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Abstract: An application of solid 13C nuclear magnetic resonance (NMR) spectroscopy for the
determination of macronutrients, total polyphenols content, antioxidant activity, N C S elements,
and pH in commercially available bee pollens is reported herein. Solid-state 13C NMR spectra were
recorded for homogenized pollen granules without chemical treatment or dissolution of samples.
By combining spectral data with the results of reference analyses, partial least squares models were
constructed and validated separately for each of the studied parameters. To characterize and compare
the models’ quality, the relative standard errors of prediction (RSEP) were calculated for calibration
and validation sets. In the case of the analysis of protein, fat and reducing sugars, these errors were
in the 1.8–2.5% range. Modeling the elemental composition of bee pollen on the basis of 13C NMR
spectra resulted in RSEPcal/RSEPval values of 0.3/0.6% for the sum of NHCS elements, 0.3/0.4% for C,
1.8/1.9% for N, and 4.2/6.1% for S quantification. Analyses of total phenolics and ABTS antioxidant
activity resulted in RSEP values in the 2.7–3.5% and 2.8–3.8% ranges, respectively, whereas they
were 1.4–2.1% for pH. The obtained results demonstrate the usefulness of 13C solid-state NMR
spectroscopy for direct determination of various important physiochemical parameters of bee pollen.

Keywords: bee pollen; 13C NMR spectroscopy; chemometrics; nutrients; polyphenols; antioxidant
activity; quantitative analysis

1. Introduction

Bee pollen, which contains almost all nutrients necessary to the human diet, is one
of the oldest nutritional supplements. It is composed of flower pollen, i.e., units of male
gametophytes of flowering plants, mixed with nectar and bee salivary secretions. Bee
pollen is used by worker bees for bee bread production, which provides the basic food for
the larval queen and worker larvae [1].

The color of pollen grains ranges from white or creamy white to yellow and orange, as
well as red, green, gray, violet, and dark brown, depending on the plant species from which
it originates. Physiochemical, functional, and sensory characteristics are usually relatively
fixed for mono-floral pollens of a particular botanical origin, whereas multi-floral pollen
loads vary in their properties. In the case of the same plant source, pollen composition may
change due to geographical origin, climate, weather conditions, soil type, or even the time
of harvesting and the breed of bees [2]. About 250 biologically active substances have been
identified in bee pollen grains. They contain carbohydrates (13–55%), protein (10–40%),
lipids (1–13%), crude fiber (0.3–20%), and mineral constituents (ash content 2–6%), and
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they include all essential amino acids and a number of fatty acids, vitamins, carotenoids,
and flavonoids. Fructose is the major sugar present in bee pollen, followed by glucose
and sucrose. Arabinose, isomaltose, melibiose, melezitose, ribose, trehalose, and turanose
account for nearly 1% of remaining sugars in pollen [3,4].

The biological activity of bee pollen is strongly related to its relatively high polypheno-
lic compound content, which is mainly responsible for its powerful antioxidative effects [5].
Among the antioxidants present in bee pollen, low molecular weight compounds are the
most significant. Ascorbic acid and polyphenolic compounds are hydrophilic, whereas
tocopherols and carotenoids are hydrophobic antioxidants. Water-soluble antioxidants,
including vitamin C, scavenge hydroxyl radicals [6]. The concentration of these bioac-
tive compounds in bee pollen, like its nutritional composition, depends on the source of
its origin [1,7,8].

Nuclear magnetic resonance (NMR) spectroscopy is one of the most powerful and
versatile analytical techniques that can be applied to the study of liquid and solid materials.
It is a robust method that enables rapid analysis of mixtures at the molecular level without
the need for separation or purification steps. In food science, the 1H NMR technique has
an established position as an important analytical tool [9–12].

1H and 13C NMR spectroscopies were applied to differentiate the botanical origins of
honeys, authenticate them, and detect adulteration [13–16]. The 13C NMR spectra were
used to quantify saccharides in Greek honey samples [17] and in a quantitative analysis of
carbohydrates in multi-component laboratory prepared mixtures [18]. Solid-state NMR
spectra were applied to observe temperature-dependent changes in the molecular structures
of honeybee wax and silk [19]. In bee pollen studies, the 13C NMR technique has been
applied in the analysis of the composition of bee pollen color fractions [20].

An important issue related to the application of modern spectroscopic methods to the
analysis of multicomponent systems is the dimensionality and complexity of the recorded
data [21]. The use of multivariate data analysis techniques allows for the qualitative and
quantitative analysis of the studied systems, even in the case of strongly overlapped signals
or highly similar spectra. The decomposition of spectral matrices using chemometric tech-
niques, e.g., principal component analysis (PCA) or partial least squares (PLS) regression
algorithms, facilitates the filtering of the signal of interest even from the noisy spectra,
allowing for the analysis of variance related to structural changes of the system. The use of
chemometrics supports classification and quantification based on the NMR spectra [22–24],
which establishes application in metabolomics, and the analysis of natural products and
complex biological medicines [25,26].

In this report, the results of bee pollen analysis obtained by applying solid-state NMR
spectroscopy are presented. Although 13C NMR spectra are considered less useful in the
analysis of complex multicomponent systems compared to 1H NMR spectra because of their
noticeably lower sensitivity, we demonstrate their utility in the multivariate modeling of
selected parameters of such a complicated system. The spectra of powdered pollen granules
were used to build PLS models that facilitate reliable quantification of macronutrients and
determination of selected other parameters of the studied bee pollens, including total
polyphenols content, ABTS antioxidant activity, and pH.

2. Materials and Methods
2.1. Experimental Material

Thirty samples of bee pollen collected from Polish beekeeping farms during the 2018
and 2019 seasons were mixtures composed of several types of granules varying in color
from pale yellow to almost black. An additional five samples were prepared by manual
selection of similarly colored granules. Each sample was powdered in a mill and divided
into parts for NMR and reference analyses; details of the analyzed samples are summarized
in Table 1.
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Table 1. Characteristics of the studied bee pollen samples.

No. Origin of
Sample

TP a

[mg GAE/g]
AOA b ABTS

[µM TE/g]
Reducing
sugars [%]

Protein
[%]

Fat
[%]

NHCS
[%]

C
[%]

N
[%]

S
[%] pH

1 Legnica 12.33 168.5 27.6 22.38 9.64 56.10 45.09 3.58 0.105 4.05
2 Legnica 12.08 172.6 32.0 23.56 9.78 57.30 46.02 3.77 0.076 4.64
3 Stróże 12.54 223.1 41.0 25.00 7.58 57.51 46.13 4.00 0.112 4.55
4 Stróże 9.52 157.0 32.4 20.81 8.94 56.61 45.73 3.33 0.097 4.88
5 Sulęcin 11.46 178.6 29.6 24.13 10.20 58.11 46.65 3.86 0.061 4.66
6 Łódź 8.98 168.2 35.2 20.63 8.97 56.15 45.59 3.30 0.131 4.92
7 Malbork 7.91 149.2 42.2 17.69 8.95 56.04 45.87 2.83 0.103 4.59
8 Otmuchów 9.35 181.9 35.2 22.88 9.17 57.75 46.58 3.66 0.158 4.76
9 Otmuchów 8.11 160.7 36.4 19.75 7.89 56.22 45.63 3.16 0.125 4.96

10 Stróże 4.16 117.2 38.9 15.88 7.90 53.37 43.73 2.54 0.102 4.97

11 Sokołów
Małopolski 13.01 235.3 42.8 25.63 7.76 57.98 46.52 4.10 0.162 4.74

12 Wadowice 7.69 167.0 39.6 16.94 7.84 55.95 45.34 2.71 0.118 5.59
13 Uścikowo 6.11 141.6 38.4 16.88 8.42 58.36 46.50 2.70 0.111 5.29
14 Malbork 9.41 160.8 40.8 15.69 7.87 56.66 45.92 2.51 0.180 5.29
15 Suchlica 7.12 152.9 44.8 26.19 8.38 57.69 46.75 4.19 0.202 4.54
16 Łódź 10.31 209.2 28.8 25.00 8.16 56.15 47.80 4.00 0.165 5.33
17 Legnica 9.70 180.7 39.2 21.88 11.16 58.72 44.73 3.50 0.143 4.84
18 Częstochowa 8.43 140.3 46.0 20.25 9.24 59.73 46.76 3.24 0.174 5.27
19 Częstochowa 10.61 208.6 34.7 25.50 7.56 55.56 46.13 4.08 0.165 5.25
20 Wrocław 7.80 155.7 36.3 21.06 8.66 58.46 45.10 3.37 0.145 4.96
21 Stróże 8.90 186.5 37.6 21.38 8.21 57.24 46.22 3.42 0.239 5.13

22 Wola
Węgierska 10.32 172.7 37.9 21.13 8.26 55.93 46.86 3.38 0.172 4.86

23 Bielsko-Biała 9.84 190.6 37.9 21.75 8.04 57.37 46.05 3.48 0.123 4.81
24 Rogóż 8.15 169.8 37.0 20.00 10.01 57.45 46.46 3.20 0.160 4.83
25 Otmuchów 5.75 119.3 33.2 16.13 8.49 57.27 44.57 2.58 0.125 4.81
26 Wambierzyce 9.61 185.7 35.2 21.13 8.53 56.98 45.81 3.38 0.136 5.50
27 Kozaki 7.32 146.4 37.6 17.94 7.98 56.06 45.48 2.87 0.161 5.40
28 Byków 9.78 165.5 30.4 19.81 9.71 56.39 45.45 3.17 0.213 4.06
29 Byków 13.39 191.2 38.4 24.69 9.85 58.83 46.93 3.95 0.191 4.41

30 Kamienna
Góra 14.57 264.8 40.8 28.81 8.25 59.37 47.47 4.61 0.192 5.80

31 mix1 13.18 193.8 27.2 23.94 9.07 58.10 46.42 3.83 0.204 6.30
32 mix2 13.92 210.8 23.2 27.63 12.28 58.92 46.72 4.42 0.228 4.74
33 mix3 11.86 203.1 29.2 27.50 11.15 59.55 47.60 4.40 0.189 4.98
34 mix4 12.84 196.3 25.6 25.13 11.98 59.31 47.32 4.02 0.227 5.14
35 mix5 12.92 205.2 44.0 14.88 8.39 55.72 45.46 2.38 0.130 5.09

a total polyphenolic compounds, b antioxidant activity.

2.2. Reference Analyzes

To prepare extracts, portions of the powdered pollen (0.1 g) were dissolved in 5 mL
of methanol–water solution (70%, v/v). Samples were shaken for 10 min in a Vortex
mixer, ultrasonicated and centrifuged (10,000 rpm for 10 min). The obtained extracts were
decanted and stored for analysis.

Quantification of reducing sugars, after hydrolysis, was performed according to the
AOAC 968.28 procedure [27]. Nitrogen content was evaluated according to the AOAC
981.10 protocol based on the Kjeldahl method [28], and protein concentration was calculated
using a conversion factor of 6.25. Fat in the pollen samples was determined with the
AOAC 963.15 Soxhlet method [29], using a B-811 universal extraction system (Büchi,
Flawil, Switzerland).

Total polyphenols (TP) content was determined by following the Folin–Ciocalteu
method, using a UV-2401PC spectrometer (Shimadzu, Kyoto, Japan). The system was
standardized for gallic acid (GAE) in the 0–500 µg/mL concentration range. The obtained
calibration curve for GAE was characterized by the determination coefficient (R2) value of
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0.998. The antioxidant activity was measured using the colorimetric determination of the
2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radical cation formed in
the presence of potassium persulfate [30].

Pollen sample pH was measured in an aqueous phase by applying a S220 pH meter
(Mettler Toledo, Greifensee, Switzerland) and CHNS elemental analysis was performed
utilizing Vario EL Cube analyzer (Elementar Analysensysteme, Langenselbold, Germany)
equipped with a thermal conductivity detector.

2.3. Chemicals and Reagents

Methanol, Folin–Ciocalteu reagent, ABTS, sodium hydrogen sulfite (NaHSO3), and
formic acid were purchased from Sigma-Aldrich (Steinheim, Germany). 3,5-dinitrosalicylic
acid (DNS) used for reducing sugars determination was purchased from Carbosynth
(Bershire, UK) and diethyl ether originated from Chempur (Piekary Śląskie, Poland). All
chemicals used in the experiment were of analytical grade.

2.4. Measurement Conditions

Cross-polarization magic-angle spinning NMR spectra were recorded on a Bruker
Avance III 300 MHz (Bruker Biospin, Ettlingen, Germany) spectrometer equipped with
4-mm broad band CP-MAS probe head. Approximately 100 mg of the studied material
in the form of powder was placed into a 4-mm zirconium oxide rotor. Using a magic
angle spinning rate of 10 kHz, 13C NMR spectra were acquired with 3072 data points and
5120 scans with a 5 s recovery delay; they were processed using TopSpin (v3.62, Bruker
Biospin, Ettlingen, Germany) software. The chemical shifts were referenced to adamantane
as an external standard.

2.5. Multivariate Modeling

A typical quantitative analysis applying NMR spectra involves finding a ratio between
the intensity of a peak of an internal standard, added in a known amount to the analyzed
mixture, and the intensity of a band in a spectrum originating from a particular compound.
A univariate approach based on intensity facilitates the determination of a compounds’
absolute content. This procedure requires an appropriate chemical substance that can serve
as an internal standard, contains the nucleus of interest, and has resonances, for which the
signal contributions of the analyte do not overlap and are chemically inert. Without adding
the standard, only the relative concentrations of components can be determined. It may be
difficult to find an appropriate standard, especially in the case of the analysis of complex
solid samples and the simultaneous quantification of a number of components.

There is, however, another quantitative analysis method that does not require an
internal standard. Suitable calibration models can be constructed based on the spectra
of samples with known compound concentrations. Once the relation between variability
in the spectral data and the chemical composition is established, the model can predict
parameters of unknown samples. The most popular algorithm used in such a quantitative
analysis is PLS regression, which belongs to the supervised calibration method group. The
purpose of PLS is to construct a linear regression model that enables the prediction of a
desired feature from a measured multivariate signal. In PLS, the data matrix X, here a
spectral matrix, is resolved into components, or so-called latent variables. The general
model can be defined as follows:

Y = X B + E (1)

where Y is matrix of reference data, X contains spectral data, B represents a matrix of regres-
sion coefficients, and E is a matrix of residuals not explained by the model. During model
construction, the X and Y matrices are decomposed into scores and loadings, according to
the following equations:

X = T PT + EX (2)

Y = U QT + EY, (3)
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where T and U are score matrices and P and Q are loadings of X and Y, respectively. PLS is
a two-block regression method, so the decomposition of X is performed as a function of
Y in a simultaneous analysis of the two data sets. Therefore, the PLS algorithm actively
reduces the influence of X variation not correlated to Y [24].

2.6. Software and Numerical Data Treatment

Principal component analysis (PCA) of spectral data was performed in the Matlab
environment (v7.10, MathWorks, Natic, MA, USA) applying PLS-Toolbox (v6.2, Eigenvector
Research, Manson, WA, USA). Regression models were built utilizing TQ Analyst software
(v9, Thermo Fisher Scientific, Waltham, MA, USA).

For PCA and PLS modeling purposes, spectral data were mean-centered. When
necessary, additional normalization applying multiplicative scatter correction (MSC) or
standard normal variate (SNV) procedures was performed. Combining the bootstrap
method and the score plots of PCA, twenty-five samples were selected for calibration and
ten others were selected for an external validation procedure. A cross-validation root mean
square error was calculated to establish an optimal number of factors for the PLS modeling.
To compare the predictive abilities of the constructed models, the relative standard errors
of prediction (RSEPs) for calibration and validation sets were calculated according to the
following equation:

RSEP(%) =

√√√√∑n
i=1
(
Ci − CA

i
)2

∑n
i=1 CA

i
2

× 100, (4)

where CA is a parameter value determined by the reference method, C is the value found
from PLS modeling, and n is the number of samples. This measure is closely related to the
commonly used root mean square error (RMSE):

RSEP(%) =

√
n

∑n
i=1 CA

i
2

RMSE× 100, (5)

however, it does not depend on the units in which the measured parameters are expressed.
An internal validation of the elaborated models was performed using the leave-one-out
procedure, while an external validation involved the determination of the RSEPval errors
for validation samples not included during the construction of the respective models.

3. Results and Discussion

Bee pollen is a complex mixture that is rich in many nutrients, including carbohydrates,
lipids, proteins, and amino acids. The variety of sources from which it can originate
results in significant differences in relative proportions of constituents, which can be easily
observed in the solid-state NMR spectra. An average 13C NMR bee pollen spectrum and
the spectra of the selected pollens for which the most pronounced changes of relative peak
intensities were observed are shown in Figure 1. Spectra collected for the complete set of
analyzed samples are presented in Figure S1 in the Supplementary Materials.

Figure 1. Average 13C CPMAS NMR spectrum of bee pollen (left) and spectra of the selected samples (right).
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3.1. Solid-State NMR Spectra

Certain groups of nutrients and other chemical compounds can be detected in bee
pollen based on its 13C NMR spectrum [20]. The most intense peak in the spectrum
appears at about 36 ppm. This signal, together with the peak at 30 ppm, characterizes
the presence of aliphatic fatty acids. Signals in the 30–40 ppm range can be attributed to
–(CH2)n– fragments of lipids and phospholipids, whereas contributions at lower shifts can
be assigned to methylene of the CH2-CH= moieties and terminal methyl groups of lipids
(Figure 2). Another characteristic peak arising from the presence of fatty acid carbonyl
group can be found at about 175 ppm, but this signal is overlapped by protein contribution.
Chemical shifts in the 60–110 ppm range are typical for polysaccharides, which are present
in large amounts in the studied product. In this range, the signal of the C1-C4 linkage from
glycosidic bonds of polymeric sugars makes a significant contribution at about 78 ppm,
whereas peaks in the 90–110 ppm range can be assigned to the presence of anomeric carbons.
Signals of proteins, the content in the studied samples of which reaches up to 29% (w/w),
give significant shares in the NMR spectrum of bee pollen. Chemical shifts for peptides’
aliphatic carbons can be observed in the range below 40 ppm, which partially overlap
lipid contributions. The presence of signals of the C=O groups can be detected in the form
of a broad peak at about 180 ppm, while the other protein contributions can be found
in the 45–78 ppm range and at about 123 and 165 ppm. Constituents having a distinct
spectral representation in 13C CPMAS NMR spectrum of bee pollen are polyphenolic
compounds. Although their content usually does not exceed 1.5% of the product mass, the
contribution of aromatic carbons can be detected in the 100–170 ppm range of the spectrum
with characteristic doublet at about 135 ppm. Weak broad signals in the 140–160 ppm
spectrum range can be attributed to the presence of tannins in the studied material. Solid-
state NMR spectra recorded for the substances that can be found in bee pollen are shown
in Figure 2.

Figure 2. 13C CPMAS NMR spectra of bee pollen and reference compounds. Protein: soy protein
isolate; fat: coconut oil; fiber: wheat fiber; polyphenol: gallic acid.
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3.2. Principal Component Analysis (PCA)

PCA was performed on a matrix of solid-state NMR spectra recorded for the analyzed
pollen samples. The first five principal components explained about 75% of a total variance
in the spectral data. In the case of higher PCs, they describe mainly variability related to the
spectral noise. As is visible in Figure 1, solid-state NMR spectra of the analyzed material
are characterized by a rather moderate value of the signal-to-noise (S/N) ratio. The scores
plot and the loadings of the first two PCs are presented in Figure 3. In the PC1 loadings plot,
the contributions related to variability of lipids and phospholipids, i.e., negative signals at
36 and 180 ppm, polysaccharides, in the form of positive signals with maxima at about 70
and 110 ppm, and polyphenols content, as negative signal at 130 ppm, can be distinguished.
In the PC2 plot, the most pronounced positive signals of aliphatic carbons in the 30–40 ppm
range and at 80 and 110 ppm related to polysaccharides are visible. A strong negative
feature present in this plot at 170 ppm, together with features that appear at about 25, 70,
130 and 160 ppm, can be attributed to protein content variability. Comparison of 13C NMR
spectra of bee pollen samples located in different positions of the PC1/PC2 coordinate
system is presented in Figure S2 in the Supplementary Materials.

Figure 3. PC1/PC2 scores (left) and plot of the first two PCA loadings (right).

3.3. Construction of PLS Models

To construct quantitative models for the selected parameters, the bee pollen solid-state
NMR spectra of the studied samples were combined with the results of reference analyses
performed according to the standard protocols, as described in Section 2.2. PLS models
were built by selecting the spectral ranges for which the highest values of calibration
parameters (R and Rcv) and the lowest RSEP error values were obtained. Optimization
of ranges was supported by the plots of the variable importance in projection scores, and
the number of PLS factors was determined based on the root-mean-square error of cross-
validation (RMSECV) plots. Various data treatment methods were tested, but only the
parameters of the most robust models are discussed.

3.3.1. Nutrients Content Modeling

Bee pollen’s chemical composition and nutritional value shows considerable variabil-
ity between plant species. For example, Feas et al. [2] reported bee pollen containing the
following nutrients: carbohydrates (61.2–70.6%), protein (19.1–27.1%), and fat (4.3–6.3%).
Campos et al. [31] reported greater variability of these compounds, i.e., carbohydrates
ranged from 13 to 55%, proteins and lipids in the 10–40% and 1–13% range, respectively.
A similar concentration range of the nutrients was found in Brazilian and Colombian
bee pollen, with 16.1–32.1% for protein and 2.8–9.7% for fat [4,32]. In the case of mono-
floral pollen, an analysis content of total sugars ranged from 34.7% (Hedera helix) to 63.5%
(Actinidia chinensis). Fructose and glucose constituted 94% of the total sugars, ranging
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from 15.5% (Lamium amplexicaule) to 33.5% (A. chinensis) and from 13.6 (H. helix) to 27.7%
(A. chinensis), respectively [33].

In the studied pollen samples, the content of reducing sugars varied in the 23.2–46.0%
range. The spectra was in the 55–220 ppm range and four factors were applied for PLS
modeling. The obtained prediction curve was characterized by a correlation coefficient
(R) value of 0.991. The prediction curve and plot of relative errors are shown in Figure 4,
and the (RMSECV) parameter and the variable importance in projection (VIP) scores are
presented in Figure S3 in the Supplementary Materials. Internal validation of the model
resulted in a correlation coefficient of cross-validation (Rcv) value of 0.908 while RSEP
errors for calibration and validation sets amounted to 2.4%. The parameters of the obtained
regression models are summarized in Table 2.

Figure 4. Prediction curve (left) and relative errors (right) for reducing sugars content modeling based on 13C NMR spectra.

Table 2. Details of the constructed PLS models.

Analyzed Feature Parameter
RSEPcal RSEPval R Rcv Number of LV Pretreatment

(Range) [%] [%]

Reducing sugars
(23.2–46.0%) 2.37 2.38 0.991 0.908 4 MSC

Protein
(14.9–28.8%) 2.02 2.52 0.992 0.899 4 SNV

Fat
(7.6–12.3%) 1.79 2.22 0.991 0.862 4 SNV

sum of NHCS
(53.4–59.7%) 0.47 0.62 0.975 0.766 5 none

C
(44.7–47.8%) 0.32 0.42 0.981 0.780 5 none

N
(2.4–4.6%) 1.85 1.89 0.994 0.922 4 SNV

S
(0.06–0.24%) 4.23 6.07 0.992 0.768 5 MSC

Total polyphenols
(4.2–14.6 mg GAE/g) 2.73 3.51 0.995 0.887 4 MSC

Antioxidant activity ABTS
(117.2–264.8 µM TE/g) 2.80 3.83 0.985 0.881 3 none

pH
(4.1–5.8) 1.43 2.14 0.994 0.777 7 none

Models of a similar quality were obtained for the remaining nutrients present in the
studied bee pollens. In our samples, protein concentration varied from 14.9 to 28.8% (w/w)
and fat content changed in the 7.6–12.3% (w/w) range. PLS models based on the solid-state
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NMR spectra were characterized by high R (Rcv) values. These were 0.992 (0.899) for
proteins and 0.991 (0.862) for fat. Quantification of validation samples resulted in the RSEP
errors of 2.2% for fat and 2.5% for protein, whereas, in the case of calibration samples, they
were 1.8% and 2.0%, respectively (Table 2). The prediction curves, plots of relative errors,
RMSECV parameter, and VIP scores for the studied compounds are presented in Figures
S4 and S5 in the Supplementary Materials.

3.3.2. Modeling of Total Polyphenols Content and Antioxidant Activity

Phenolic compounds are an important group of constituents of bee products which
have a noticeable effect on biological activity and pro-health properties. Among apicultural
products, bee pollen is considered as the one containing the highest amount of phytochem-
icals, i.e., flavonoids, anthocyanidins, catechins, phenolic acids, and triterpene compounds.
Therefore, bee pollen can be used to increase polyphenols content in food products [34].

Polyphenols content in multifloral samples change typically in the 5–30 mg GAE/g
range, but for some individual plant species, values exceeding 120 mg GAE/g are re-
ported [35]. As examples, the TP content in pollen from Italy ranged between 5.78 to
20.15 mg GAE/g [36]; similar values in the 12.9–19.8 mg GAE/g range were found in
pollens from Portugal [2]. In the case of bee pollen from Brazil and collected from the
Sonoran Desert, the polyphenols content was found in the 6.5–29.2 and in 15.9–34.9 mg
GAE/g range, respectively [37,38]. The TP content in bee pollens depends on the samples’
botanical origin, but the method of extract preparation can also influence the assay [6,35,39].
In bee pollen samples originating from the south of Poland, the TP in ethanol–water ex-
tracts was found to be 27.03 mg GAE/, while, in pepsin extracts, it resulted in 13.24 mg
GAE/g [6]. Since there are many ways to express the antioxidant activity of bee pollen
extracts, comparisons between different studies are not straightforward [35,40]. As an
example, the ABTS antioxidant activity for multifloral pollen samples from Portugal and
Spain ranged between 119 and 276.8 µM TE/g [41], while, in samples from Poland, it
reached the highest value of 178 µM TE/g [6].

In the studied samples, TP content varied in the 4.2–14.6 mg GAE/g and ABTS
antioxidant activity was in the 117.2–264.8 µM TE/g range. These two parameters are
highly correlated (R = 0.84), but antioxidant activity not only depends on TP content, but
can also be influenced by the presence of other compounds, including vitamins C and
E and β-carotene. Calibration models were developed utilizing spectral ranges listed in
Table S1 in the Supplementary Materials, applying 3–4 PLS factors. These models were
characterized by correlation coefficient values in the 0.985–0.995 range and values of the
Rcv in the 0.881–0.887 range; prediction curves are presented in Figures S6 and S7 in the
Supplementary Materials. The RSEP error values obtained for polyphenols content and
ABTS antioxidant activity determination change in the 2.7–2.8% and 3.5–3.8% range for
calibration and validation sets, respectively (Table 2).

3.3.3. Modeling of Nitrogen, Carbon and Sulfur Content

Studies reporting elemental analysis of bee pollen are abundant. It is recognized that
the content of macroelements (K, P, S, Ca and Mg, followed by Na, Fe, Mn, Al and Zn) as
well as microelements and trace elements can vary in bee pollen considerably [42,43]. On
the contrary, works describing NHC analysis are scarce. Carbon content in the 46–48%,
and nitrogen in the 2.2–7.4% range was found by Filipiak et al. [44].

Solid-state NMR spectra of bee pollen were combined with the results of NHCS
elemental analyses. Calibration models were built for the sum of these elements and
separately for each element except hydrogen. For these models, regression coefficient
values changed in the 0.975–0.992 range; appropriate prediction plots are presented in
Figure S8–S11 in the Supplementary Materials. Internal validation of these models resulted
in slightly lower Rcv values when compared to the parameters of PLS models built for
nutrients and polyphenols (Table 2). In the case of carbon content modeling and the sum
of the NHCS values, the RSEP error values changed in the 0.3–0.5% and 0.4–0.6% ranges
for calibration and validation samples, respectively. The calibration model constructed for
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nitrogen content determination based on the solid-state NMR spectra was characterized
by the R/Rcv values of 0.994/0.922. The RSEP errors amounted to 1.9% for calibration
and validation sets analysis. The amount of nitrogen in bee pollen samples found through
elemental analysis can be used to determine protein content. Direct comparison of the
RSEP values from Table 2 clearly shows similarity of the calibration parameters for protein
and nitrogen content modeling. Modeling of sulfur content, which in our samples varied
in the 0.06–0.24% range, resulted in the RSEPcal and RSEPval error values of 4.2% and
6.1%, respectively.

3.3.4. Modeling of pH

Signals from the 13C CPMAS NMR spectra yield information about the chemical
environment of the nuclei, providing structural data on a substance being analyzed. Given
that a number of the compounds’ physical features depend directly on their chemical
composition, determination of some additional parameters based on the NMR spectra
seems feasible. In the course of our study, the pH values measured for bee pollen solutions
were correlated with the spectral data. In the analyzed products, the pH varied in the
4.1–5.8 range which is in accordance with the other studies, indicating typical acidic
character of the product [2,32]. The PLS model consisted of applying 7 LVs which allowed
determination of this parameter with RSEP errors of 1.4% and 2.1% for calibration and
validation samples (see Table 2 and Figure S12 in the Supplementary Materials).

4. Conclusions

The obtained results indicate that 13C CPMAS NMR spectroscopy can be used to
directly quantify nutrients and selected physiochemical parameters of bee pollen samples
in their native state. By applying multivariate modeling techniques, these analyses can be
performed simultaneously. Based on the constructed PLS models, macronutrients were
quantified with RSEPval errors in the 2.2–2.5% range. These errors amounted to 0.4% in the
case of C quantification, 1.9% for N determination, and 6.1% for S determination. Modeling
of TP content, ABTS antioxidant activity, and pH by applying spectral data resulted in the
RSEPval values of 3.5%, 3.8%, and 2.1%, respectively.

The presented results show that, on the basis of a single solid-state NMR spectrum of
a powdered bee pollen sample, various parameters of this complex natural product can be
determined without the use of solvents and separation techniques.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/antiox10071123/s1, Figure S1: 13C CPMAS NMR spectra of the analyzed bee pollen samples,
Figure S2: 13C NMR spectra of selected bee pollen samples, Figure S3: Modeling of reducing sugars
content in pollen samples on the basis of 13C NMR spectra, Figure S4: Modeling of protein content in
pollen samples on the basis of 13C NMR spectra, Figure S5: Modeling of fat content in pollen samples
on the basis of 13C NMR spectra, Figure S6: Modeling of total polyphenolic compounds content in
pollen samples on the basis of 13C NMR spectra, Figure S7: Modeling of ABTS antioxidant activity in
pollen samples on the basis of 13C NMR spectra, Figure S8: Modeling of pH of pollen samples on
the basis of 13C NMR spectra, Figure S9: Modeling of NHCS content in pollen samples on the basis
of 13C NMR spectra, Figure S10: Modeling of C content in pollen samples on the basis of 13C NMR
spectra, Figure S11: Modeling of N content in pollen samples on the basis of 13C NMR spectra, Figure
S12: Modeling of S content in pollen samples on the basis of 13C NMR spectra, Table S1: Spectral
regions used for PLS modeling.
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