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ABSTRACT
Background and aims Gut transit time is a key 
modulator of host–microbiome interactions, yet this is 
often overlooked, partly because reliable methods are 
typically expensive or burdensome. The aim of this single- 
arm, single- blinded intervention study is to assess (1) the 
relationship between gut transit time and the human gut 
microbiome, and (2) the utility of the ’blue dye’ method 
as an inexpensive and scalable technique to measure 
transit time.
Methods We assessed interactions between the 
taxonomic and functional potential profiles of the 
gut microbiome (profiled via shotgun metagenomic 
sequencing), gut transit time (measured via the blue dye 
method), cardiometabolic health and diet in 863 healthy 
individuals from the PREDICT 1 study.
Results We found that gut microbiome taxonomic 
composition can accurately discriminate between 
gut transit time classes (0.82 area under the receiver 
operating characteristic curve) and longer gut transit 
time is linked with specific microbial species such as 
Akkermansia muciniphila, Bacteroides spp and Alistipes 
spp (false discovery rate- adjusted p values <0.01). The 
blue dye measure of gut transit time had the strongest 
association with the gut microbiome over typical transit 
time proxies such as stool consistency and frequency.
Conclusions Gut transit time, measured via the 
blue dye method, is a more informative marker of gut 
microbiome function than traditional measures of stool 
consistency and frequency. The blue dye method can be 
applied in large- scale epidemiological studies to advance 
diet- microbiome- health research. Clinical trial registry 
website https:// clinicaltrials. gov/ ct2/ show/ NCT03479866 
and trial number NCT03479866.

INTRODUCTION
The term ‘gut health’ encompasses the effective 
digestion and absorption of nutrients, the normal 
function of the immune and endocrine system, 
gut microbiota and metabolism, and gut motility. 
A disturbance in one or more of these factors 
may lead to the development of GI or extraint-
estinal conditions.1 Normal ‘motility’ of the GI 
tract is a key factor in maintaining gut health. Gut 
motility consists of several measurable phenomena, 
including enteric contractile activity, gut wall 
biomechanical functions (eg, tone and compliance), 

and intraluminal flow and transit to propel luminal 
contents. The assessment of gut transit time, which 
refers to the transit of luminal content along the GI 
tract, is commonly used as a marker of gut motility 
and function.2 3 The measurement of gut transit 
time is relevant to health due to its link to host and 
microbial metabolism.

Several validated methods exist to measure 
gut transit time, including scintigraphy, wireless 
motility capsule, radio- opaque markers and breath 
testing.2 3 Although each of these has been vali-
dated in both healthy and unhealthy populations, 
they pose several practical limitations. They require 
specialised equipment and staff, and at least one 
in- person visit, therefore rendering them laborious, 
inconvenient and expensive techniques. Such limita-
tions prevent their widespread use in studies, high-
lighting the need for easily accessible, inexpensive 

Significance of this study

What is already known on this subject?
 ► Gut transit time is infrequently considered as a 
covariate in microbiome studies.

 ► Current validated methods measuring gut 
transit time pose several limitations including 
high cost and high participant and researcher 
burden.

What are the new findings?
 ► Gut transit time, measured via the blue dye 
method, is a more informative marker of gut 
microbiome function than traditional measures 
of stool consistency and frequency.

 ► Gut microbiome composition predicts gut 
transit time classes and longer gut transit 
time is linked with Akkermansia muciniphila, 
Bacteroides and Alistipes spp relative 
abundances.

 ► Gut transit time is independently related to 
visceral fat mass and postprandial measures.

How might it impact on clinical practice in the 
foreseeable future?

 ► The blue dye method for measuring gut 
transit time can be applied in large- scale 
epidemiological studies to advance diet- 
microbiome- health research.
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techniques to assess gut transit time. Indeed, as an alternative, 
studies have used cheaper surrogate markers of gut transit time 
with minimal participant burden, such as stool consistency,4 
with greater potential to be applied at scale. Other surrogate 
markers have also been used, such as carmine red dye and the 
blue dye method. These have been used predominantly in mouse 
models and a limited number of human studies, although with 
small sample sizes.5 6 The blue dye method has not previously 
been assessed for its validity, and the impact of the generated gut 
transit time data on host and microbial metabolism has not been 
investigated.

A potential link between gut transit and the gut microbiota 
could be explained by the varying degrees of microbial adap-
tation to gut motility and nutrient availability. Small- scale and 
large- scale studies have demonstrated associations between the 
gut microbiome and transit time,4 7 although they measured 
stool consistency only. A further study in women with chronic 
constipation and healthy controls revealed that Firmicutes abun-
dance is correlated with faster transit as measured by a validated 
scintigraphy method,8 while another study showed longer gut 
transit time is linked with higher alpha diversity.9 Although 
these studies provide preliminary evidence of the relationship 
between gut transit and the microbiome in pathological condi-
tions, there is currently a lack of evidence for this relationship 
in the wider healthy population. In addition, understanding the 
association between specific microbiota species and functions 
and host health is crucial to not only underpin the mechanisms 
through which the microbiota may affect health but also to 
disentangle disease- associated microbiome links from potentially 
confounding variations due to transit time differences in case/
control studies.

Understanding the link between gut transit time and the gut 
microbiota in healthy people is relevant due to the potential 
impact of the gut microbiota on host physiology and the transi-
tion between healthy and diseased states.10 Gut transit has been 
suggested to be associated with diet, as well as host metabolism 
and health, including cardiometabolic health. For example, it 
has been proposed that gut transit may influence postprandial 
glycaemia and lipaemia by modulating nutrient absorption and 
microbial composition.11 However, this remains to be confirmed 
in large human studies.

The use of novel scalable assessment techniques can generate 
data on gut transit time for large populations and followed by 
subsequent analyses may provide new insights into the complex 
interactions between gut physiology and health outcomes.12 The 
purpose of this analysis was to assess a novel, inexpensive marker 
of gut transit time, and examine the associations of gut transit 
time with (1) stool consistency and frequency, (2) gut micro-
biome composition and function, and (3) cardiometabolic health 
and diet. These analyses were performed in the PREDICT 1 
clinical trial (NCT03479866), which assessed gut transit, micro-
biome, metabolic, meal composition and meal- context outcomes 
in twins and unrelated adults from the UK and the USA.

MATERIALS AND METHODS
The PREDICT 1 study
The PREDICT 1 clinical trial (NCT03479866) is a single- arm, 
single- blinded intervention study (June 2018 to May 2019) that 
aimed to quantify individual metabolic responses to standardised 
meals. The study integrates data from twins and unrelated adults 
from the UK (n=1002, 279 males and 723 females, average age 
45.58 years, std 11.88 years) and the USA (n=100, 32 males and 
68 females, average age 41.33 years, std 12.82 years) to explore 

genetic, metabolic, microbiome composition, meal composition 
and meal context data to distinguish predictors of individual 
responses to meals. For full protocol and eligibility criteria, see 
Berry et al.13 Study procedures were carried out after having 
received written informed consent from each participant. All 
authors had access to the study data and reviewed and approved 
the final manuscript.

Transit time data: blue dye method
Participants followed standardised diet and lifestyle instructions 
for the day prior to the clinical visit.13 They arrived at the clinic 
fasted and consumed two ‘blue’ muffins (84.5 g×2 with 0.75 g of 
Sugarflair Colours ‘royal blue’ food colouring paste each) within 
a 10- minute period with a chocolate milk beverage (see Clinical 
Research Protocol13 in the supplemental materials for nutrient 
composition of the meal). Blue dye was selected over carmine 
red dye due to, first, it is vegetarian origin, and second, to limit 
participants misreporting visualisation in the stool due to other 
staining foodstuffs of the same or similar colour (eg, beetroot). 
Participants were requested to log the first appearance of ‘blue 
poo’ using a specialised mobile phone application developed 
by ZOE Global for Android and iOS devices. Transit time, via 
the blue dye method, was measured from the time from muffin 
consumption to the first visualisation of blue within a stool. Date 
and time (hours, minutes) of blue appearance was automatically 
recorded within the mobile application after participants clicked 
the relevant button. The gut transit time data collected were 
divided into three groups based on previously reported values.14 
However, the middle group representing a normal gut transit 
time showed a bimodal distribution, so it was further divided 
into two classes, as described in the results.

Bristol Stool Form scale and bowel movement frequency
Participants completed a questionnaire prior to, or during, the 
clinic visit which included questions on stool consistency and 
frequency of bowel movements. Participants answered two 
questions: (1) ‘How many bowel movements have you had in 
the last 7 days?’ (None/1/2–3/4–6/7 or more), (2) ‘Using the 
Stool Chart below please define the consistency of your stools 
on average in the last 3 months?’ (Type 1/Type 2/Type 3/Type 
4/Type 5/Type 6/Type 7). An image of the Bristol Stool Form 
(BSF) scale15 was displayed along with the latter question with a 
written description.

Microbiome data
Shotgun metagenomic sequencing of stool samples was performed 
for a total of 1098 PREDICT 1 participants (UK n=1001; USA 
n=97) on stool samples collected within a 24- hour period prior 
to the first transit time measure. Computational analyses were 
performed using the bioBakery suite of tools16 to obtain species- 
level microbial abundances with MetaPhlAn V.3.017 and func-
tional potential profiling of gene families and pathways with 
HUMAnN V.2.0.18 More details about microbiome sampling, 
sequencing and analysis available in Asnicar et al.19 In this work, 
we used microbiome profiles of the stool samples the partici-
pants provided for the PREDICT 1 study at baseline and not 
the profiles of the first stool samples that appeared with a blue 
colour.

Diet data
Habitual dietary data were collected using an EPIC- modified 
Food Frequency Questionnaire (FFQ),20 sent via mail to partic-
ipants prior to the clinic visit. The collection, processing and 
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application of the dietary indices (Plant- based Diet Index21 
(PDI), Animal Score,22–31 Alternative Mediterranean Diet 
Index32 (aMED), Healthy Eating Index 201033 (HEI), Healthy 
Food Diversity Index34 (HFD) to the FFQ in the PREDICT 1 
study have previously been described in detail.35

Health marker data
Fasting and postprandial (nine timepoints; 0–6 hours) venous 
blood was collected to determine serum concentrations of 
glucose, triglycerides (TG), insulin, C- peptide (as a surro-
gate for insulin), interleukin (IL)-6 and metabolomics (NMR); 
anthropometry and blood pressure was measured at baseline as 
outlined in Berry et al.13

Machine learning
Machine learning (ML) analyses were performed using the 
‘scikit- learn’ Python package (V.0.22.2). We employed a cross- 
validation approach based on an 80/20 random split of training 
and testing sets repeated for 100 bootstrap iterations. To avoid 
overfitting specific to our dataset, the twin from the training set 
was removed if its twin pair was present in the test set. We used 
Random Forest (RF) classification on species- level taxonomic 
relative abundance estimated by MetaPhlAn 3.0 and normalised 
using the arcsin- sqrt transformation for compositional data, and 
functional potential profiles of relative abundance estimates 
of single microbial gene families and pathway- level relative 
abundances as provided by HUMAnN2. For the RF classifica-
tion task, we used the RandomForestClassifier function with 
“n_estimators=1000, max_features=‘sqrt’” parameters. For 
the regression task, we trained an RF regressor (RandomFor-
estRegressor function with parameters: “n_estimators=1000, 
criterion=‘mse’, max_features=‘sqrt’”) and a linear regressor 
(LinearRegression function with default parameters) to calibrate 
the range of output values.

Statistical analysis
The statistical significance between different gut transit time 
classes, Bristol stool types and categories of bowel movements 
were tested using the Mann- Whitney U test (‘mannwhit-
neyu’ function from the ‘scipy’ Python package, V.1.3.2). The 
permanova analysis to estimate the differences between the four 
gut transit time classes with respect to the microbiome beta 
diversity was performed using the ‘anosim’ and ‘adonis2’ func-
tions from the ‘vegan’ R package (V.2.5-6).

Structural equation modelling analysis
To show the relationship of each exposure (diet, microbiome and 
gut transit time) with outcomes (blood pressure (mean systolic 
and diastolic), inflammation (mean fasting GlycA and IL-6), 
postprandial responses (mean peak glucose and triglyceride 
concentrations) and visceral fat), structural equation model-
ling (SEM) was used. To represent microbiome data as a single 
feature, we used the results of an ML regression task trained on 
microbial species relative abundances to predict gut transit time. 
The model was fitted under a maximum likelihood framework 
using covariance matrices. Relative model fit was assessed using 
the comparative fit index (CFI) (0 (no fit) to 1 (perfect fit)).36 
The absolute fit was assessed using the root mean square error 
of approximation. Values were standardised and the mean used 
with combined data (blood pressure, inflammation, and peak 
glucose and triglyceride concentrations).

Data availability
Metagenomes are deposited in EBI ENA under accession 
number PRJEB39223. The non- metagenomic data used for anal-
ysis in this study are held by the Department of Twin Research 
at King’s College London and access can be requested from 
https:// twinsuk. ac. uk/ resources- for- researchers/ access- our- data/ 
to allow for anonymisation and compliance with General Data 
Protection Regulation (GDPR) standards.

RESULTS AND DISCUSSION
The PREDICT 1 study assessed interactions between the gut 
microbiome, cardiometabolic health and diet (n=1102) using 
shotgun metagenomic sequencing of stool samples to char-
acterise taxonomic and functional profiles, along with blood 
measures of cardiometabolic health, postprandial responses to 
standardised meals and habitual dietary data.37 We previously 
identified both individual components of the microbiome and 
a shared diet- metabolic- health microbial signature, segregating 
favourable and unfavourable taxa with multiple measures of both 
dietary intake and cardiometabolic health.35 Here, we report gut 
transit time measures, assessed in the PREDICT 1 cohort using a 
novel blue dye method (see the Materials and methods section). 
Data were available for 866 participants in total (n=778 from 
UK; n=88 from USA) (online supplemental table 1). Data were 
not available on the full set of participants due to the delayed 
introduction of the blue muffins into the protocol (n=171) and 
a number of participants who did not report transit time (n=61). 
Individuals without transit time data did not differ (in age, body 
mass index, Shannon index and BSF scale) from the rest of the 
cohort.

Inexpensive estimation of gut transit time in large 
populations: blue dye method
Gut transit time was measured as the duration of time from inges-
tion of blue dye within the standardised muffin to its first excre-
tion event with visible blue colour within a stool (figure 1A and 
the Materials and methods section).13 The method was simple to 
implement, low cost (about $1 per person muffin portion) and 
well tolerated by participants.

The median gut transit time for the whole study population 
was 28.7 hours, in agreement with previous studies on healthy 
populations.14 38 Overall, gut transit time appears to cluster 
within intervals separated by approximately 24 hours, as previ-
ously reported using an ingestible electromagnetic capsule.14 
Three groups of gut transit time were allocated based on previ-
ously reported normative values of gut transit time14: (G1) <14 
hours—fast gut transit time; (G2) between 14 and 58 hours—
normal gut transit time; (G3) ≥59 hours—slow gut transit time. 
Due to the bimodality distribution of the normal gut transit time 
in G2, it was split into two further classes, between 14 and 38 
hours and between 38 and 58 hours (figure 1B), resulting in a 
total of four distinct gut transit time classes with n=79 in C1- 
(mean 0.38 day, SD 0.14 day), n=424 in C2- normal (mean 1.02 
day, SD 0.19 day), n=186 in C3- normal (mean 2.01 days, SD 
0.16 day) and n=174 in C4- slow (mean 4.21, SD 1.45 days) 
(figure 1C, online supplemental figure 1A).

Association between gut transit time and stool form and 
frequency
We investigated how gut transit time is related to stool form, as 
the association between stool form and the gut microbiome has 
previously been characterised (figure 1D–E).4 15 Lower BSF scale 
scores correspond to a longer gut transit time (>5 days median 

https://twinsuk.ac.uk/resources-for-researchers/access-our-data/
https://dx.doi.org/10.1136/gutjnl-2020-323877
https://dx.doi.org/10.1136/gutjnl-2020-323877
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for type 1), while higher BSF scale scores correspond to shorter 
gut transit time values (1 day median for type 6, figure 1D), in 
agreement with previous work using the radio- opaque marker 
technique.15

The frequency of bowel movement events was reported in 
the week prior to the commencement of the PREDICT 1 study 
(see the Materials and methods section). Participants reported a 
frequency of one to three bowel movements (32.8%) or seven 
or more (67.2%). No participant reported a frequency of four 
to six bowel movements. Previous studies have shown that small 
hard stools are more difficult to expel, while bowel movements 
appear to occur in 24- hour clusters.38 39 Therefore, it may be 
possible that people with infrequent bowel movements need a 
minimum of 24 hours between bowel movements to produce a 
bowel movement large enough to stimulate defaecation. When 
comparing the frequency of bowel movements with the gut 
transit time, a statistically significant longer gut transit time was 
associated with fewer weekly bowel movements (p value=1.2e-8, 
figure 1E). In summary, we confirmed using a large- scale study 
that gut transit time, measured using the blue dye method, is 
negatively associated with stool consistency and positively asso-
ciated with stool frequency.

A very strong link exists between the gut microbiome and 
gut transit time
We investigated the potential link of gut transit time with the 
gut microbiome, with consideration for the microbial taxonomic 
and functional profiles. Animal studies have confirmed that gut 
transit time affects gut microbiota composition and function, 

and medication- induced alterations of the gut transit time affect 
the microbial composition of the distal gut.40 However, the 
effect of gut transit time, measured prospectively via the blue 
dye method, on the gut microbiota has not been confirmed in 
large human studies. To address this gap, we initially examined 
alpha diversity, which reflects how diverse a single microbiome 
sample is, using a measure of richness (ie, number of species 
detected, figure 2A) and the Shannon index, which accounts 
for both evenness and abundance (online supplemental figure 
1B). We observed a significant positive trend in alpha diversity 
(both richness and Shannon index, p values=1.7e-4 and 7.1e-6, 
respectively) and gut transit time (figure 2A, online supplemental 
figure 1B), in agreement with previous studies.4 9 41 This may be 
a consequence of a longer gut transit time enabling the accumu-
lation of more species along the gut. Additionally, a longer gut 
transit time increases substrate time within the lumen and may 
allow for greater utilisation and fermentation of carbohydrate 
(CHO) and protein by the colonic microbiota contributing to 
greater microbial diversity. This depletion of readily fermentable 
substrates (ie, CHO) has been shown to increase the proteolyt-
ic:saccharolytic fermentation ratio and to aid proliferation of 
slower growing species.4 42 Upregulation of proteolytic fermen-
tation is thought to elevate branch- chain fatty acid production at 
the expense of short- chain fatty acids (SCFAs), diminishing some 
of the beneficial impact of SCFAs on host health.43–45

We then tested whether participants within different gut 
transit time classes have a significantly different microbial 
composition (based on Permutational Multivariate Analysis 
of Variance (PERMANOVA) analysis). We found that C1- fast 

Figure 1 Gut transit time estimation in the PREDICT 1 cohort. (A) PREDICT 1 study design with focus on gut transit time (created by Biorender.
com). (B) Histogram of the gut transit time distribution with orange vertical lines showing the boundaries of the four classes (C1: fast transit time; C2 
and C3: normal gut transit time; C4: slow gut transit time). (C) Violin plots of the four gut transit time classes showing an average of 0.38, 1.02, 2.01 
and 4.21 days for C1, C2, C3 and C4, respectively. An alternative visualisation using a semi- log scale is available in online supplemental figure 1A. (D) 
Distribution of gut transit time with respect to Bristol stool types and (E) with respect to the reported number of bowel movements in the week prior 
to the start of the PREDICT 1 study. Asterisks denote statistically significant differences according to the Mann- Whitney U test with a p value<0.01 
and categories with less than 10 samples were not tested for significance.

https://dx.doi.org/10.1136/gutjnl-2020-323877
https://dx.doi.org/10.1136/gutjnl-2020-323877
https://dx.doi.org/10.1136/gutjnl-2020-323877
https://dx.doi.org/10.1136/gutjnl-2020-323877
https://dx.doi.org/10.1136/gutjnl-2020-323877
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versus C4- slow explains 17.1% of the variance in beta diversity 
(Bray- Curtis dissimilarity), showing a stronger effect than BSF 
types, which explains 11.5% (figure 2B and online supplemental 
table 2). All gut transit time classes except for C1- fast versus 
C2- normal were significant (p value<0.01) according to the 
PERMANOVA analysis (online supplemental table 2).

Given the associations of gut transit time and the gut micro-
biome with alpha and beta diversity, we explored whether the 
gut microbial composition and functional profiles are predictive 
of the four gut transit time classes (figure 2C–D). We used an ML 
classification task (see previous work35 and the Materials and 
methods section) to distinguish first between the two extreme 
gut transit time classes as they showed higher differences in the 
microbial composition according to the beta diversity analysis 

(figure 2B). By using only the species relative abundances for 
C1- fast and C4- slow as estimated by MetaPhlAn17 (V.3.0, see 
the Materials and methods section) resulted in a classification 
area under the curve (AUC) of 0.82 (figure 2C). To verify that 
this was not an effect of comparing the two extreme classes, we 
considered also both C1- fast and C2- normal as one class, and 
C3- normal and C4- slow as another class and the ML classifi-
cation task showed an AUC of 0.72 (figure 2C), suggesting a 
direct relationship between gut transit time and gut microbial 
composition. The findings are in agreement with a previous 
large- scale study, which used stool consistency only as a proxy 
of gut transit time, and revealed gut transit time to be the top 
covariate contributing to the microbiome composition out of 69 
covariates assessed.7 We further investigated these associations 

Figure 2 Microbiome composition is a better predictor for gut transit time than Bristol Stool Form (BSF) scale and frequency of bowel movements. 
(A) Shannon alpha diversity distribution of the four gut transit time classes (statistically significant differences, p value<0.01, highlighted; see online 
supplemental figure 1B for alpha diversity measured as richness). (B) PCoA plot of Bray- Curtis pairwise distances of microbiome samples coloured 
according to the gut transit time class (see online supplemental table 2). (C) Receiver operating characteristic (ROC) curves showing the ability of a 
machine learning (ML) classifier in predicting the two extreme gut transit time classes: C1 versus C4 (area under the curve (AUC)=0.82) and when 
considering the two intermediate classes: C1 and C2 versus C3 and C4 (AUC=0.73). For comparison, the ROC curve in predicting the BSF types 
1, 2 and 3 versus types 4, 5 and 6 is also shown (AUC=0.65). (D) ML classification matrix of gut transit time classes when using species relative 
abundances and functional pathways information (functional gene families reported in online supplemental figure 2A). (E) Alpha diversity measured 
with the Shannon index and the Bristol stool types (see online supplemental figure 1C for alpha diversity measured as richness). (F) Shannon alpha 
diversity bowel movements (see online supplemental figure 1D for alpha diversity measured as richness). (G) ML classification matrix of Bristol stool 
types using species and functional pathways relative abundances (functional gene families reported in online supplemental figure 2B and online 
supplemental figure 2C- D) for ML classification matrix for bowel movements.

https://dx.doi.org/10.1136/gutjnl-2020-323877
https://dx.doi.org/10.1136/gutjnl-2020-323877
https://dx.doi.org/10.1136/gutjnl-2020-323877
https://dx.doi.org/10.1136/gutjnl-2020-323877
https://dx.doi.org/10.1136/gutjnl-2020-323877
https://dx.doi.org/10.1136/gutjnl-2020-323877
https://dx.doi.org/10.1136/gutjnl-2020-323877
https://dx.doi.org/10.1136/gutjnl-2020-323877
https://dx.doi.org/10.1136/gutjnl-2020-323877
https://dx.doi.org/10.1136/gutjnl-2020-323877
https://dx.doi.org/10.1136/gutjnl-2020-323877
https://dx.doi.org/10.1136/gutjnl-2020-323877
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by including within the model the species relative abundances as 
well as the functional profiles of pathways (figure 2D) and gene 
families (online supplemental figure 2A) relative abundances 
as estimated by HUMAnN2.18 The microbiome successfully 
modelled the differences in each pairwise comparisons of the gut 
transit time classes both when relying on species relative abun-
dances (figure 2D, upper triangular) and functional pathways 
relative abundances (figure 2D, lower triangular). Interestingly, 
the least well- defined comparison was that between C1- fast and 
C2- normal, whereas the two newly defined subclasses of normal 
gut transit time (ie, C2- normal and C3- normal), corresponding 
to roughly 1 and 2 days, displayed a more distinct microbiome 
composition.

To verify the microbiome- transit time association previously 
shown, we explored whether the BSF scale and bowel movement 
frequency yield similar results, considering they are typically 
used as a proxy of gut transit time in research investigations.4 15 
We first checked whether the BSF types and bowel movement 
frequency are associated with alpha diversity (figure 2E–F). 
Although some comparisons resulted in statistically significant 
results (p value<0.01), associations between the gut micro-
biome, BSF scale and bowel movement frequency are weaker 
using ML compared with the association observed between the 
gut microbiome and gut transit time via the blue dye method 
(figure 2G and online supplemental figure 2B- D). In particular, 
we consider that the two extreme gut transit time classes are 
more representative (253 participants) than the two extreme 
Bristol stool types 2 and 6 (117 participants). Likewise, if we 

compare the AUC of 0.72 obtained for gut transit time of C1- fast 
and C2- normal versus C3- normal and C4- slow (figure 2C), with 
a similar comparison for the BSF scale by considering types 1, 
2 and 3 versus types 4, 5 and 6, we obtained an AUC of 0.65 
(figure 2C). In summary, we found that the gut microbiome is 
strongly associated with gut transit time, and this association 
appears to be stronger than with stool frequency or consistency.

A panel of bacteria are clear drivers of the microbiome-
transit time association
Considering the association identified between gut transit time 
and the microbiome, we aimed to identify potential single species 
that could be linked with a short or long gut transit time. We first 
considered species with at least a twofold ratio of relative abun-
dance between the two extreme gut transit time classes C1- fast 
and C4- slow (figure 3A) and then considered significant species 
with an average relative abundance >1% and showed their 
distribution in the four gut transit time classes (figure 3B and 
online supplemental table 3). All species showed an increase in 
relative abundance with longer gut transit time classes, except for 
Eubacterium rectale which was lower in longer gut transit time 
classes. E. rectale is a saccharolytic bacterium,46 47 and hence it 
is possible that its abundance may decrease in longer gut transit 
times where a switch to proteolytic metabolism occurs. Akker-
mansia muciniphila,48 49 as well as Bacteroides and Alistipes spp, 
which belong to the phylum Bacteroidetes, was higher in longer 
gut transit times, similarly to previous studies.4 50 A. municiphila 

Figure 3 Gut microbiome species and functional pathways associated with gut transit time. (A) Abundance across C1 and C4 gut transit time 
classes of the 12 differential significant species (p value<0.01 after false discovery Rate rate (FDR) correction) with an effect size of at least twofold. 
(B) Relative abundances for the four gut transit time classes for the biomarker species identified among the significant ones and with an average of 
at least 1% of relative abundance in PREDICT 1. (C) Relative abundances of the functional pathways found significant (FDR- adjusted p value<0.01) 
and with an effect size of at least twofold. (D) The significant species after FDR correction identified for gut transit time (32) and the Bristol Stool Form 
(BSF) scale (11), of which 10 are shared.
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has also been previously shown to positively correlate with gut 
transit time in a small cohort of 53 healthy women.4 Markedly, 
Ruthenibacterium lactatiformans, which was shown to be higher 
in longer gut transit times in the current study, has been associ-
ated with markers of poorer cardiometabolic health in the same 
PREDICT 1 cohort.35

We next performed a similar analysis using functional data of 
pathways and gene families and demonstrated that differences 
in pathways are more notable than those in species between 
gut transit groups. We considered significant pathways (FDR- 
adjusted p value<0.01) with an effect size of at least twofold 
(ratio of their medians pathway abundance) and plot their 
distributions according to the four gut transit time classes 
(figure 3C and online supplemental table 3). A higher pyruvate 
to propanoate fermentation was shown in longer gut transit 
times. Notably, increased methanogenesis from H2 and CO2 was 
also found in longer gut transit times, in agreement with the 
increased methane production observed in people with consti-
pation,51 as well as increased observation of Methanobrevibacter 
species observed in longer transit times.4 However, a previous 
case–control study suggested that breath methane production 
was associated with the faecal microbiota composition but not 
with gut transit time.8 Finally, we identified 32 significant species 
(FDR- adjusted p value<0.01) characterising the two extreme 
classes of gut transit. To understand whether this microbial 
signature is specific of gut transit time, we identified significant 
species (FDR- adjusted p value<0.01) characterising also the 
two extremes of the BSF scale (types 1 and 2 vs types 5 and 
6) and found that only 10 species were shared with gut transit 
time (figure 3D), suggesting that gut transit time via the blue dye 
method is more linked with gut microbiome composition than 
the BSF scale.

In summary, shotgun metagenomic sequencing revealed 
clear drivers of the microbiome- transit time association. More 
specifically, pathways related to pyruvate fermentation and 
methanogenesis were increased in longer transit times, while 
A. muciniphila was also linked to longer transit times. These 
findings have the potential to advance our understanding in the 

mechanisms through which the gut microbiota may impact host 
physiology and function in healthy populations.

Limited direct association of gut transit time with diet and 
cardiometabolic measures
Diet–microbiome relations, together with the impact of both 
diet and the microbiome on host health, has been well character-
ised.45 52 Considering the strong associations between gut transit 
time and microbiome composition as identified above, potential 
links between gut transit time, habitual diet and cardiometabolic 
health were investigated. We considered an ML regression task 
trained on species relative abundances to predict the gut transit 
values as proposed and applied elsewhere.35 We evaluated the 
correlation of measured gut transit time versus the predicted 
values. For comparison, we reported the performances of an ML 
regression task trained on species relative abundances to predict 
diet and cardiometabolic markers, showing that gut transit time 
is among the top associated variables with microbiome compo-
sition (figure 4).

To investigate the association of gut transit time with the 
microbiome and diet- related markers, we considered two alpha 
diversity measures, richness and Shannon index, and the rela-
tive abundances of the top 10 species of the top 5 phyla (higher 
average relative abundance). For diet- related markers (estimated 
from FFQ), we considered nutrients and energy- adjusted nutri-
ents, single food items, food groups and dietary indices. The 
cardiometabolic health markers examined are the markers that 
have been used previously35 to define a microbial signature 
of health. These results show overall lower correlation values 
than microbiome- based features (figure 4 and online supple-
mental table 4). Of note and in accordance with these findings, 
we considered gut transit time as an additional feature to the 
ML classification task to predict the 19 cardiometabolic health 
markers. Performances did not improve with 17 over 19 markers 
with an average loss of 0.78% AUC, and 2 over 19 with an 
average increase of 0.44% AUC (online supplemental table 5). 
This might suggest that gut transit time is not directly associated 

Figure 4 Microbiome profiles and gut transit time in predicting health markers and diet. Microbiome. Box plots of microbiome species relative 
abundances used to train a machine learning (ML) regression task to predict gut transit time (100- folds shown) and median for each marker for 
health markers, dietary patterns, nutrients (adjusted by energy intake and not), food groups and single foods. Gut transit time appears to be the better 
predictable outcome using microbiome species profiles than health markers and diet. Gut transit time. Box plots of the correlation of gut transit time 
with microbiome- related and diet- related markers. Gut transit time and microbiome- related markers include two alpha diversity measures (richness 
and Shannon), and up to the 10 most abundant species for each of the top five phyla according to their average relative abundances. Gut transit 
time and diet- related markers include single nutrients and energy- adjusted nutrients, single foods and foods organised into food groups according to 
the Plant- based Dietary Index, dietary indices and the 19 health markers used in the previous work35 to define the microbial cardiometabolic health 
signature. Box plots were removed for markers with less than 10 points.
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with habitual diet or that the link is redundant with respect to 
microbiome contribution. This is surprising, since nutritional 
interventions have been shown to affect gut transit time in both 
animal and human trials.40 53 However, these findings originate 
primarily from acute intervention trials, rather than large epide-
miological studies. Further, diet may have a transient effect on 
gut transit time as previously reported in short- term dietary 
interventions.54–56 Therefore, habitual dietary information 
through an FFQ may not be as insightful as a detailed prospec-
tive dietary record, capturing short- term diet exposure, in deter-
mining the effect of diet on gut transit time. Further, FFQs have 
several limitations, including measurement errors, limited list of 
possible foods and inaccuracies in estimated portion sizes. An 
additional explanation for the lack of effect could be that neuro-
muscular functions, which affect gut motility, may be indepen-
dent of diet and the gut microbiota. For example, the central and 
enteric nervous system, as well as the immune and endocrine 
systems, have also been shown to impact gut motility.51

A model of the inter-relationship between gut transit time, 
the microbiome, diet and health
Due to the complex inter- relationships between the diet, micro-
biome and gut transit time on subsequent health effects, we inves-
tigated their relative impact using an SEM. The SEM (details of 
exposures and outcomes in the Materials and methods section) 
demonstrated a good fit (χ2: 20.2, CFI: 0.98, root mean square 
error of approximation: 0.058 (perfect fit=0)); effect estimates 
are presented in figure 5 and online supplemental table 6. Gut 
transit time and the microbiome were strongly associated with 
each other (beta=0.98). Gut transit time had an independent 
positive association with visceral fat (beta=0.83) and postpran-
dial responses (beta=0.69); with longer gut transit time predic-
tive of greater visceral fat and higher postprandial responses 
(both independent risk factors for cardiovascular disease). 
Conversely, the microbiome was independently, negatively asso-
ciated with visceral fat (beta=−0.87) and postprandial responses 
(beta=−0.68); with a ‘healthier’ microbiome predictive of lower 

visceral fat and postprandial responses. Interestingly, both gut 
transit time and the microbiome had no association with blood 
pressure or inflammation. As expected, diet quality (measured 
by HEI) was independently, negatively associated with all health 
measures. However, diet quality was not associated with gut 
transit time, in agreement with the findings generated from the 
ML regression task analysis.

CONCLUSION
Here, we developed and evaluated a novel, inexpensive, scal-
able assessment of gut transit time, and examined associations 
of gut transit time with (1) stool consistency and frequency, (2) 
gut microbiome composition and function, and (3) habitual 
diet and cardiometabolic health in healthy individuals. Since 
the blue dye method does not require specialised staff and 
clinic visits, with subjects able to undertake the assessment 
remotely using ingredients commonly found in supermarkets, 
this method has the potential to be used in large- scale epidemi-
ological studies to assess gut transit time and function. For the 
first time, we observed that gut transit time, measured using the 
blue dye method, strongly correlated with stool consistency and 
frequency, as well as microbial alpha diversity and gut micro-
biome composition. The latter could be distinguished among the 
different blue dye categorised gut transit clusters, particularly 
between the fast and slow gut transit clusters, and several bacte-
rial species were shown to be clear drivers of the microbiome- 
transit time association. Notably, gut transit time explained 
more variation in the gut microbiome, in terms of both relative 
abundance and alpha diversity, than stool consistency and stool 
frequency. This indicates that gut transit time, measured via the 
blue dye method, may be a more informative marker of gut func-
tion in large cohorts of healthy people than stool consistency and 
frequency. Additionally, the blue dye method was also predictive 
of postprandial lipid and glucose responses and visceral fat in 
healthy people, which are key measures of health. Its use there-
fore has the potential to provide another piece of the puzzle to 
advance precision medicine. Future studies should therefore aim 
to not only assess and evaluate the impact of gut transit time on 
their target outcomes but also adopt a standardised approach in 
assessing gut transit time.

While this is the first large- scale study to assess a novel, inex-
pensive marker of gut transit time, and examine the associations 
of gut transit time with the gut microbiome in a healthy popu-
lation, a number of limitations should be acknowledged. First, 
the blue dye method has not been validated against other gut 
transit methodologies, such as the radio- opaque marker tech-
nique or scintigraphy. However, we did compare this method 
against stool consistency, which has been confirmed to be a 
surrogate of gut transit time.15 Nevertheless, stool consistency 
was assessed based on recall over the past 3 months, which may 
have yielded some inaccurate data with issues previously raised 
with recalling stool consistency.57 58 In addition, the quality of 
the findings may have been strengthened if the stool consistency 
of the stool sample analysed for the microbiome outcomes had 
been recorded. Sequencing the blue stool rather than a prior 
sample would be recommended in future investigations. Further, 
recording the duration of the appearance of the blue dye within 
subsequent stools may have provided additional insight, but was 
not recorded in this study.

To conclude, our findings indicate that the blue dye method 
is a novel, inexpensive and scalable method of gut transit assess-
ment providing valuable gut health and metabolic insights. Its 
wide use in both research and clinical settings could facilitate 

Figure 5 Structural equation model to determine the relationship 
between the microbiome, gut transit time, diet and health measures. 
Blood pressure (mean of systolic and diastolic), inflammation (mean of 
fasting GlycA and IL-6), postprandial response (mean of peak glucose 
and triglyceride concentrations) and visceral fat. Model definitions, with 
boxes representing manifest nodes and arrows indicating regression 
coefficients pointing towards an outcome of regression (standardised 
beta value mentioned on each arrow only for significant associations (p 
value<0.05) except the link among exposures) (created by Biorender.
com).
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the advancement of our understanding of gut function and its 
determinants, as well as the complex interactions between gut 
physiology and health outcomes.
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