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H I G H L I G H T S

• Optimized AlexNet Model for Femoral Bone Tumor Classification: The article introduces an optimized deep learning model based on AlexNet for the accurate 
classification of femoral bone tumors. This model aims to address the challenges associated with the infrequent occurrence and diverse imaging characteristics of 
bone tumors.

• Architectural Enhancements and Batch Normalization: The proposed model includes architectural modifications, such as the incorporation of Batch 
Normalization (BN) after specific convolutional filters. Batch Normalization is introduced to address issues related to data shifts caused by ReLU functions, pro
moting network convergence and improving overall performance.

• Performance Evaluation Metrics: The study conducts comparative experiments with various existing methods and evaluates the algorithm’s performance using 
metrics such as accuracy, precision, sensitivity, specificity, F-measure, ROC curves, and AUC values. The analysis demonstrates the algorithm’s advantages, 
including low feature dimension, robust generalization, and exceptional overall detection capabilities.

• Outstanding Performance in Tumor Staging: The results highlight the exceptional performance of the introduced algorithm in tumor staging, with an accuracy of 
98.34%, sensitivity of 97.26%, specificity of 95.74%, and an F1 score of 96.37. The algorithm’s ability to classify femoral bone tumors surpasses several existing 
methods, emphasizing its clinical relevance.

• Significant Contribution to Medical Image Classification: The article concludes by emphasizing the significance of the research in the field of medical image 
classification. The optimized AlexNet model offers an efficient automated classification solution, contributing to the advancement of artificial intelligence in bone 
tumor classification. The study provides a valuable tool for medical professionals, potentially improving patient care and treatment outcomes in orthopedics.
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A B S T R A C T

Objective: Bone tumors, known for their infrequent occurrence and diverse imaging characteristics, require 
precise differentiation into benign and malignant categories. Existing diagnostic approaches heavily depend on 
the laborious and variable manual delineation of tumor regions. Deep learning methods, particularly convolu
tional neural networks (CNNs), have emerged as a promising solution to tackle these issues. This paper in
troduces an enhanced deep-learning model based on AlexNet to classify femoral bone tumors accurately.
Methods: This study involved 500 femoral tumor patients from July 2020 to January 2023, with 500 imaging 
cases (335 benign and 165 malignant). A CNN was employed for automated classification. The model framework 
encompassed training and testing stages, with 8 layers (5 Conv and 3 FC) and ReLU activation. Essential 
architectural modifications included Batch Normalization (BN) after the first and second convolutional filters. 
Comparative experiments with various existing methods were conducted to assess algorithm performance in 
tumor staging. Evaluation metrics encompassed accuracy, precision, sensitivity, specificity, F-measure, ROC 
curves, and AUC values.
Results: The analysis of precision, sensitivity, specificity, and F1 score from the results demonstrates that the 
method introduced in this paper offers several advantages, including a low feature dimension and robust 
generalization (with an accuracy of 98.34 %, sensitivity of 97.26 %, specificity of 95.74 %, and an F1 score of 
96.37). These findings underscore its exceptional overall detection capabilities. Notably, when comparing 
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various algorithms, they generally exhibit similar classification performance. However, the algorithm presented 
in this paper stands out with a higher AUC value (AUC=0.848), signifying enhanced sensitivity and more robust 
specificity.
Conclusion: This study presents an optimized AlexNet model for classifying femoral bone tumor images based on 
convolutional neural networks. This algorithm demonstrates higher accuracy, precision, sensitivity, specificity, 
and F1-score than other methods. Furthermore, the AUC value further confirms the outstanding performance of 
this algorithm in terms of sensitivity and specificity. This research makes a significant contribution to the field of 
medical image classification, offering an efficient automated classification solution, and holds the potential to 
advance the application of artificial intelligence in bone tumor classification.

1. Introduction

Bone tumors are a relatively low-incidence type of disease within the 
field of oncology, typically presenting with a variety of morphological 
imaging features and a high degree of heterogeneity. The primary 
treatment approaches for bone tumors include neoadjuvant radio
therapy, chemotherapy, and surgical interventions [1]. Accurately seg
menting tumor lesion regions from bone tumor CT and MRI images [2] is 
of paramount importance for preoperative planning of neoadjuvant 
chemoradiotherapy and postoperative treatment evaluation. However, 
manual delineation of tumor regions is time-consuming and labor- 
intensive. Additionally, the results of tumor delineation can be influ
enced by various factors, such as the subjective experience and working 
conditions of different radiologists, and the delineation results may lack 
reproducibility [3]. Therefore, there is an urgent clinical need to achieve 
automatic segmentation of tumor regions and make sound in
terpretations. Currently, CNNs are widely applied for deep learning of 
tumor classification in this regard [4].

The application of AI in bone tumor classification dates back to an 
earlier period. As early as 1980, Lodwick et al. [5] used computer 
models to determine bone tumor classification. In 1994, Reinus et al. [6]
researched using neural network models to diagnose bone tumors, 
encoding the imaging features of 709 lesions into a predefined database. 
The accuracy of this model in distinguishing between benign and ma
lignant lesions reached 85 %. In 2017, Do et al. [7] developed a Bayesian 
model to predict bone tumor diagnosis and differential diagnosis on 710 
X-ray images, achieving a high accuracy of 62 % for correct diagnosis 
and 80 % for differential diagnosis.

Note that AI is extensively applied to delineate bone tumor bound
aries. Huang et al. [8] introduced an automatic tumor boundary seg
mentation method based on a multiple supervised fully convolutional 
network (MSFCN) model. When compared to manually segmented re
sults in 405 cases of bone tumors, it achieved an average Dice similarity 
coefficient (DSC) of 87.80 %, average sensitivity of 86.88 %, average 
Hammoude measure (HM) of 19.81 %, and an F1 score of 0.908. This 
outperforms the fully convolutional network (FCN) model, U-Net, and 
holistically-nested edge detection (HED) method regarding DSC, sensi
tivity, HM, and F1 score. This algorithm assists in quickly and accurately 
delineating tumor boundaries, aiding physicians in devising more pre
cise treatment plans. The team [9] also proposed a bone tumor image 
segmentation method based on a multiple-supervised residual network 
(MSRN) model. Compared to the best segmentation results from 
advanced algorithms like FCN and U-Net, MSRN improved the DSC 
coefficient by 8.78 %, sensitivity by 7.83 %, and F1 score by 6.71 %.

The application of AI in predicting postoperative recurrence in bone 
tumors started relatively late. He et al. [10] utilized CNN models to 
predict postoperative local recurrence in 56 patients with confirmed 
pathology of giant cell tumors of bone based on MRI images and clinical 
data. They also incorporated patient characteristics (age, tumor loca
tion, etc.) to establish a binary logistic regression model for predicting 
tumor recurrence. Comparing the CNN, CNN regression model, and 
radiologist diagnoses, the accuracy rates for CNN and CNN regression 
models were 75.5 % and 78.6 %, respectively, surpassing radiologists’ 
64.3 %. Sensitivity for CNN and CNN regression models was 85.7 % and 

87.5 %, higher than radiologists’ 58.3 %. This research suggests that 
CNNs hold predictive value for postoperative giant cell tumor recur
rence, and the binary regression model incorporating patient charac
teristics enhances the accuracy of predicting tumor recurrence.

In practice, AI has found numerous applications in bone tumor image 
recognition and segmentation, offering efficiency in image processing 
[11]. However, there is room for improvement in its accuracy, partic
ularly for identifying smaller bone tumor regions, which may require 
substantial data for model optimization [12].

Dealing with the demanding task of diagnosing femoral bone tumors 
from various medical images presents a significant challenge for medical 
professionals. Maintaining consistent levels of accuracy and efficiency 
can be a formidable endeavor, potentially leading to diagnostic errors. 
The regions affected by femoral bone tumors, such as osteosarcomas and 
osteochondromas, exhibit striking similarities in appearance and texture 
during the early stages of tumor development. Hence, computer-aided 
diagnostic technology is crucial for accurately classifying femoral 
bone tumors.

Computer-aided diagnosis technology predominantly relies on ma
chine learning and deep learning methodologies when dealing with 
femoral bone tumors. Machine learning methods require the manual 
design of features, fraught with complexities and low recognition ac
curacy. With the continuous advancements in deep learning, CNNs can 
autonomously acquire high-level features, which have consistently 
demonstrated superior performance compared to manually designed 
low-level features in numerous studies[13]. VGG, AlexNet, and ResNet 
have broad applications among the convolutional neural network 
techniques. However, VGG and the model structure of AlexNet are noted 
for their simplicity and less-than-optimal outcomes.

2. Material and methods

Using a CNN to perform the automated classification task of femoral 
bone pathological images. The overall model framework is illustrated in 
Fig. 1 and can be divided into the training and testing stages. The neural 
network is trained on an augmented training dataset and, ultimately, its 
recognition performance is evaluated on the testing dataset.

2.1. Data augmentation

The most effective way to improve model generalization is by 
training it on a large-scale dataset. However, the process of creating 
medical pathological images is labor-intensive, expensive to annotate, 
and challenging to obtain. In deep learning, data augmentation methods 
are typically used to address the issue of limited data [14].

Geometric transformations are employed for data augmentation in 
this context. Utilizing the built-in data augmentation functions are 
subjected to translation, scaling, rotation, horizontal flipping, and ver
tical flipping. This helps expand the dataset in each batch, mitigating the 
impact of data scarcity. Fig. 2 illustrates the results of data 
augmentation.

X. Chen et al.                                                                                                                                                                                                                                    Journal of Bone Oncology 48 (2024) 100626 

2 



2.2. AlexNet network architecture

AlexNet (Fig. 2) is a convolutional neural network model widely used 
for image classification. The network architecture of AlexNet is illus
trated in Fig. 3. The network comprises 8 layers, including 5 convolu
tional layers (labeled Conv) and 3 fully connected layers (labeled FC). 
ReLU is used as the activation function to enhance the network’s 
nonlinearity. The network also includes three pooling layers (labeled as 
MaxPool), located after the first, second, and fifth convolutional layers, 
with the output size of the pooling layers being half of their input size. 
The third and fourth convolutional layers maintain the same input and 
output sizes. The features output from the final convolutional layer are 
flattened and passed into the fully connected layers, with each of the 
first two fully connected layers consisting of 4096 neurons. The SoftMax 
function is applied to the output of the last fully connected layer to 
generate a feature vector, representing the final prediction results as a 
probability vector.

Due to the use of the ReLU function as the activation function in the 
network. The output is entirely zero when the input feature values are 
less than zero. This can introduce some bias to the data, causing a shift in 
the original data distribution, thereby increasing the network’s training 
time and potentially reducing its recognition accuracy.

2.3. Batch normalization

Training deep neural networks is highly intricate, where even minor 
adjustments in the early layers can have a cascading effect on subse
quent layers. Fundamentally, neural network learning revolves around 
understanding data distributions. When input data distribution to a 
network layer undergoes alterations, that layer must dynamically adapt 
to learn the new data distribution. A training data distribution that 
undergoes constant fluctuations during the training process can signif
icantly impact the efficiency of network training. The BN algorithm, 
proposed in reference [15], is designed to reduce data shifts caused by 
ReLU functions, addressing the issue of changing data distributions 
during training. This, in turn, accelerates network convergence and 
improves network performance. BN achieves feature normalization by 
computing the mean and variance within a small batch of data. The 
detailed process of the BN algorithm is outlined in Table 1.

Input: All samples in a mini-batch: 

B = {x1,⋯, xm} (1) 

Output: Normalized sample values: 

yi =
{
BNγ,β

}
(2) 

Mean of the samples in the mini-batch: 

μB =
1
m

∑m

i=1
xi (3) 

Variance of the samples in the mini-batch: 

σ2
B =

1
m

∑m

i=1
(xi − μB)

2 (4) 

Normalization process: 

x̂i =
xi − μB̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
σ2

B + ε
√ (5) 

Incorporating scaling and offset: 

yi = γ x̂i + β = BNγ,β(xi) (6) 

In the provided equation, β represents a small batch sample set, μB 

represents the mean of this sample set, σ2 denotes the variance, and ε is a 
constant used to enhance numerical stability. The expectation and 
variance are relative to the training set in practical applications. The 
variable xi represents the standardized feature values, but at this point, 
the content represented by these feature values has been altered. To 
address this issue, it is necessary to transform and reconstruct z to 
introduce two learnable parameters, γ and β. The output feature yi is 
obtained by scaling and shifting the xi, thereby restoring the original 
feature distribution that the network needs to learn. The values of γ and 
β are updated as the network weights are updated, and they can be 
calculated using the following equations. 

ri =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Var[x(k) ]

√
(7) 

βi = E[x(i) ] (8) 

The convolutional layers extract features that can be both positive 
and negative. However, the ReLU function discards negative features, 
which introduces a level of bias. This bias tends to increase as the 
network deepens, potentially impacting the network’s decision-making 
accuracy. To mitigate this, it is recommended to position the BN layer 

Fig. 1. depicts the femoral bone pathological image classification workflow using the optimized AlexNet.
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between the convolutional layer and the activation function. The BN 
algorithm normalizes features before activation, reducing the intro
duced bias, accelerating network convergence, and improving the net
work’s generalization ability.

2.4. Optimized AlexNet network

In this experiment, we introduced several enhancements to the 
foundational architecture of the AlexNet network, as depicted in Fig. 3. 
Fig. 4 illustrates the structural unit of the convolutional layer with the 
integration of BN. Before entering the activation unit, feature vectors 
resulting from the first and second convolutional filters undergo 
normalization using the BN algorithm. This structural unit effectively 
replaces the original convolutional layer structure in the AlexNet 
network. Choosing an optimal batch size tailored to the specific dataset 
characteristics significantly improves recognition accuracy. For this 
experiment, a batch size of 32 was carefully selected.

2.5. Network parameter settings

For the AlexNet network, ensuring that the input image size is 
essential. In this experiment, the femoral bone pathological images, 
initially sized at 460x700 pixels, were resized to 224x224 pixels. The 
convolutional layers were initialized using a normal distribution during 
the training process. L2 regularization was applied to the last three 
convolutional layers with a penalty factor of 0.0001 for input features. 
Stochastic Gradient Descent (SGD) was selected as the optimizer for the 
network, with a learning rate set to 0.01. Since the fully connected layers 
in AlexNet introduce many parameters, which increases the risk of 
overfitting, Dropout was applied after the first two fully connected 
layers. During the network’s training process, Dropout allows the 
network to randomly “deactivate” specific neurons with a specified 
probability. This randomness in neuron deactivation ensures that not 
every pair of hidden nodes appears together at each weight update. 
Consequently, the weight updates are no longer dependent on the 

combined actions of fixed-related hidden nodes, which prevents the 
situation where some features are only practical under specific condi
tions. A dropout rate of 60 % was set for this experiment, which led to 
excellent results.

2.6. GoogLeNet

GoogLeNet is a CNN model with a network depth of 22 layers. This 
model significantly reduces data computation complexity compared to 
classic networks like LeNet and AlexNet. In contrast to emerging net
works like VGG, it offers faster training speed while maintaining high 
recognition accuracy. Therefore, the GoogLeNet model is better suited 
for datasets with more straightforward features, such as the RCP dataset.

InceptionV1 is a fundamental building block of GoogLeNet, and its 
structure is illustrated within the dashed box in Fig. 2. The core idea of 
this module is as follows: 1) It aggregates convolutional layers of 
different scales to gather visual information of various sizes. 2) It re
duces the dimensionality of high-dimensional matrices to promote 
feature extraction at different scales, ultimately achieving multi-scale 
feature fusion.

GoogLeNet consists of 9 Inception modules, and all convolutional 
layers incorporate Rectified Linear Units (ReLU) for rectification. 
Additionally, the structure includes average pooling layers and Dropout 
layers, serving not only to reduce dimensions but also to prevent 
overfitting.

3. Empirical analysis

3.1. Experimental dataset

This research involved 500 patients with femoral tumors treated at 
small, medium, and large hospitals from July 2020 to January 2023. The 
patients had an age range of 59 to 87 years, with an average age of 63.2 
± 6.8 years. The tumor diameters ranged from 0.7 to 3.9 cm, with an 
average diameter of 3.2 ± 0.7 cm. Inclusion criteria were as follows: (1) 

Fig. 2. AlexNet model structure.
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all patients had single tumor masses, (2) preoperative MRI classification 
examinations were conducted, (3) clinical data were complete, and (4) 
all participants provided informed consent for the study and willingly 
cooperated. Exclusion criteria included (1) concurrent presence of other 
tumors, (2) blood system diseases, (3) mental illnesses, and (4) with
drawal from the study by participants.

The dataset includes 500 imaging cases, consisting of 335 benign and 
165 malignant cases. Specific cases of benign and malignant tumors are 
illustrated in Fig. 3, where Fig. 3(a) are examples of benign tumors, 
Fig. 3(b) are examples of intermediate tumors, and Fig. 3(c) are exam
ples of malignant tumors.

3.2. Experimental data preprocessing

Due to the issue of imbalanced benign and malignant image counts in 
the sample dataset, preprocessing of experimental data is required. The 
preprocessing steps are as follows: Step 1: Tumor region extraction, 
extracting the tumor region from the image data, and selecting a rect
angular region of 20 pixels. Step 2: Image binarization applies binar
ization to the image data, retaining the largest connected region. This 
region performs sequential operations of opening, closing, and hole 
filling. Step 3: Data augmentation increases the samples by applying 
rotations and mirroring. For the experimental validation, we utilized the 
dataset for both training and testing purposes. This was achieved 
through a 10-fold cross-validation approach comprising 1000 iterations. 
A comprehensive overview of the specific experimental environment 
configuration parameters can be found in Table 1.

3.3. Results analysis

To validate the performance of the algorithm proposed in this paper 
and determine its accuracy in the staging of femoral tumors, compara
tive experiments were conducted with multiple existing algorithms 
(Fig. 4). The comprehensive performance of the algorithm was evalu
ated using various metrics, including accuracy, precision, sensitivity, 

Fig. 3. Partial display of a dataset containing CT images of the tibia and femur. Part a represents a benign bone tumor; part b represents a neutral bone tumor; and 
part c represents a malignant tumor. The white arrows point to the location of the tumor.

Table 1 
Configuration of data environment.

Project Parameter

Training set 300
Test set 200
Software environment Python
Hardware 

configuration
NVIDIA GeForce GTX 1060. Video memory capacity: 3 GB
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specificity, F-measure, ROC curves, and AUC values. Table 3 displays a 
comparative analysis of accuracy results between the algorithm intro
duced in this paper and the other comparative algorithms.

As shown in Table 2, it is clear that, among the five methods, the 
algorithm presented in this paper exhibits the highest accuracy. Addi
tional assessment metrics, including precision, sensitivity, specificity, 
F1-score, and AUC, will be utilized to provide a more comprehensive 
evaluation of this algorithm’s performance. The detailed evaluation 
results are provided in the table below.

From the calculated results of precision, sensitivity, specificity, and 
F1 score, it can be observed that the proposed method in this paper 
possesses the advantages of low feature dimension and strong general
ization (ACC=98.34, SEN=97.26, SPE=95.74, F1 = 96.37), indicating 
its overall solid detection capability.

In machine learning, the ROC curve and AUC value are commonly 
used to assess the performance of machine learning algorithms. While 
the ROC curve provides a qualitative performance representation, the 
AUC value is typically used to provide a quantitative description of the 
ROC curve. The AUC values for the algorithm above and the algorithm 
proposed in this paper are compared in Table 3.

From Table 3, the classification performance of the algorithms is 
generally comparable. However, the algorithm proposed in this paper 
exhibits a higher AUC value (AUC=0.848), indicating that it possesses 
greater sensitivity and more robust specificity.

4. Discussion

While the study above presents an optimized AlexNet deep learning 
model for the precise classification of femoral bone tumors, several 
limitations still need to be considered. Firstly, the classification of 
femoral bone tumors remains a complex challenge due to the various 
morphological and feature variations presented by different tumor types 
[16]. This complexity level could result in misclassifications or chal
lenges in achieving precise classification. Deep learning models typically 
demand a significant quantity of annotated data for training to attain 
high accuracy. However, obtaining a substantial volume of labeled data 
for rare types of tumors could be a limiting factor.

Furthermore, despite the excellent performance of AlexNet in image 
classification tasks, concerns arise regarding the model’s interpretability 
and transparency in the context of medical image classification [17]. 
Medical practitioners and clinical experts often require understanding 
the model’s decision-making process to validate results and make clin
ical decisions. Therefore, explaining the decision process of deep 
learning models and providing confidence measures are crucial.

Another possible constraint pertains to the model’s generalization 
performance. Although the studies above demonstrate remarkable re
sults, it is essential to conduct additional validation to ascertain the 
model’s capacity to generalize across various datasets and clinical 
contexts. Medical images are susceptible to variations stemming from 
differences in devices and imaging conditions, which could potentially 
cause the model’s performance to be negatively affected [18].

Furthermore, it is essential to highlight that due to the regulatory and 
ethical complexities within the medical domain, the clinical 

Fig. 4. Comparison of Femoral Tumor Recognition Results Based on Different Algorithms.

Table 2 
Overall performance comparison of the proposed algorithm with an existing 
technique.

Performance metrics Models used for comparison
Our method GoogLeNet

Accuracy 98.34 96.58
Sensitivity 97.26 96.27
Specificity 95.74 92.58
F1 value 96.37 93.69

Table 3 
Comparison of AUC of the proposed algorithm with an existing technique.

Performance metrics Models used for comparison
Our method GoogLeNet

AUC 0.848 0.688
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implementation of deep learning models demands stringent oversight 
and validation to guarantee both safety and efficacy [19]. This neces
sitates close collaboration with healthcare professionals and regulatory 
bodies.

Although deep learning models such as AlexNet have made signifi
cant strides in femoral bone tumor classification, several limitations 
must be addressed, including data acquisition, interpretability, gener
alization performance, and regulatory concerns, to make them more 
feasible and reliable in clinical practice. Future research should focus on 
tackling these challenges to enhance further the potential of deep 
learning in tumor classification [20].

In summary, deep learning models hold immense potential in clas
sifying femoral bone tumors, but they still face numerous challenges 
within the medical field. Future research should address issues related to 
data acquisition, interpretability, generalization performance, and reg
ulatory compliance to enhance the feasibility and reliability of these 
models in medical practice [21]. This will contribute to advancements in 
medical image classification, ultimately providing better healthcare 
services and treatment options for orthopedic patients [22].

5. Conclusion

The results of this study demonstrate the effectiveness of the opti
mized AlexNet-based neural network in classifying femoral bone tu
mors. Notably, it outperforms other comparative algorithms in terms of 
accuracy. Furthermore, the algorithm exhibits superior precision, 
sensitivity, specificity, and F1-score. Using the ROC curve and AUC 
values confirms that the proposed algorithm excels in both sensitivity 
and specificity.

This research contributes to medical image classification and pro
vides a valuable tool for medical professionals diagnosing femoral bone 
tumors. Implementing an automated classification system, underpinned 
by an optimized deep learning model, presents a promising avenue for 
enhancing the precision and expediency of tumor diagnosis, ultimately 
leading to improved patient care. Further research may focus on 
expanding the dataset and exploring additional optimization techniques 
to continue advancing the capabilities of AI in bone tumor classification.
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