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ABSTRACT The term “microbiota” invokes images of mucosal surfaces densely
populated with bacteria. These surfaces and the luminal compartments they form
indeed predominantly harbor bacteria. However, research from this past decade has
started to complete the picture by focusing on important but largely neglected con-
stituents of the microbiota: fungi, viruses, and archaea. The community of commen-
sal fungi, also called the mycobiota, interacts with commensal bacteria and the host.
It is thus not surprising that changes in the mycobiota have significant impact on
host health and are associated with pathological conditions such as inflammatory
bowel disease (IBD). In this review we will give an overview of why the mycobiota is
an important research area and different mycobiota research tools. We will specifi-
cally focus on distinguishing transient and actively colonizing fungi of the oral and
gut mycobiota and their roles in health and disease. In addition to correlative and
observational studies, we will discuss mechanistic studies on specific cross-kingdom
interactions of fungi, bacteria, and the host.
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WHAT IS THE MYCOBIOTA?

Fungi are microeukaryotes that can be found on various mammalian mucosal surfa-
ces, such as the lungs (1–3), the vaginal tract (4, 5), the urinary tract (6, 7), the oral

cavity (8–10), and the intestines (9, 11, 12) as well as on the skin (5, 9, 13–15), breast,
and in breastmilk (16) (Fig. 1). Historically, research on fungi focused on pathological
conditions and fungi as pathogens or pathobionts. For example, expansion of the com-
mensal yeast Malassezia on the skin is associated with a disease known as pityriasis
versicolor (17). Inhaled spores of the mold Aspergillus fumigatus can germinate and
cause invasive lung disease in immunocompromised patients (18, 19). The yeast
Candida albicans is arguably the most-studied pathogenic fungus and is responsible
for a variety of disease conditions, which include vulvovaginal candidiasis in women,
oropharyngeal candidiasis in infants and immunocompromised patients, and invasive
candidiasis with systemic dissemination of Candida to peripheral organs (20–23).

Fungi not only are the causative agents of disease but also can be isolated from
mammals in the absence of disease (11, 15, 24–26). C. albicans, for example, can fre-
quently be isolated as a commensal of the oral cavity, vagina, or gut of healthy individ-
uals and only causes infections if the host immune system is compromised or the local
microbiota is disturbed (22, 23). However, a culture-dependent approach has a high
likelihood to yield an incomplete picture of the total fungal diversity (11, 12). The
advent of sequencing technology allowed us to answer important questions about
fungi: do complex commensal communities of fungi exist in or on different mamma-
lian anatomical sites? Which fungi do they comprise? Are they transiently present or
do they stably colonize? What are their functions? The last decade has seen a stark
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increase in publications addressing these questions. We now know that diverse com-
mensal fungal communities exist in and on mammals. These fungal communities are
commonly referred to as the fungal microbiota or mycobiota and are the subject of
exciting new research.

METHODS TO ANALYZE THE MYCOBIOTA

A variety of different methods have been used to detect live fungal cells or fungal
genomes. Some of the techniques include direct culturing, enriched culturing, micros-
copy with fluorescence in situ hybridization (FISH) or immunofluorescence, flow cyto-
metry, amplicon sequencing (e.g., internal transcribed spacer [ITS]), and whole-genome
shotgun sequencing. However, there are distinct advantages and disadvantages to
each approach. Therefore, a combination of different methods described in the follow-
ing paragraphs will help solve important current questions regarding what constitutes
a core mycobiota and which fungi are transient or resident.

Culturing of fungi.Many environmental, commensal, and pathogenic fungi can be
cultured on standard media (11, 25). However, some fungi found in mammals require
specific medium conditions. Malassezia species, for example, fail to grow in the ab-
sence of fatty acids (17), and anaerobic fungi from ruminants require an anaerobic
environment and specific additions such as wheat straw for culture (27). A broad “cul-
turomics” approach identified the highest number of fungi from human gut samples
on Dixon medium, a complex medium that includes malt extract, ox bile, and different
fatty acids (11). In the gut, bacteria greatly outnumber fungi, which comprise approxi-
mately 0.1% of the gut microbiota (28). Isolation of fungi from gut samples therefore
usually requires the addition of antibiotics (11, 25). Nevertheless, fungal species with a
low abundance might not be recovered. Colonies can be identified to the species level

FIG 1 Fungal populations in and on different anatomical sites. Fungal populations have been
identified in and on almost all human body sites. This figure is a schematic representation of the
most commonly identified fungal genera under nonpathological conditions in the oral cavity (53, 54,
56, 57, 184), skin (92, 103), urinary tract (6, 7), vagina (4, 185), breast milk (93), lungs (186, 187), and
intestine (44, 96, 104, 188–190).
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by species-specific PCR or amplification and sequencing of the ITS regions (11, 25).
Species can also be identified via matrix-assisted laser desorption ionization–time of
flight (MALDI-TOF) analysis, but identification is limited by the available databases,
which are focused on pathogenic rather than commensal species (29, 30). One of the
drawbacks of microbial culture is that it will identify all viable fungi, including fungal
spores or transiently present fungi that might not be metabolically active in the gastro-
intestinal tract.

Visualization of fungi. Culturing identifies viable organisms in a given sample.
However, unless sampling is performed in specific sections (e.g., mucosa versus lumen),
it gives no spatial information. Staining for fungi in fixed or frozen tissue samples can
provide such spatial information. Fungi can be visualized in sectioned samples via im-
munostaining with fungal specific antibodies (12, 31), soluble conjugated receptors
(12), or fluorescence in situ hybridization (32, 33). These approaches are limited by the
specificity of antibody or probe used. However, they will identify fungal cells in a given
sample and omit relic DNA.

Metagenomic analyses. The specific technical and bioinformatic demands of
mycobiome sequencing are expertly outlined elsewhere (34–36). Sequencing detects
DNA of fungi present in a given sample regardless of whether they are culturable or
not. Amplicon sequencing uses fungal specific primers to amplify ITS or 18S regions of
the rRNA gene locus, which contain hypervariable domains and allow for species dis-
crimination (12, 37–39), analogous to 16S bacterial sequencing. This method illumi-
nated a diverse mycobiome in humans and virtually all other species analyzed, for
example, mice (12, 32, 40–44), pigs (45), dogs (46), bees (47), and lizards (48). We will
discuss the most frequently identified fungi of the human and mouse oral and gut
mycobiomes in the following sections. Shortcomings of amplicon sequencing include
amplification bias and the lack of comprehensive and fully annotated reference data-
bases that take the complex fungal taxonomy into account (35, 39). Whole-genome
shotgun sequencing does not require amplification and can be used to analyze bacte-
rial and fungal metagenomes simultaneously (28). An advantage is that publicly avail-
able data sets generated for bacteriome analysis can be reanalyzed for fungi (49).
However, the presence of fungi might be underestimated, since fungal sequences are
vastly outnumbered by bacterial sequences and some are not accurately identified as
fungal due to the scarcity of available fungal genomes (36). A general drawback of
DNA sequencing-based methods is the inability to discern between metabolically
active organisms and relic DNA (36). The amount of relic DNA content in human feces
seems currently unknown, but relic DNA accounts for .40% of recovered sequences
from soil samples (50). In the future, amplicon sequencing of the fungal ITS region
derived from total RNA (36) or metatranscriptomic approaches might help to address
this important question (51).

THE ORAL MYCOBIOTA

The gateway to the gastrointestinal tract is the oral cavity. Interactions of oral myco-
biome members influence the local environment but can also have more distant
effects. For example, C. albicans abundance in fecal matter is diminished when oral C.
albicans abundance is reduced by more frequent brushing of teeth (52). Here, we will
address which members of the oral mycobiota might constitute a core mycobiome,
identify which are transient and which are colonizing, and highlight examples of inter-
actions with fungi occurring in the oral cavity.

Members of the oral mycobiota. In their seminal study, Ghannoum and colleagues
identified a total of 101 species in the oral cavities of 20 healthy individuals. However,
39 genera were present in only one subject and just 15 genera, including Candida and
Cladosporium, were present in more than four individuals (53) (Fig. 1). Another study
aimed to define the oral mycobiome found Malassezia to be the most prevalent genus
in the oral mycobiomes of six different healthy individuals (54). The oral mycobiome
thus appears to be more subject specific than the oral bacteriome, where 47% of
bacterial operational taxonomic units (OTUs) were shared between three analyzed
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samples (55). Despite the high interindividual variability, the core oral mycobiome
within individuals seems largely stable, as it maintained a similar composition and rela-
tive abundance in human subjects over the course of a 30-week-long study (56). A
recently published review article summarized the fungal species identified in different
studies with both culturing and sequencing techniques (57). Interestingly, many of
these fungi are known to be associated with plants, such as Aureobasidium, Fusarium,
and Alternaria, and food commonly consumed, i.e., Saccharomyces and Penicillium,
or found as mold both indoors and outdoors, such as Aspergillus species and
Cladosporium (Fig. 1). This poses the question if all identified fungi are actively coloniz-
ing or if some are transiently present.

Active and transient colonizers. Among the most commonly found fungi in the
oral cavity are Aspergillus species, e.g., A. niger, and Candida species, such as C. albicans,
C. tropicalis, and C. parapsilosis (58). A recent study identified them as the most abun-
dant species in both healthy individuals and patients with periodontal disease (59).
Aspergillus species are spore-forming filamentous fungi ubiquitously present in the
environment (60). Even though Aspergillus species have been found as members of
the oral mycobiome, pathological conditions due to Aspergillus are rare in the oral
cavity and are usually restricted to the lungs and respiratory tract (61). On the other
hand, Candida infections of the oral cavity are very common and affect up to 7% of
infants, 30% of HIV patients, and 20% of cancer patients (58). This discrepancy
might be due to the possibility that Aspergillus is a transient member of the oral
mycobiome, acquired via diet intake or inhalation. A report from 1966 showed that
Aspergillus flavus was cultured from 60% of analyzed wheat flours and comprised
5.8% of the total fungal load (62). Candida species actively colonize the oral cavity
and erupt in infections when conditions allow it. Both culture-dependent and cul-
ture-independent studies have identified Candida species as components of the
oral mycobiome. C. albicans was present in 90% (63–65) or even 100% of analyzed
subjects (66). Older age, poor oral hygiene, and a fewer number of teeth are some
of the associations found with an increased level of colonization of Candida species
(53). C. albicans has also been shown to take an active part in biofilm formation and
plaque virulence in combination with Streptococcus mutans (67) (Fig. 2). The oral
mycobiome thus consists of both resident fungi and fungi that might only be tran-
siently present. Mechanistic research on fungi in the oral cavity has been focused
on the resident yeast C. albicans, which will be outlined in the next section. Other
fungi of the oral mycobiota, such as Saccharomyces, Aspergillus, Penicillium, and
Malassezia, might also represent active members of the oral microbiota, but their
function has yet to be identified (53, 56).

Examples of fungal-bacterial interactions in the oral cavity. (i) Protective inter-
actions. Most of the studies investigating the cross-kingdom interactions of fungi and
bacteria in the oral cavity have focused on models involving C. albicans. Usually exist-
ing in its commensal yeast form, C. albicans can be stimulated to form invasive hyphae
(68). The oral commensal Fusobacterium nucleatum has been shown to adhere to both
the yeast and hyphal forms of C. albicans (69, 70). This interaction limits C. albicans
hyphal formation, thus reducing its ability to kill macrophages in vitro (71). The com-
mensal Aggregatibacter actinomycetemcomitans inhibits biofilm production by C. albi-
cans through the secretion of the quorum-sensing molecule autoinducer-2 (72) and
limits polymicrobial biofilm formation by C. albicans and Streptococcus mutans in vitro
(73) (Fig. 2). The oral bacterial microbiota thus has an active role in limiting the conver-
sion of C. albicans yeast cells to invasive hyphae.

(ii) Pathogenic interactions. Analysis of the salivary microbiomes of older adults
revealed that Candida species abundance is associated with decreased bacterial diver-
sity and increased abundance of Streptococcus species (74). Various studies have inves-
tigated mutualistic interactions between C. albicans and species of Streptococcus that
promote infection. Glucose-starved C. albicans has been shown to coaggregate with
multiple Streptococcus species, including S. sanguis, S. gordonii, and S. oralis (75)
(Fig. 2). Further studies revealed that this coaggregation is mediated by cell wall
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polysaccharides, salivary proteins, and adhesins on the surface of S. gordonii (76–78).
Adhesion is also mediated by the receptors Als1p, Als3p, and Als5p on the surface of C.
albicans (79, 80). An in vitro study demonstrated that S. gordonii can enhance C. albi-
cans biofilm formation (81, 82) (Fig. 2). S. mutans also enhanced biofilm production in
the oral cavity of infected mice through interactions between a glucosyltransferase
secreted by S. mutans and surface mannan expressed by C. albicans (67, 83). Another
study used an oral infection model of immunosuppressed mice to show that coinfec-
tion with S. oralis enhances mucosal invasion of C. albicans by synergistically promot-
ing E-cadherin degradation (84). These studies demonstrate that some members of the
oral bacterial microbiota, specifically the genus Streptococcus, facilitate fungal over-
growth. More interactions between C. albicans and Streptococcus species have been
reviewed in detail in reference 85.

FIG 2 Specific fungal-bacterial interactions in the gastrointestinal tract. Schematic representation of the bacteria-fungi interactions discussed in this
review. Localization in the cartoon is not a representation of where the interactions occur within a specific organ. Fungi are depicted outside the organs
for schematic purposes.
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THE GUT MYCOBIOTA

The vast majority of microorganisms in mammals can be found in the gut, and fungi
have emerged as an important component of the gut environment. Much research has
therefore focused on understanding how the gut mycobiota is shaped and its interac-
tion with human health.

Development of the gut mycobiota. The formation of the human mycobiota
begins very early in life. Willis and colleagues recently suggested that fungal species
might be present prior to birth and that C. albicans specifically could be associated
with preterm delivery (86). Additional studies have shown that vaginal delivery allows
vertical transmission of Candida species from mother to infant (87, 88). Infants born by
C-section harbor a bacterial microbiome similar to the mother’s skin microbiome (89).
They could therefore also harbor higher Malassezia species in their gastrointestinal
tract, as this genus is the major colonizer of the human skin (90–92) (Fig. 1). After deliv-
ery, the gastrointestinal mycobiota is modulated by diet intake. For many infants, the
main food source during the first months of age is breast milk. Boix-Amorós and col-
leagues found a core breast milk mycobiome, composed of Malassezia, Davidiella,
Sistotrema, and Penicillium, that was shared by study participants despite a varied geo-
graphical origin (93). Accordingly, the infant gut mycobiome is initially dominated by
Malasseziales, most likely taken up through lactation. After the first 6months of age,
the infant gut mycobiome undergoes a dramatic change and is no longer dominated
by Malasseziales but by Saccharomycetales instead (94). This change in mycobiome
coincides with a change from breast milk to solid food. The gut microbiota further
changes and matures during the development from childhood to adulthood (95).
These changes are most likely driven by the development of the immune system and
by the microorganisms that humans are exposed to through their diet and environ-
ment. Similarly to oral mycobiome research, recent gut mycobiome research has
focused on determining which fungal species are transient colonizers and which spe-
cies are residents of the gastrointestinal tract.

Active and transient colonizers. Analysis of the Human Microbiome Project data
determined Saccharomyces, Malassezia, Candida, and Cyberlindnera as the four most
abundant genera present in the human gut (Fig. 1). However, researchers found very
high mycobiome variability between individuals and within individuals over time
(96–98). Compared to the bacterial gut microbiome, the gut mycobiome thus seems to
be less consistent and stable over time (96). The high fluctuation might in part be
explained by fungi being introduced in the gastrointestinal lumen via diet intake and
environment. Indeed, a standard human diet contains high levels of live fungi and fun-
gal DNA (62, 99–102), and some fungal genera identified in the human gastrointestinal
(GI) tract are thought to lack the ability to grow at the temperature, pH, and low oxy-
gen present in the gut environment (100). Saccharomyces is ubiquitously present in
the human diet, while Malassezia is the most abundant fungus colonizing the human
skin (92, 103). Cyberlindnera is a food additive and most likely acquired through the
diet (96), while Candida is the most identified fungus in the oral cavity (104). Indeed, a
small-scale study showed that presence of Saccharomyces in human feces was directly
dependent on diet intake, while, as previously mentioned, C. albicans was associated
with oral hygiene (52).

Current data thus suggest that some fungi in the human gastrointestinal tract can
be classified as transient. However, evidence for true colonizers can also be found. C.
albicans, Malassezia restricta, Cryptococcus neoformans, and others have been shown to
bloom in the gut under inflammatory conditions. This is particularly highlighted in
patients affected with inflammatory bowel disease (IBD), where C. albicans increases in
abundance during inflammation. However, it is not yet clear if C. albicans creates the
inflammatory environment or if its increase in abundance is a consequence of inflam-
mation (12, 105, 106). A unique phylum of resident fungi can be found in some herbi-
vores but is not detected humans or mice. Neocallimastigomycota are strictly anaerobic
fungi that are present in all foregut fermenters (e.g., cows) and some hindgut
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fermenters (e.g., elephants), where they aid in the digestion of lignocellulose (107).
Despite being an anaerobic environment, the human gut does not seem to support
the colonization of strictly anaerobic fungi.

So, what proportion of the mycobiota is transiently present and what represents
true residents? The bulk of research beginning to address this question has been per-
formed in the mouse model, which we will focus on in the following section. Fungi in
mice have been predominantly identified with culture-independent techniques (12, 32,
33, 40–44, 104). Interestingly, fungal sequences can be detected not only in feces but
also in mouse chow (12, 32, 41). Some of the identified genera, such as Aspergillus,
Cladosporium, and Alternaria, can be found in both feces and chow. However, other
fungi, e.g., Candida, Fusarium, and Saccharomyces, can be found only in feces and not
in chow (12, 32) or their abundance is expanded in feces compared to that in chow
(41). Similarly, a more recent study found that 80% of the fungal taxa identified in mice
fed a standard diet were not present in the diet and that 90% of fungal taxa identified
in mice fed a high-fat diet were absent in the respective diet (40). These studies thus
suggest that the composition of the mycobiota in the gut distinctly differs from the
fungi present in the diet.

Even though culture-independent techniques identified fungal species unique to
feces, reports showing fungi cultured from mouse feces are rare and restricted to non-
specific-pathogen-free (non-SPF) conditions (43, 108). Possible reasons include (i) the
relatively low abundance of fungi compared to that of bacteria or (ii) the sampling site,
as feces might harbor a different composition of live fungi compared to that in sites in
the upper gastrointestinal tract (109). Interestingly, laboratory mice released in an out-
door environment show an increased alpha-diversity of the mycobiome, and research-
ers were able to culture several fungal species from the mice’s feces. Most of the fungi
that researchers were able to culture were Aspergillus species (43). This increase of
fungi found in rewilded mice could be due to the presence of spores passing through
the GI tract and/or an indication of live Aspergilli that have colonized the gut. The SPF envi-
ronment of most laboratory mice might therefore be “too clean” to allow for the acquisi-
tion of living fungi to colonize their gut. This is supported by the discovery that 22% of lab-
oratory mice do not survive cohousing with pet store mice (110). Pet store mice harbor
bacteria that are absent in laboratory mice, and this might also be true for the fungal com-
ponent of the microbiota. Collectively, studies in mice and humans support the idea that
two mycobiomes are present in the mammalian gut: a transient mycobiome originating
from diet intake and a resident mycobiome with persistently colonizing fungi. However,
discriminating between transient fungi and active colonizers is still challenging. A combi-
nation of the different techniques outlined in Methods to Analyze the Mycobiota, as well
as other parameters, i.e., activation of the host immune response and interaction between
bacteria and fungi, as postulated by Fiers and colleagues (102), will be essential to charac-
terize the role of transient and resident fungi in the gut.

Bacterial-fungal interactions in the gastrointestinal tract. Recent studies have
suggested that the mycobiota plays roles in maintaining homeostasis of the bacterial
microbiota and influencing overall gut health. One study found that the administration
of antifungal drugs to dextran sulfate sodium (DSS)-treated mice exacerbates colitis
and induces changes in the microbiome. Here, the microbiome undergoes an expan-
sion of the bacterial genera Hallella, Barnesiella, Bacteroides, Alistipes, and Lactobacillus
and a reduction of Clostridium XIVa and Anaerostipes (41). Another group found that
the ingestion of the pathogenic fungus Mucor circinelloides by mice induced changes
in the microbiota, notably with an increase in the genus Bacteroides and a decrease
in Akkermansia (111). Another study demonstrated that C. albicans affects the recolo-
nization of the cecum by the microbiota in mice treated with antibiotics. The pres-
ence of the fungus increased the recovery of bacterial diversity, specifically the return
of Bacteroides species. However, it also allowed colonization by the pathobiont
Enterococcus faecalis and reduced colonization of probiotic Lactobacillus strains (112)
(Fig. 2). The mechanism of how C. albicans influences bacterial colonization is still
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unclear. A follow-up study revealed that antibiotic-treated C. albicans-colonized mice
showed reduced expression of specific immune genes but no visible changes in
inflammation. These changes in expression could be limiting the host’s ability to
maintain microbial homeostasis, but there is still a possibility that C. albicans directly
interacts with bacteria (113). A study that investigated differences in the microbiome
between Japanese and Indian individuals proposed an interesting diet-fungal-bacte-
rial interaction. The microbiome of the Indian participants showed a higher abun-
dance of Candida and Prevotella. Since plants make up a major part of Indian diets,
Pareek and colleagues (114) went on to show that arabinoxylan, a plant polysaccha-
ride, can be used as a growth factor by various Candida species. Finally, they showed
that Candida supernatant enhances the growth of Prevotella copri and that prior colo-
nization by C. albicans is required for the colonization of germ-free mice by P. copri
(114). These studies indicate that interactions between fungi and bacterial species
influence gut homeostasis and are relevant to human health.

Protective interactions. Specific cross-kingdom interactions between fungi and
bacteria are currently being explored as a tool to maintain intestinal homeostasis. The
yeast Saccharomyces boulardii has been extensively studied as a potential probiotic
due to its protective effect against various bacterial gastrointestinal pathogens, includ-
ing Clostridium difficile, Helicobacter pylori, Vibrio cholerae, Salmonella enterica serovar
Typhimurium, Shigella flexneri, and Escherichia coli (115–122) (Fig. 2). Protection against
C. difficile is at least partially due to the production of a protease by S. boulardii that
degrades toxins A and B of C. difficile (123, 124). Protection against V. cholerae seems
to involve the recognition of cholera toxin and subsequent activation of cyclic AMP sig-
naling by S. boulardii (125). Even though S. boulardii has shown efficacy in a rat model
of V. cholerae infection (119), this has yet to show clinical significance for humans
(126). Both E. coli and S. Typhimurium bind to the surface of S. boulardii, potentially
preventing adhesion to intestinal epithelial cells and thus allowing quicker excretion
through fecal matter (127, 128). This interaction is inhibited by the addition of exoge-
nous mannose, indicating that E. coli and S. Typhimurium are adhering to surface man-
nose residues present on S. boulardii (129). S. boulardii may also interact with commen-
sal Enterobacteriaceae to alleviate DSS-induced colitis, as this protective effect is lost in
mice treated with Enterobacteriaceae-depleting antibiotics (130). The depicted interac-
tions underline the antipathogenic potential for commensal fungi, but the inverse also
occurs, where commensal bacteria can protect against pathogenic fungi.

The most intensely studied examples of pathogenic fungi being antagonized by
commensal bacteria involve C. albicans. Four probiotic strains, Lactobacillus acidophilus,
Lactobacillus reuteri, Lactobacillus casei GG, and Bifidobacterium animalis, have shown
efficacy in limiting the severity of C. albicans infection in both immunocompromised
and germ-free mice (131) (Fig. 2). Another probiotic mixture, consisting of S. boulardii,
L. acidophilus, Lactobacillus rhamnosus, and Bifidobacterium breve, successfully inhibited
the in vitro formation of polymicrobial biofilms containing E. coli, Serratia marcescens,
and either C. albicans or C. tropicalis (132). These polymicrobial biofilms may be rele-
vant to intestinal disease, as E. coli, S. marcescens, and C. albicans have shown higher
abundance in fecal samples from Crohn’s disease patients (133). Various bacterial spe-
cies have been shown to inhibit the transition of C. albicans to its invasive hyphal form.
The widely studied probiotic L. rhamnosus GG produces an exopolysaccharide that lim-
its hyphal formation and blocks C. albicans binding to intestinal epithelial cells in vitro
(134). L. rhamnosus GG also inhibits C. albicans hyphal formation in liquid medium via
the peptidoglycan hydrolase MspI, which degrades chitin present in the cell wall (135).
Enterococcus faecalis produces the bacteriocin EntV to inhibit C. albicans hyphal forma-
tion, reducing pathogenicity in a murine oropharyngeal candidiasis infection model
(136). Studies have also reported that soluble factors produced by E. coli show antifun-
gal activity against C. albicans. A soluble factor from the E. coli K-12 strain induced the
death of C. albicans in vitro (137), and supernatant from an E. coli biofilm inhibited bio-
film formation on polystyrene plates for a variety of Candida species (138).
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Furthermore, metabolites produced by a consortium of bacterial species derived from
healthy human fecal samples effectively inhibited the growth of C. albicans in liquid
culture. Species of Roseburia and Bacteroides ovatus were directly responsible for these
antifungal effects (139). Interestingly, C. albicans also demonstrates probiotic proper-
ties by enhancing the growth of two strictly anaerobic commensal bacteria,
Bacteroides fragilis and Bacteroides vulgatus, in liquid media. Possible mechanisms of
this interaction are utilization of surface mannan as a carbon source or reduction of
culture oxygen levels by C. albicans (140). Beneficial interactions between bacteria and
fungi are continuously being explored as potential probiotic interventions for intestinal
disease.

Pathogenic interactions. Alternatively, interactions between fungal and bacterial
commensals and pathogens have the potential to enhance pathogenesis. For example,
mice treated with DSS to induce colitis showed increased disease when C. albicans was
present. However, when mice were administered colistin to eliminate resident
Enterobacteriaceae, the presence of C. albicans did not exacerbate colitis severity.
Supplementation with colistin-resistant E. coli restored the C. albicans effect on DSS-
induced colitis, suggesting that Enterobacteriaceae are required for C. albicans-medi-
ated enhancement of colitis (130). Other studies have found that enterohemorrhagic E.
coli enhances C. albicans invasion of intestinal epithelial cells in vitro (141). There is also
evidence that E. coli strain O111:B4 enhances C. albicans infection of mice (142). E. coli
07KL was also found to enhance C. albicans attachment to epithelial cells in vitro, with
a mechanism that likely involves bacterial pili (143). As mentioned in the previous sec-
tion, the guts of Crohn’s disease patients can harbor an expansion of E. coli, C. tropica-
lis, and S. marcescens, which together have the ability to form polymicrobial biofilms in
vitro (133). These studies thus underline that the interactions between E. coli and
Candida species and their effect on pathogenesis are complex and strain dependent. C.
albicans allows the growth of the strict anaerobe C. difficile under aerobic culture con-
ditions (144). The ability of C. albicans to protect anaerobic bacteria under aerobic con-
ditions is due to the rapid reduction of dissolved oxygen in the vicinity of the yeast
(145). When examined in a mouse model of infection, C. albicans enhanced C. difficile
pathogenicity when delivered orally 1 day prior to C. difficile infection (146). Another
study found that the colonization of mice with C. albicans 3 weeks before C. difficile
infection protected mice from infection (147). These two different experimental setups
and outcomes indicate that the effect C. albicans has on C. difficile infection is depend-
ent on the colonization state of C. albicans. Studies have also shown an interaction
between C. albicans and H. pylori in gastric biopsy samples, where H. pylori was found
within vacuoles in C. albicans cells (148, 149). It has been suggested that this behavior
provides an environment that H. pylori can use to survive the low pH of the stomach
(150) (Fig. 2). By analyzing whole stomachs of mice, Mason and colleagues show that
antibiotic treatment allows for C. albicans colonization, triggering inflammation and in-
hibiting recolonization by commensal Lactobacillus strains (151). Alternatively, the
commensal yeast S. cerevisiae enhances the growth of the opportunistic pathogen
Acinetobacter baumannii by producing ethanol. Furthermore, ethanol-stimulated A.
baumannii shows enhanced pathogenicity in a Caenorhabditis elegans model of infec-
tion (152). It is important to keep these potentially detrimental interactions between
pathogens, opportunistic pathogens, commensal bacteria, and fungi in mind when
designing therapeutics involving probiotics.

Antagonistic interactions between pathogens. There are also several antagonistic
interactions between intestinal pathogens that do not have a clear benefit for intesti-
nal health. One example is observed with S. marcescens, which employs a type VI secre-
tion system to deliver antifungal toxins that kill both the yeast and hyphal form of C.
albicans in liquid culture (153) (Fig. 2). S. Typhimurium also demonstrates a similar anti-
fungal behavior by injecting type III secretion system effectors into C. albicans, block-
ing hyphal formation during C. elegans infection (154, 155). A. baumannii also demon-
strates antifungal activity by binding to C. albicans filaments via OmpA and inducing
apoptosis, preventing biofilm formation on polystyrene plates and limiting infection of
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C. elegans (156, 157). Conversely, C. albicans seems to express a mechanism to limit A.
baumannii growth in vitro by producing the quorum-sensing molecule farnesol during
late-stage biofilm formation (157). The previously mentioned symbiotic interaction pro-
vided by C. albicans to C. difficile is not reciprocated. The same study that found that C.
albicans provides C. difficile with the means to grow under aerobic conditions also
found that C. difficile inhibits C. albicans hyphal growth through the secretion of the
small molecule p-cresol (144) (Fig. 2). These studies highlight bidirectional antagonistic
interactions between pathogenic species of bacteria and fungi that are relevant to
human health.

MYCOBIOTA AND IMMUNE SYSTEM INTERACTION

All bacterial-fungal interactions within the host occur in an environment that is ulti-
mately regulated by the host immune response. The immunological changes stimu-
lated by a specific microbial colonizer can have a profound effect on the intestinal
environment, affecting a wide variety of microbial species already present. This is illus-
trated, for example, in a study that found that Bacteroides thetaiotaomicron stimulates
expression of the innate immune genes encoding hypoxia-inducible factor 1 alpha
(HIF-1a) and the antimicrobial peptide LL-37-CRAMP, and this differential expression
provides colonization resistance against C. albicans in mice (158). Numerous studies
have been performed focusing on the impact of both bacterial and fungal species on
the host immune system and vice versa, as summarized previously (104, 159–165). We
will focus on how the immune system recognizes fungi and some of the most recent
studies on mycobiota and immune system interactions.

Recognition of fungi by the immune system. The prerequisite for the host to
respond to fungi is the ability of cells, in particular, immune cells, to identify and
respond to different molecular patterns present on fungi. Among the pattern recogni-
tion receptors (PRRs) that can identify fungi are Toll-like receptors (TLRs), C-type lectin
receptors (CLRs), and NOD-like receptors (NLRs). Fungal structures that are recognized
by PRRs include surface polysaccharides, such as mannans or mannoproteins (TLR2,
TLR4, Dectin-2, Mincle, and DC-SIGN), b-glucans (TLR2, Dectin-1, and NKp30), and
unmethylated DNA (TLR9). Phagocytosed fungi can also activate NLRs, which leads to
inflammasome formation and the production of the inflammatory protein interleukin 1
beta (IL-1b) (109, 166–169). Mutations in the receptors highlight the importance of
proper recognition of fungi by the immune system. Mutations in the gene encoding
Dectin-1 have been associated with increased C. tropicalis invasion in mice and exacer-
bated colitis in both mice and humans (12). Mutations in Dectin-2 were found to be
associated with increased Candida glabrata infections due to a deficient immune
response to the fungus (170). Lack of TLR4 and TLR2 responses were shown to affect
disseminated candidiasis in mice: lack of TLR4 caused an increased C. albicans kidney
burden, while blocking of TLR2 inhibited the production of inflammatory cytokines
such as tumor necrosis factor alpha (TNF-a) and IL-1b (171). Several other receptors
are involved in the recognition of fungi. These include the recently identified MelLec, a
CLR able to bind melanin on A. fumigatus conidia (172), soluble receptors such as pen-
traxins and mannose-binding lectin (MBL), involved in the recognition of galacto-
mannan and mannan, respectively, and the intracellular RIG-I-like receptor (RLR)
MDA5, which was found to be involved in the immune response to systemic C. albicans
infection (167, 173, 174).

Immune system-mycobiota interaction. Much emphasis has been placed on
understanding the roles of the mycobiota in shaping the immune system. A recent
study highlighted the important contribution of fungi in the maturation of the immune
system. The authors showed that fungi colonizing the guts of mice kept in a natural
outdoor environment were sufficient to induce an increase in circulating granulocytes
to a level more similar to that in humans than in laboratory mice (43). This finding
expanded on results showing that mice colonized with a “wild-mouse microbiota”
would respond to immunotherapy in a manner more similar to that in humans (175).
Fungi are not only important during homeostatic conditions but also necessary for the
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development of a healthy immune system. Most of the research performed tries to
understand the involvement of the mycobiota in the development and origin of
inflammatory and pathogenic conditions. Candida and Malassezia are among the fun-
gal genera that have been most studied in this context. Candida species, particularly C.
albicans, are known to be able to exacerbate gut inflammation (161). Fungal dysbiosis
and increased C. albicans colonization were identified in association with IBD in human
patients (176). In a mouse model of DSS-induced colitis, the presence of C. albicans
also worsened local and systemic inflammation (177). Like C. albicans, M. restricta was
shown to increase disease severity in DSS-treated mice. Increased relative abundance
of M. restricta in the colons of Crohn’s disease patients was linked to a mutation in the
CARD9 gene, CARDS12N, previously associated with the onset of IBD (105). This ability of
Malassezia to elicit inflammation was later connected to the activation of the NLRP3
inflammasome (178). Dysbiosis of the gut mycobiota can also affect distal organs. A
recent study found that gut dysbiosis, specifically, increased abundance of Malassezia
species, promoted pancreatic ductal adenocarcinoma development through the acti-
vation of the complement cascade via the engagement of the mannose-binding lectin
(33). Gut dysbiosis has also been linked to lung inflammation. During gut inflammation,
C. albicans was shown to induce the generation of Th17 cells cross-reactive against the
airborne pathogen A. fumigatus, thus contributing to the exacerbation of allergic bron-
chopulmonary aspergillosis (179). Similarly, CX3CR11 mononuclear phagocytes, pres-
ent in the lamina propria and involved in trafficking bacteria from the gut to mesen-
teric lymph nodes (180), were identified to play an important role in the immunity
against fungi in the gut (181) and are able to create a gut-lung axis that exacerbates al-
lergic airway disease following gut fungal dysbiosis (182). Another example of inter-
connection between the gut and lungs is the expansion of Wallemia mellicola in the
gut following antibiotic treatment. This intestinal expansion exacerbates lung inflam-
mation by increasing eosinophil recruitment in a mouse model of allergic airway dis-
ease (44). A recently published study finally highlighted the importance of a balanced
immune response to control fungal infections. Th17 immune responses are known to
be important during mucocutaneous fungal infections, especially C. albicans infections
(162). However, Break and colleagues showed that in mice and human patients with
mutation in the gene Aire that had an intact Th17 response, excessive gamma inter-
feron (IFN-g) production by T cells at the mucosal level was the cause of increased sus-
ceptibility to chronic mucocutaneous candidiasis (183). Future studies will continue to
expand our knowledge on the role of fungi during homeostatic and pathological con-
ditions and dissect their role in the development of a balanced immune system.

CONCLUSION AND OUTLOOK

Mycobiome research is a rapidly expanding scientific field, but many questions are
currently still unanswered. Due to the high inter- and intraindividual variability, it is
unclear if core mycobiomes can be defined. Future research will expand our knowl-
edge on which fungi are resident and which are transiently present in the gastrointesti-
nal tract. However, it is indisputable that the mycobiome fulfills crucial roles.
Irrespective of their ability to colonize, fungi interact with and train the immune system
and contribute to gastrointestinal homeostasis. Analogous to bacteriome research,
mycobiome research is also moving from describing composition to ascribing function.
Highly interesting mechanisms of how specific gut commensal fungi modulate
immune responses and interact with bacteria are beginning to emerge. Future
research directions include the characterization of the fungal metabolome in the gas-
trointestinal tract to identify which products are produced by fungi and how they influ-
ence the microbiome and the host. A recent analysis of the metabolome of differently
colonized gnotobiotic mice found that fungi significantly contributed to microbial
ecology and host immune functionality but contributed only a small extent to the
overall gut metabolome (175). More research with an extended spectrum of
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commensal gut fungi and additional models will be needed to define the fungal
metabolome and the role of fungi in the gut ecosystem.
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