transcription factor binding sites.
Binding sites are inferred from sequence matches in the underlying DNA to a clustered set [36]
of DNA-binding motifs. Garnet then uses a pseudo-thermodynamic metric [37] to compute a

Fig 2. Summary of Omics Integrator (A)Garnet identifies transcription factors (triangles) associated with mRNA expression changes by incorporating
epigenetic changes nearby expressed genes, scanning those regions for putative transcription factor binding sites and then regressing transcription factor
affinity scores against gene expression changes. The result is a set of transcription factor candidates and the relative confidence that they are responsible for
the observed expression changes. (B) Forest identifies a condition-specific functional sub-network from user data and a confidence-weighted interactome.
The network can be composed of protein-protein, protein-metabolite or other interactions. The set of omic hits are composed of the TFs obtained from Garnet
(triangles) merged with other types of hits such as differentially expressed proteins, significantly phosphorylated proteins, metabolites, etc. (circles). (C)
Finally, the confidence-weighted interactome is integrated with the ‘omic’ hits using the prize-collecting Steiner forest algorithm, where the data is either
connected directly or via intermediate nodes, called ‘Steiner nodes’.

doi:10.1371/journal.pcbi.1004879.g002
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transcription factor affinity (TFA) score in these regions and maps these scores to genes within
a fixed window (e.g. 2kb). Garnet estimates transcription factor activity by performing univari-
ate linear regression of the TFA scores against corresponding mRNA expression measure-
ments. Significant regression coefficients indicate candidate transcriptional regulators that can
then be used as input to the Forest program or analyzed independently.

The Forest tool identifies a parsimonious interaction network connecting a subset of user-
defined omic data hits (Fig 2B). These hits can be the transcription factors selected by Garnet
and/or any other type of biological data (e.g. siRNA hits, phosphoproteomic changes, metabo-
lites, etc.). Specifically, Forest solves the prize-collecting Steiner forest problem [5] that takes
into account the importance assigned to the omic hits (e.g. by significance level or fold-change
between conditions) as well as the probability that each reported interaction is real. Each omic
hit and/or Garnet-selected transcription factor is given a positive ‘prize’, reflecting the confi-
dence in the reliability of the underlying data (e.g. a set of differentially expressed proteins).
These user-defined hits are referred to as terminals. When the algorithm includes a terminal in
the network, it is rewarded with the prize assigned to that hit, but also has to pay costs for the
interactions used to link the data to the rest of the network. By seeking to maximize the col-
lected prizes and minimize the edge costs, the algorithm uncovers a high-confidence set of
physical interactions that explain how the omic hits are related. Because the algorithm is not
forced to include all omic hits, it can remove those that are poorly connected and give rise to
the ‘hairball’. However, Forest can at the same time select additional, interactome-derived
nodes called ‘Steiner nodes’ when necessary. Steiner nodes are likely relevant to the biological
response in question, but may be missed by the high-throughput assays. Forest generates out-
put files that can be easily viewed using the network visualization software package Cytoscape
[38].

Forest includes numerous features to efficiently generate biological networks, while avoiding
common pitfalls often encountered when implementing network-based algorithms. For exam-
ple, many network methods are inherently biased towards using nodes that have been studied
more extensively and have more reported interactions [39–41]. Forest can penalize these
highly-connected nodes, termed ‘hub’ nodes here, by assigning to them a prize with a negative
value. Without the negative prizes, hub proteins are often selected even when they are not bio-
logically relevant or interesting. With negative prizes, they only appear in the network when
other data strongly implicate them. Additionally, Forest includes randomization strategies to
ensure that the resulting networks are robust to noise in the biological data. We include in our
software package a straightforward example in which phosphoproteomic measurements are
integrated with changes in mRNA expression [42] using epigenetic data from a related cell line
from ENCODE [34,43]. We also include examples in which Garnet and Forest can be run inde-
pendently, described in more detail on our website: http://fraenkel.mit.edu/omicsintegrator.

Mapping gene expression changes to proteins
The Garnet algorithm reveals candidate transcriptional regulators that likely influence gene
expression levels or changes. We prefer to not use mRNAmeasurements as proxies for changes
in protein levels or activities as the relationship between mRNA and protein levels is complex
[44–46]. In addition, changes in protein concentrations are not reliable evidence for changes in
the activities of pathways, which are often post-translationally regulated. Once Garnet identi-
fies transcription factors that give rise to the observed mRNA changes, the transcription factors
can then be used as input to Forest.

Garnet is a core part of omics integration, enabling gene expression changes to be mapped
to transcription factors in the interactome that can then be then analyzed alongside other data
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[47]. Garnet builds on the rich epigenetic datasets that have been collected through consortia
such as ENCODE by using data from histone modifications or open chromatin experiments to
restrict the search space for motif matches to areas more likely to be bound by some regulator.
This strategy has been used by this lab [48] and others [49] to reduce spurious motif matches
and thus to improve the accuracy of transcription factor binding prediction [22]. Although this
type of inference cannot eliminate uncertainty about the binding of a TF to a specific site or
gene, the cumulative evidence is predictive of the activity of the TF in a transcriptional
response. As Omics Integrator solves the prize-collecting variant of the Steiner problem, it can
exclude false positives that are difficult to connect to upstream signaling. Omics Integrator also
provides options to filter the candidate TFs from Garnet, including checking whether or not
the TF is expressed in the tissue or cell type of interest.

Garnet consists of two steps: (1) computationally predicting transcription factor-DNA
interactions from epigenetic data and a set of DNA binding motifs and (2) estimating regulator
activities by correlating these predicted transcription factor-DNA interactions with mRNA
expression changes in genes neighboring the predicted binding sites.

Epigenetic data processing. Garnet first finds genomic regions that likely harbor tran-
scriptional regulatory proteins by searching enriched open chromatin regions for matches to
DNA binding protein motifs. These regions are typically identified using epigenetic data either
within a similar cell type or from conserved regulatory regions across cell or tissue types [50].
Garnet first searches a list of chromatin regions, provided by the user or included with Omics
Integrator, and assigns the regions to genes with open chromatin sites within a user-defined
distance threshold (e.g. 2000 base pairs). Garnet then scans these regions to determine the like-
lihood that a transcription factor will bind a region using a set of position weight matrices
(PWMs).

Transcription factor binding prediction. Each region of DNA associated with an epige-
netic signal is given a score representing the probability of binding for each motif matrix using
a statistical-mechanics framework, where the number of possible binding sites and their PWM
scores in each sequence are combined to create a single transcription factor binding probability
for each region. The Boltzmann weighted partition function below is used for each motif and
chromatin region and has been described in this context previously [37]. The equation to
define transcription factor affinity is:

TFAj ¼
P

ie
wj�mi

bj þ
P

ie
wj �mi

ð1Þ

TFAj estimates the probability of binding for motif j using all scoring windows i in the
region. wj estimates the probability that the motif score is not a false positive,mi represents the
PWM log-likelihood score at the ith window in the region, and βj estimates the probability that
motif score is a false positive. In practice we use wj and βj as tuning parameters based on the
TRANSFAC MATCHminSUM and minFP score thresholds for each motif. For genes with
multiple epigenetic regions within the associated window, Garnet chooses the highest TFAj

value for each motif j across all regions. The result is a matrix representing the affinity score for
each gene and each transcription factor binding motif.

Transcription factor selection. Garnet uses linear regression to identify motifs mapped to
transcription factors with the strongest relationships to the expression data. This approach is
similar to that in previous work [37] and assumes that the better the match of a sequence to a
motif (summed over an epigenetic region), the stronger the binding and the greater the effect
the regulator has on transcription. We apply least-squares regression to relate the TFA scores
described above to mRNA expression changes for a particular condition of interest.
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Significance is assessed by testing the null hypothesis that the slope of the regression line is 0.
Transcription factors with motifs exhibiting statistically significant regression coefficients (p-
value<0.05 or any desired threshold) are given a weight of–log(p-value).

Network modeling
Selection of the terminal node set and assignment of prizes. To map experimental data

to an interactome of interest (Fig 2B), the user must first identify the most biologically signifi-
cant hits from each dataset and define them as terminal nodes in the network. Terminal nodes
are any entities represented by nodes in the network that the user would like the algorithm to
analyze in a larger biological context. Typically, these are molecules that change significantly
under a treatment relative to an appropriate control. Prizes, denoted p(v), where v is a vertex
(node) in the interactome graph, are assigned to the terminal nodes by the user. These prizes
can be, for example, the log fold change of proteins in an experiment or negative log of the sig-
nificance level describing changes between conditions (p-value or q-value). If there is no quan-
titative information and only a set of terminal nodes is available, users can assign uniform
prizes to each terminal.

As already noted, Forest can use node prizes to incorporate negative evidence about the rele-
vance of a node. A priori, it is impossible to know if such a protein has a high degree because it
is truly involved in many interactions or because it has been studied more extensively than
other proteins because it is highly-conserved, essential, or highly-expressed [39–41]. To avoid
the potential bias introduced by these hub nodes, we created a generalized prize function that
assigns negative weights to nodes based on the number of connections they have in the interac-
tome. As a result, hubs are less likely to be selected but can still be used when the data strongly
support their inclusion. The function for this negative weighting is:

p0ðvÞ ¼ b � pðvÞ � m � degreeðvÞ ð2Þ
where degree(v) is the number of connections of node v in the interactome. The β and μ param-
eters are scaling factors to adjust the effect of terminal nodes and hub nodes in the final net-
work, respectively. When μ is set to 0, the hub correction is disabled (default behavior).
Increasing μ attenuates the hub dominance in the optimal solution. Increasing β promotes
more terminal nodes to be included in the optimal solution (Eq 2).

In addition to reducing the influence of hub proteins, negative prizes could be used to
reduce the influence of molecules that are poorly expressed in a particular tissue or condition.
Similarly, negative prizes could be used to exclude molecules that have been experimentally
determined to not be relevant to the process under study. Users can take advantage of this fea-
ture by simply adding negative values to the original prize file.

Confidence-weighted interactome and edge costs. Calculating the probability p(e) that
an edge e between two proteins reflects a real interaction allows us to avoid false positive edges,
which are assumed to be less reproducible and therefore less confident. Forest takes as input a
set of edge weights (p(e)) and converts them to costs using the scoring function c(e) = 1 –p(e).
Several approaches have been described for deriving these probabilities or other confidence
scores [1,10,26,51,52].

Forest problem formulation
The input to Forest is a directed, partially directed, or undirected network G(V, E, c(e), p’(v)) of
node set V and edge set E, where the function p’(v) assigns a prize to each node v 2 V and the
function c(e)> 0 assigns a cost to each edge e 2 E. The aim is to find a forest F(VF,EF) that
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minimizes the objective function:

f 0ðFÞ ¼ P
v=2VF

p0ðvÞ þP
e2EF cðeÞ þ o � k ð3Þ

where p’(v) is as defined in Eq 2, κ is the number of trees in the forest, and ω is a tuning param-
eter whose purpose is explained below. Here, an artificial node, or ‘dummy’ node, v0 is intro-
duced to the initial network and connected to a subset of nodes N (using the --dummyMode
option detailed below). The nodes in N are a subset of all the nodes in the interactome V and
are assigned a uniform edge cost ω to the dummy node. Forest constrains F to be a tree–a con-
nected graph without cycles–that is rooted at v0. The optimization problem is solved with the
msgsteiner message-passing algorithm to identify a tree subnetwork [53]. Once the network
optimization problem has been solved, the root node (v0) and all its edges are removed, provid-
ing a final forest network that is a collection of one or more sub-trees. These sub-trees concep-
tually represent parallel biological pathways. Given that the resulting solution is dependent on
the particular values of β, ω, and μ, we suggest that the user run the algorithm with different
settings to select an optimal solution. We recommend choosing optimal parameters based on
two criteria. First, the parameters should maximize fraction of terminal nodes included in the
network that are also robust to noise; this robustness can be determined by permutations
derived from the --noisyEdges flag. Among the parameter settings that yield a similar fraction
of robust terminals, we prefer larger networks. It is often also helpful to check that the selected
hidden nodes are enriched for biologically-relevant categories using known pathways or gene
sets (e.g. fromMSigDB [54] or Gene Ontology [55]).

Up to six PCSF parameters are supplied to Forest in a configuration file. The minimum
required parameters are ω, β and D. The parameters ω (controlling the number of trees; Eq 3)
and β (controlling the trade-off between including more terminals and using less reliable edges;
Eq 2) are as described above. D (the depth parameter) controls the maximum path-length from
v0 to terminal nodes. Suggested values for D range between 5 and 10. The optional parameters
are μ, g, and garnetBeta. The parameter μ controls the degree-based negative prizes (Eq 2); if
not provided, μ is assumed to be zero. The reinforcement parameter, g, affects the convergence
of the solution (smaller values produce solutions closer to the optimum, but increase run time)
and is set to 1e-3 by default. The garnetBeta parameter is used to scale the Garnet output prizes
relative to the provided protein prizes. The default for garnetBeta is 0.01.

Additional algorithm features
Forest converges on a single, optimal solution. However, it can be useful to perform perturba-
tion analyses to determine the robustness of this network and how it relates to suboptimal solu-
tions. Forest provides three different perturbation strategies. To ascribe confidence in the
selected hidden nodes, the user can use the --noisyEdges flag to assign noise to the edges of the
interaction network. Hidden nodes that appear often in networks run with noisy edge weights
are likely more robust than those that only appear in the optimal solution or a small number of
noisy runs. A user can also use --shufflePrizes to identify those hidden nodes that are robust to
noise in the prize data. Lastly, the user can also assess specificity of hidden nodes using
the --randomTerminals flag that runs the optimization with a random selection of terminals
(preserving the degree distribution of the original terminal set). Hidden nodes that occur less
frequently in forests run with random prizes are likely to be more specific to the user’s problem
of interest and therefore more biologically meaningful. The results of these perturbations can
either be used to weight nodes and edges in the original network using the ‘fraction of optimal
networks included’ attribute or viewed together using the merged network produced by the
algorithm.
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As previously mentioned, Forest incorporates a dummy node into the graph when solving
the optimization problem. When this dummy node is removed after the optimization, the
solution is divided into disjoint subnetworks. The --dummyMode option tells the algorithm
which nodes in the interactome should be connected initially to the dummy node. The
default option (--dummyMode terminal) connects the dummy node to all of the input termi-
nals, guaranteeing that each sub-network in the optimal solution is rooted by a terminal
node. The option --dummyMode filename allows the user to explicitly specify which nodes
to connect to the dummy node. For example, in our previous work, we used this option to iden-
tify signaling pathways originating at cell-surface receptors [5]. There are additional values for
the --dummyMode option, recommended for advanced users, as described in Table 1.

Forest can also automatically perform in silico knock-out experiments, i.e., identifying new
solutions when a specific node removed from the interactome. These can be valuable for deter-
mining the robustness of the solution and the significance of individual nodes [5]. To use this
option, the user specifies --knockout and provides node names specifying node(s) the user
would like to ‘knock out’, i.e. TP53 or TP53 EGFR.

There are other Forest options in addition to those explained here. The full list is provided
in Table 1. The step-by-step procedure to run Omics Integrator and troubleshooting guidance
are provided in the Supplementary Material. A flowchart showing how to run Omics Integra-
tor is depicted in Fig 3.

Results

Omic data integration and network reconstruction in lung carcinoma
To showcase the utility of Omics Integrator, we analyzed several types of omic data from lung
carcinoma cells. We collected previously published data [42] from H358 cells, a model of lung
cancer, that were stimulated with TGF-β. Measured gene expression changes were used as
input into Garnet together with DNase I hypersensitive regions from A549 cells, a related lung
carcinoma-derived cell line. The resulting transcription factors identified by Garnet were used,
together with phosphoproteomic expression changes from the same experimental conditions,
as input into Forest. Forest then found a collection of edges from the protein interaction net-
work that connected the two classes of nodes with TGF-β receptors.

The resulting network, depicted in Fig 4, showcases the ability of the forest algorithm to con-
nect known targets (derived from phosphoproteomic and expression data) using the protein-pro-
tein interaction network as well as identify hidden ‘Steiner’ nodes (hexagons) that interact with
Garnet-identified transcription factors (triangles) and proteins that exhibit phosphorylation
changes (circles). Included among the more robust Steiner nodes (node size correlates with
robustness to perturbation) are proteins that have been linked to EMT signaling in cancer, such
as PIAS1, a SUMO E3 ligase that is repressed by TGF-β to prevent EMT suppression [56], and
COL4A1, which has also been linked to TGF-β stimulation [57]. SUFU and GLI3 have been
linked to Hedgehog signaling [58], another pathway in cancer [59], suggesting a putative expla-
nation for the link between TGF-β and Hedgehog signaling. Additional Steiner nodes present in
our network, including ABCA1 and ATG12, to the best of our knowledge have not been studied
in this context and may point to novel aspects of the TGF-β signaling pathway.

To generate the network illustrated, users can run the test-tgfb-data.py script in the exam-
ple/a549 directory of the OmicsIntegrator package. This script will run Garnet using the
ENCODE-derived DNase I hypersensitive data from A549 cells with the gene expression data
from related cells. This script then runs Forest using a scored version of the iRefIndex interac-
tome (version 13) [9] provided with Omics Integrator to identify links between the Garnet
transcription factors and the proteins phosphorylated upon TGF-β stimulation.
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Table 1. Description of the parameters used in the Forest.py script.

-p PRIZEFILE, --prize=PRIZEFILE Path to the text file containing the prizes Path to a tab-delimited plain text file with lines “ProteinName
PrizeValue”

-e EDGEFILE, --edge=EDGEFILE Path to the text file containing the interactome
edges

Path to a tab-delimited plain text file with 3 or 4 columns:
“ProteinA ProteinB Weight(between 0 and 1) Directionality(U
or D, optional)

-c CONFFILE, --conf=CONFFILE Path to the text file containing the parameters.
Default = “./conf.txt”

Path to a tab-delimited plain text file with lines
“ParameterName = ParameterValue”. Must contain values for
w, b, D. Optional parameters mu, garnetBeta, g may also be
included

-d DUMMYMODE,
--dummyMode=DUMMYMODE

Tells the program which nodes in the
interactomes to connect to the dummy root node.
Default = “terminals”

Either a file name (containing a list of nodes), “terminals”
(connect to all prize nodes), “others” (connect to nodes with no
prize), or “all” (connect to all nodes)

--garnet=GARNETOUTPUT Tells the program that it will also use the Garnet
output for network modeling. The prizes will be
scaled by the garnetBeta parameter you provide
in the conf file, default 0.01

Full path + filename of the Garnet output file

--musquared Flag to add negative prizes to hub nodes
proportional to their degree2, rather than degree.
Use to penalize hub nodes more intensely. Must
specify a positive mu in conf file.

--msgpath=MSGPATH Path to the msgsteiner executable, including the
executable name. Default = “./msgsteiner”

Path where the msgsteiner executable is located

--outpath=OUTPUTPATH Path to the directory which will hold the output
file. Default = this directory

Path

--outlabel=OUTPUTLABEL A string to put at the beginning of the names of
the files output by this program. Default = “result”

String

--cyto30 Use this flag if you want the output files to be
compatible with Cytoscape v3.0 (this is the
default)

--cyto28 Use this flag if you want the output files to be
compatible with Cytoscape v2.8

--noisyEdges=NOISENUM Specifies how many times you would like to add
noise to the given edge values and re-run the
algorithm. Results of these runs will be merged
together and written in files with the word
“_noisyEdges_” added to their names.
Default = 0

Integer

--shuffledPrizes=SHUFFLENUM Specifies how many times you would like to
shuffle the given prizes around the terminals and
re-run the algorithm. Results of these runs will be
merged together and written in files with the word
“_shuffledPrizes_” added to their names.
Default = 0

Integer

--randomTerminals=TERMNUM Specifies how many times you would like to apply
the given prizes to random nodes in the
interactome (with a similar degree distribution)
and re-run the algorithm. Results of these runs
will be merged together and written in files with
the word “_randomTerminals_” added to their
names. Default = 0

Integer

--knockout=KNOCKOUT Specifies protein(s) you would like to “knock out”
of the interactome to simulate a knock-out
experiment

The name(s) of the protein(s), i.e. TP53 or TP53 EGFR

-s SEED, --seed=SEED A seed for the pseudo-random number
generators. If you want to reproduce exact
results, supply the same seed. Default = None

Integer

doi:10.1371/journal.pcbi.1004879.t001
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Fig 3. The flowchart of the software. Step 1 requires downloading and unzipping the scripts and data files.
Step 2 consists of the installation of the necessary tools to run Omics Integrator. Step 3 describes how to
prepare input files. Step 4 and 5 are designed for data collection and formatting for Garnet and Forest
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Network modeling and in silico knock-out experiment in human primary
Glioblastoma cells
Forest also has the ability to perform in silico knock-outs of specific nodes to model loss or
knock-out of these species from a system. Such knockouts can be useful to examine signaling
that can occur after a receptor has been inactivated through mutation or pharmacological

modules, respectively. At Step 6, configuration files are prepared where parameters are defined for Garnet
and Forest separately. Garnet and Forest scripts are run at Step 7. If the initial data contains transcriptional
data, then Garnet must be run before Forest. Otherwise Forest can be run independently. Detailed
instructions of these steps are in the ‘Procedure’ section of the S1 Text.

doi:10.1371/journal.pcbi.1004879.g003

Fig 4. Anticipated results: Network reconstructed from changes in phosphoproteomicmeasurements (circles) and gene expression
measurements (triangles) in lung cancer cell lines stimulated with Tgf-β. Blue hexagons represent ‘Steiner nodes’ that were not measured as changing
in the original experimental measurements but identified through network reconstruction. Nodes that are not blue were measured in the phosphoproteomic
data, with color indicating the degree of change in phosphoproteomic measurements: grey indicates no change and yellow indicates a large amount of
change. Network robustness was measured by adding noise to the edges using the --noisyEdges flag. The shade of the edge is correlated with the number
of times the edge was selected over all perturbations, and the size of a node represents number of times the node was selected. The width of the edge
represents the weight assigned to the interaction in the original interactome.

doi:10.1371/journal.pcbi.1004879.g004
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treatment. For example, the epidermal growth factor receptor (EGFR) is the target of tyrosine
kinase inhibitors including erlotinib and gefitinib. To determine the alternate signaling path-
ways that could function in the presence of such inhibitors, we use the Forest algorithm to con-
struct a network from phosphoproteomic data measured in U87 cell lines, a model of
glioblastoma tumors which has been published previously [60]. We compared this network,
called the wild type (WT) network, with a second network built from the same data, but with-
out EGFR included in the interactome (knock-out or KO network). A comparison of the WT
and KO networks is depicted in Fig 5. When EGFR is removed from the interactome, the blue
dashed edges are removed in the final network, but many key signaling nodes, such as GRB2,
CBL and PIK3R1, remain. Also, several cell surface receptors, such as MET, TFRC, EPHA2 are
robust to EGFR removal. The network suggests that these receptors could continue signaling to
the same downstream targets of EGFR. Indeed, crosstalk between MET and EGFR has been
previously identified [61]. These results suggest the presence of alternate pathways that could
contribute to the failure of some glioblastoma tumors to respond to treatment.

Fig 5. Anticipated results: In silico EGFR knock-out experiment in networkmodeling. Blue nodes represent ‘Steiner nodes’ that were not measured as
changing in the original experiment but are identified through network reconstruction; yellow nodes represent ‘terminal nodes’ that are the phosphoproteomic
hits. The original network and the network with EGFR knock-out have been merged to clearly show the common and different nodes and edges in the two
conditions. Common edges in two conditions are black lines, edges only present in EGFR knock-out condition are red dotted lines and edges only present in
the wild-type condition are blue dashed lines. Cell surface receptors are arrow-shaped. The parameters are μ = 0.002,ω = 2, β = 150, and D = 10.

doi:10.1371/journal.pcbi.1004879.g005
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Negative prize weighting reduces bias in interaction networks
Negative prizes can improve the accuracy of Forest’s reconstructed networks. We tested the
efficacy of adding negative prizes by testing the ability of Forest to reconstruct annotated path-
way data from ConsensusPathDB as separate trees [62]. We collected proteins from three path-
ways in ConsensusPathDB: mRNA splicing, pyruvate metabolism and Rho cell motility. In
theory, we would expect these proteins to form three independent trees using the Forest algo-
rithm because they are biologically distinct processes. Without negative prizes, however, Forest
assembles all nodes into a single tree (see Fig A in S1 Text). When we penalize high-degree
nodes using negative prizes using the μ parameter, the nodes from each pathway form distinct
subtrees, illustrated in Fig 6. In addition to recapitulating annotated pathways, nodes in each
subtree are enriched for distinct GO processes and shown in Fig B in S1 Text.

Availability and Future Directions
Omics Integrator is an open-source project licensed under the Creative Commons Attribution-
NonCommercial 4.0 International Public License. It is available for download at http://fraenkel.
mit.edu/omicsintegrator. The install instructions will ensure that all required Python libraries are
installed. To solve the prize-collecting Steiner forest problem, Forest uses the message-passing
algorithmmsgsteiner, which requires a C++ compiler and the Boost library (www.boost.org).
The msgsteiner source code can be downloaded from http://areeweb.polito.it/ricerca/cmp/code/
bpsteiner. For installation, follow the guidelines in the downloaded files. Development of
Omics Integrator is ongoing through our GitHub site (https://github.com/fraenkel-lab/
OmicsIntegrator), which provides a framework for collaborations across institutions.

Fig 6. The final PCSF reconstructed from the terminal set formed by the members of mRNA splicing pathway, pyruvate metabolism pathway, and
Rho cell motility pathway in ConsensusPathDB. Each node is colored according to the pathway to which it belongs, and Steiner nodes are colored gray.
The parameters are μ = 0.009,ω = 3, β = 5, and D = 5.

doi:10.1371/journal.pcbi.1004879.g006
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Future directions include adding support for more types of interactions (such as protein-
RNA interactions), multiple sets of prizes derived from patient data [32], and additional oper-
ating systems. We also plan to improve the parameter selection process and Garnet execution
time.

Supporting Information
S1 Text. Supplementary material. Detailed procedure to run Omics Integrator Software and
interpret the results.
(DOCX)
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