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Abstract: Nanomaterials in liquid crystals are a hot topic of contemporary liquid crystal research.
An understanding of the possible effects of nanodopants on the properties of liquid crystals is
critical for the development of novel mesogenic materials with improved functionalities. This paper
focuses on the electrical behavior of contaminated nanoparticles in liquid crystals. More specifically,
an analogy between electrolytes and ion-generating nanomaterials in liquid crystals is established.
The physical consequences of this analogy are analyzed. Under comparable conditions, the number
of ions generated by nanomaterials in liquid crystals can be substantially greater than the number of
ions generated by electrolytes of similar concentration.

Keywords: liquid crystals; nanomaterials; ions; ion generation; analogy

1. Introduction

Ions in liquid crystals have been studied since the early 1960s because of their strong effects on
the electrooptical response of mesogenic materials [1,2].

Early liquid-crystal display (LCD) technologies utilized the dynamic light scattering caused by
electrohydrodynamic instabilities in nematic materials [3–5]. The presence of ions was essential for
the effect [3–5]. As a result, ion-generating materials such as dissociating salts [6,7] were intentionally
added to liquid crystals. The discovery of electrohydrodynamic instability in liquid crystals [3–5]
enabled their early applications as light shutters [8,9], and simultaneously initiated very active research
into the mechanisms of ion generation in liquid crystals [10–14]. The invention of modern thin-film
transistor (TFT) LCD technologies placed an emphasis on the synthesis and electrical characterization
of high-resistivity liquid crystals [15,16]. As the electric-field-induced orientational effect is at the heart
of the TFT LCD operation, the presence of ions in liquid crystals is very undesirable. It can lead to
many negative side effects, including image flickering, image sticking, and overall slow response [1,16].
Even though ions in liquid crystals became unwanted objects, research into the electrical properties of
liquid crystals was very active because it enabled the selection of suitable mesogenic materials [17,18]
and alignment layers [19–22]. It is worth mentioning that the effect of dynamic light scattering in liquid
crystals was not totally abandoned. Recently, it found very promising applications in the development
of dynamic shutters and smart windows [23–28].

An ongoing competition between LCD and alternative display technologies such as organic
light-emitting diode displays [29] resulted in both (1) the improvement of existing LCD technologies
and the development of advanced LCD technologies (liquid crystal on silicon (LCoS) displays for
virtual and augmented reality [30]) and (2) a rapid growth of non-display applications of liquid crystals.
The most well-known ones include photonic [31,32] and biophotonic applications [33], such as tunable
lenses [34], filters for hyperspectral imaging [33], retarders [33], waveplates [35], and numerous LCoS
devices [36–38].
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Both display and non-display applications of liquid crystals rely on novel liquid-crystal materials
with improved functionalities. Regardless of the type of liquid-crystal-based application, ions—typically
present in liquid crystals in small quantities—can alter the performance of liquid crystal devices
through the well-known screening effect [1,16]. Therefore, an understanding of possible sources of ion
generation in liquid crystals is very important [39,40].

Recently, liquid crystals doped with nano-objects have emerged as novel tunable materials with
advanced functionalities [41–47]. Electrical properties of liquid crystals doped with ferroelectric [48–54],
magnetic [55–57], metal [58–63], semiconductor and dielectric [64–69], and carbon-based (fullerenes,
carbon nanotubes, graphene, diamond) nanomaterials [70–75] were studied by many research teams
(see also recent reviews [76,77] and references therein). The ion capturing effect is naturally expected for
nanomaterials dispersed in liquid crystals. As a result, nanomaterials dispersed in liquid crystals can
capture ions, thus providing a permanent purification of liquid crystals. At the same time, nanomaterials
releasing ions in liquid crystals may seem like an unexpected possibility. Yet, many experiments have
also confirmed the ion-generating properties of nanomaterials in liquid crystals [61,68,71,76,77]. The
effect of ion generation by nanoparticles in liquid crystals can be very strong, as was reported recently
by Urbanski and Lagerwall [61]. They found that the number of ions generated by functionalized gold
nanoparticles dispersed in nematic liquid crystal 5CB can be comparable to and even greater than the
number of ions generated in liquid crystals by 1:1 electrolytes [61]. The ionic contamination of ligands
covering the surface of gold nanoparticles was considered a major reason for the observed effect [61].
The effects caused by the ionic contamination of nanomaterials were also modeled and applied to
existing experimental data in a series of publications [78–81]. However, a comparison between the
behavior of electrolytes and ion-generating nanoparticles in liquid crystals was not performed in
papers [78–81]. Given the high promise of ion-generating nanomaterials for the development of
liquid-crystal-based smart windows, it is important to consider and analyze the analogy between
electrolytes and ion-generating nanomaterials in liquid crystals. The analysis of this analogy is the
major objective of the present paper.

2. Model (Analogy between Ion-Generating Nanomaterials and Electrolytes in Liquid Crystals)

To focus on ion-generating processes only, let us assume that liquid crystals are free of ions prior
to mixing them with contaminated nanoparticles. Consider contaminated nanoparticles of a spherical
shape dispersed in a liquid crystal host. Once contaminated nanomaterials are dispersed in liquid
crystals, some ions will be released from the surface, thus enriching the bulk concentration of mobile
ions n (for simplicity, symmetrical positive and negative ions of the volume concentration n+ = n− = n
are assumed). At the same time, some of the released ions can also be recaptured by nanoparticles. The
following rate Equation (1) can describe the aforementioned processes of ion generation (the second
term of the equation, kdnNPANPσNPθNP) and ion capturing processes (the first term of the equation,
kannNPANPσNP(1− θNP)),

dn
dt

= −kannNPANPσNP(1− θNP) + kdnNPANPσNPθNP (1)

where nNP is the volume concentration of nanoparticles, ANP is their surface area, σNP is the surface
density of sites available for the ionic contaminants, θNP is the fractional surface coverage of
contaminated nanoparticles, ka is a constant describing the ion capturing process (in the simplest case
of a physical adsorption, this is an adsorption rate constant), and kd is the constant characterizing the
ion generation process (in the simplest case of a physical adsorption, this is a desorption rate constant).

Equation (1) should be solved together with Equation (2) representing the conservation of the
total number of ions:

nNPANPσNPνNP = n + nNPANPσNPθNP (2)
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where νNP is the dimensionless contamination factor of nanoparticles accounting for their ionic
contamination [78]. By denoting g = ANPσNPνNP, substituting Equation (2) into Equation (1),
and assuming nNPg

(
1
νNP
− 1

)
� n, one can get Equation (3):

dn
dt

= −
[
kd + kanNPg

( 1
νNP
− 1

)]
n + kdnNPg (3)

By applying initial conditions (n = 0 m−3 t = 0 s), its solution can be written as Equation (4):

n =
kdnNPg

kd + kanNPg
(

1
νNP
− 1

) [1− e−(kd+kanNP g( 1
νNP
−1))t

]
(4)

In the case of 1:1 symmetrical electrolytes in liquid crystals, the ion generation/ion recombination
processes obey the well-known Equations (5)–(6) [82,83]:

dn
dt

= −kRn2 + kD(C0 − n) (5)

C0 = C + n (6)

where n+ = n− = n is the volume concentration of mobile ions, C is the volume concentration of a
non-dissociated salt and C0 is its initial concentration, kR is the recombination rate constant, and kD is
the dissociation rate constant.

Assuming C0 � C, Equations (5)–(6) can be rewritten as Equation (7):

dn
dt

= −(kRC0 + kD)n + kDC0 (7)

Applying initial conditions (n = 0 m−3 if t = 0 s), the solution of Equations (5)–(6) can be written
as Equation (8):

n =
kDC0

kD + kRC0

[
1− e−(kD+kRC0)t

]
(8)

A striking similarity between Equation (4) and Equation (8) reveals an analogy between
ion-generating nanoparticles and electrolytes in liquid crystals. This analogy is summarized in
Table 1.

Table 1. Analogy between ion-generating nanomaterials and electrolytes in liquid crystals.

Ion-Generating Nanomaterials Electrolytes

n n
kd kD

nNPg(where g = ANPσNPνNP) C0

ka
(

1
νNP
− 1

)
kR

According to Table 1, the desorption rate constant kd is analogous to the dissociation rate constant
kD; the total number of ions carried by ion-generating nanoparticles nNPg (where g = ANPσNPνNP)
is equivalent to the initial concentration of electrolytes C0; and the product ka

(
1
νNP
− 1

)
is similar to

the recombination rate constant kR. As expected, fully contaminated nanomaterials (νNP = 1) are the
most efficient ion-generating objects because of the zero-recombination coefficient (ka

(
1
νNP
− 1

)
= 0).

At the same time, 100% pure nanomaterials (νNP = 0) are characterized by an effectively infinite

recombination coefficient (ka
(

1
νNP
− 1

) υNP=0
→ ∞). As a result, they cannot generate ions and act as

ion-trapping objects.
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3. Results and Discussion

In the case of electrolytes in liquid crystals, the molar concentration cel (mol/L) is typically used.
The weight concentration ωNP is a convenient measure of the amount of nanomaterials dispersed
in liquid crystals. Equations (1)–(8) are written assuming the volume concentration n (nNP or C)
(m-3). In the limit of relatively low concentrations, the volume concentration of nanomaterials is
related to their weight concentration via equation nNP ≈

ωNP(
ρNP
ρLC

VNP

) , and the molar concentration (mol/L)

of nanomaterials can be written as cNP = 10−3
(nNP

NA

)
, where ρNP is the volumetric mass density of

nanoparticles, ρLC is the volumetric mass density of liquid crystals, VNP is the volume of a single
nanoparticle, and NA is the Avogadro constant. In the case of a spherical nanoparticle, its volume is
related to its radius as VNP = 4

3πR3
NP.

The ion-generating properties of electrolytes and contaminated nanomaterials in liquid crystals
can be reasonably compared if they are characterized by the same molar concentration cel = cNP

and similar rate constants kd = kD and ka = kR. The time dependence of the concentration of
ions generated in liquid crystals by both contaminated nanomaterials and electrolytes of the same
molar concentration is shown in Figure 1. The concentration of ions was computed for several
concentrations of dopants normally used in experiments (cNP = cel = 8.13× 10−8 mol/L (Figure 1a),
cNP = cel = 8.14× 10−7 mol/L (Figure 1b), and cNP = cel = 8.19× 10−6 mol/L (Figure 1c). To account
for a reasonable level of ionic contamination of nanomaterials, the contamination factors were chosen
to be νNP = 10−2 (dash-dotted curve), νNP = 10−3 (dotted curve), and νNP = 3.183 × 10−3 (dashed
curve) (Figure 1).

In all cases shown in Figure 1, depending on the level of the ionic contamination νNP, the number of
generated ions by nanomaterials in liquid crystals could be smaller than (dotted curves), comparable to
(dashed curves), or even greater than (dash-dotted curves) the number of ions generated by electrolytes
(solid curves). The time dependences in Figure 1 are characterized by time constants. For the period of
time longer than the time constant, the concentration of ions in liquid crystals reaches a steady-state
value (Figure 1). In the case of liquid crystals doped with nanomaterials (Figure 1, dashed, dotted, and
dash-dotted curves), this time constant τNP can be written as Equation (9):

τNP =
1

kd + kanNPg
(

1
νNP
− 1

) (9)

The time constant τel of liquid crystals doped with electrolytes (Figure 1, solid curve) is expressed
by Equation (10):

τel =
1

kD + kRC0
(10)

For given materials, the time constants τNP and τel can be controlled by changing the concentration
of nanomaterials and electrolytes. Higher concentrations of ion-generating materials correspond
to smaller values of time constants. Interestingly, under comparable conditions, the time constant
τNP as a function of the molar concentration exhibits a more rapid decrease compared to the same
dependence τel(cel) for electrolytes in liquid crystals (see Figure 2, where electrolytes in liquid crystals
are represented by a solid curve).
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expressed by Equation (10): 

Figure 1. The concentration of ions generated in liquid crystals by electrolytes (solid curves) and
contaminated nanomaterials (dotted, dashed, and dash-dotted curves) as a function of time. The
concentrations of nanomaterials and electrolytes are: (a) cNP = cel = 8.13× 10−8 mol/L; (b) cNP = cel =

8.14× 10−7 mol/L; (c) cNP = cel = 8.19× 10−6 mol/L. Physical parameters: RNP = 5 nm; σNP = 1018

m-2; ka = kR = 10-26 m3/s; kd = kD = 10-3 s-1; ρNP
ρLC

= 3.9.

Figures 1 and 2 indicate that both the transient and steady-state concentration of ions in liquid
crystals can be controlled by changing the concentration of ion-generating nanomaterials or electrolytes.
The use of nanomaterials offers one more level of control over the generated ions by changing the
contamination factor νNP (Figures 1 and 2).

The comparison of electrolytes and ion-generating nanomaterials in the steady-state regime is
shown in Figure 3. The concentration of generated ions in liquid crystals by contaminated nanomaterials
can be controlled within a broad range. Interestingly, this concentration can even exceed the number
of ions generated in liquid crystals by electrolytes, as shown by dashed curves in Figure 3 (for
νNP ≥ 3.2× 10−3).
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ρLC
= 3.9.

4. Conclusions

The ionic contamination of nanomaterials can result in very unusual effects. Once dispersed
in liquid crystals, contaminated nanomaterials can act as ion-generating objects. Ion-generating
nanomaterials represent a new source of ion generation in liquid crystals. Given the important role of
both ions and nanomaterials for the development of advanced liquid crystal technology, the possibility
of ion-generating behavior of nanomaterials in liquid crystals should not be ignored.

In this paper, a simple analogy between electrolytes and ion-generating nanomaterials in liquid
crystals was established (Equations (1)–(8) and Table 1). This analogy allowed for a quantitative
prediction of the ion generation in liquid crystals by means of contaminated nanomaterials. In addition,
it also revealed some advantages of using ion-generating nanomaterials for liquid crystal applications
requiring the presence of ions. Under certain conditions, ion-generating nanomaterials can generate
ions in liquid crystals more efficiently than typical electrolytes. More specifically, the steady-state
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concentration of ions generated in liquid crystals by nanomaterials can be reached faster (Figure 2),
and it can be greater than the same quantity in the case of electrolytes in liquid crystals (Figure 3).

Some limitations of the presented analogy should also be mentioned. The analogy between
ion-generating nanomaterials and electrolytes in liquid crystals relies on rate Equation (1). As was
already discussed in previous publications [84–86], this rate equation is valid in the regime of relatively
low concentrations. Typically, such low concentrations are common for thermotropic liquid crystals,
thus justifying the established analogy. In the case of high concentrations, a more rigorous model
utilizing the Poisson–Boltzmann equation should be considered [87–90].
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