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Abstract

Background: Single-cell DNA sequencing is getting indispensable in the study of cell-specific cancer genomics. The
performance of computational tools that tackle single-cell genome aberrations may be nevertheless undervalued or
overvalued, owing to the insufficient size of benchmarking data. In silicon simulation is a cost-effective approach to
generate as many single-cell genomes as possible in a controlled manner to make reliable and valid benchmarking.

Results: This study proposes a new tool, SCSilicon, which efficiently generates single-cell in silicon DNA reads with
minimummanual intervention. SCSilicon automatically creates a set of genomic aberrations, including SNP, SNV,
Indel, and CNV. Besides, SCSilicon yields the ground truth of CNV segmentation breakpoints and subclone cell labels.
We have manually inspected a series of synthetic variations. We conducted a sanity check of the start-of-the-art
single-cell CNV callers and found SCYN was the most robust one.

Conclusions: SCSilicon is a user-friendly software package for users to develop and benchmark single-cell CNV
callers. Source code of SCSilicon is available at https://github.com/xikanfeng2/SCSilicon.
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Background
Most cancer genome research studies have concentrated
on the somatic aberrations that arise in the bulk tumor
tissue. Much less care has been focused on the trajec-
tory of change among single cancer cells and somatic cell
evolution. Recent advance in high throughput single-cell
DNA sequencing (scDNA-Seq) starts to making promis-
ing changes. scDNA-Seq dissects the mixture of normal
and cancer tissues, thus affording an ultimate genomic
resolution [1]. Through barcoding every single cell in
sequencing, scDNA-seq provides profound evidence to
decipher the intra-tumor heterogeneity (ITH) [2], recog-
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nize the rare cell population [3], and restore the evolution-
ary history of tumor cells [4, 5].
The heterogeneity in the single-cell tumor genome

is from diverse aspects. The mainstream computational
tools are tackled on detecting the profile of single
nucleotide polymorphisms (SNPs), single nucleotide vari-
ations (SNVs), small insertion and deletions (Indels) [6–
9], and copy number variations (CNVs) [10–12] for each
tumor cell, and infer the phylogeny structure of tumor
clones [13–16]. These tools’ performance may be never-
theless undervalued or overvalued, owing to the insuffi-
cient size of benchmarking data [17].
In silicon simulation is a cost-effective approach to gen-

erate as many scDNA-seq datasets as possible in a con-
trolled manner to make reliable and valid benchmarking
[18]. Currently, there is a collection of single-cell genome
simulators (Table 1). CellCoal focuses on simulate SNVs
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Table 1 Overview of existing scDNA-Seq simulators

Tool Journal Supported Variants Other Facilities

SNV Indel CNV Cell Cluster Breakpoints

CellCoal [19] Mol. Biol. Evol. � - - - -

SCSsim [20] Bioinformatics � � � - -

SCSIM [21] BMC Bioinformatics � - - - -

SingleCellCNABenchmark [22] PLoS Comput. Biol - - � - -

SCSilicon - � � � � �

with different somatic evolutionary trajectories [19]. Yu et
al. developed SCSsim to produce SNVs, Indels, and CNVs,
especially tackling the issue of allele dropout (ADO)
and alleles unbalanced amplification frequently occurs in
scDNA-seq [20]. SCSIM jointly mimics correlated single-
cell and bulk DNA reads with SNVs [21]. Mallory et al.
developed SingleCellCNABenchmark which generates in
silico single-cell reads with CNVs [22]. However, existing
tools do not offer the ground truth of CNV breakpoint
and cell subclone label, which is highly required in down-
stream scDNA-Seq analysis [10–12].
This study proposes a new tool, SCSilicon, which effi-

ciently generates single-cell in silicon DNA reads with
minimummanual intervention. SCSilicon first creates the
genome sequence (FASTA file) for each single-cell by
automatically simulating a collection of genomic aber-
rations, including SNP, SNV, Indel, and CNV. Likewise,
SCSilicon yields the ground truth of CNV segmenta-
tion breakpoints and subclone cell labels. Then, SCSilicon
amplifies the genome and generates FASTQ reads. We
have manually inspected a series of synthetic variations
(SNP, SNV, Indel, and CNV breakpoint) generated by
SCSilicon, and evaluated three start-of-the-art single-cell
CNV callers.

Implementation
The SCSilicon framework
Currently, SCSilicon implements four different simulation
models, named as ‘SNPSimulator’, ‘SNVSimulator’, ‘Indel-
Simulator’ and ‘CNVSimulator’. Each of them has its own
assumptions but can be accessed through a consistent,
easy-to-use interface. The detailed information on these
simulators is described in the following sections.
Figure 1 shows the overview architecture of the SCSil-

icon framework. The SCSilicon simulation process con-
sists of two steps. The first step generates the parameters
required for the following simulation process. The result
of the first step is a parameters object named ‘SCSilicon-
Params’. The SCSiliconParams object is designed to store
all the information required for a specific simulator, such
as the reference genome version, the reads coverage, and
the reads layout, etc. Users can change the default values

of these parameters through the objectmember functions.
The SCSiliconParams object allows different simulators
to have their own parameters and provides flexibility for
different simulation experiments.
For the second step, the SCSiliconParams object is

passed to a specific simulator to generate a synthetic
scDNA-seq dataset. As displayed in Fig. 1, firstly, the
variant profile files are generated by a specific simula-
tor according to the users’ parameters. Then, the mutated
genome in FASTA format is generated by inserting vari-
ous types of variations into the input reference sequence.
Finally, the FASTA files are passed to the reads generator
to generate scDNA-seq data in FASTQ format. SCSili-
con uses a third tool, scssim [20], to generate the mutated
genome and reads file.

SNPSimulator
The SNPSimulator is to generate scDNA-seq data with
SNPs. SCSilicon provides an interface to download the
human dbSNP dataset from the UCSC genome browser
automatically. For the single-cell simulation, a specific
number of SNPs is selected from the human dbSNP
dataset randomly and is inserted into themutated genome
to generate scDNA-seq data. The SNP number in a cell
can be adjusted by the ‘snp_no’ parameter with a default
value. SCSilicon also allows users to generate multiple
cells once by the ‘cell_no’ parameter. For the multiple-cell
simulation, 80% SNPs are shared by cells in one batch.

SNVSimulator and IndelSimulator
Different from the SNPSimultor selecting SNPs from the
dbSNP dataset, SNVSimulator generates the SNV profile
file by randomly generating SNV sites from the reference
sequence. Similarly, IndelSimulator generates the Indel
profile file by randomly inserting or deleting reads with a
length of 4 to 10 bps from the reference sequence.

CNVSimulator
The CNVSimulator is designed to scDNA-seq data with
CNVs and can be applied for the benchmarking of dif-
ferent single-cell callers. First, a CNV matrix that con-
tains rows as cells and columns as bins is generated by



Feng and Chen BMCGenomics          (2022) 23:359 Page 3 of 9

Fig. 1 Illustration of SCSilicon framework

CNVSimulator. The cell cluster number and the segment
number of this CNVmatrix can be adjusted by ‘cluster_no’
and ‘seg_no’ parameters, respectively. Then the CNV pro-
file file and scDNA-seq data for each cell are generated
according to the CNVmatrix. CNVSimulator also outputs
the cell clusters and segment breakpoints information for
benchmarking purposes.

Input and output
SCSilicon only needs users to enter the parameter con-
figurations. Then, besides the sequence file (FASTQs
format) for each cell, our SNPSimulator, SNVSimulator,
InDelSimulator, and CNVSimulator also generates the
ground-truth SNPs, SNVs, InDels, CNV matrix, cell clus-
ter, segment-breakpoints as well. The detailed information



Feng and Chen BMCGenomics          (2022) 23:359 Page 4 of 9

for all variants, like rsid (Reference SNP ID), chromosome,
position, reference alleles, copy number and etc. can be
used for the ground-truth set for benchmarking variant
callers.

Results
Visualization and inspection of genomics aberrations
yielded by SCSilicon
We first applied BWA 0.7.17 [23] to align the synthetic
single-cell FASTQ reads yielded by SCSilicon to the
human reference (hg19). Then we visualized the ground-
truth genomics aberration produced by SCSilicon and
inspected whether the single-cell DNA reads carry the
ground-truth abnormalities in SNP, SNV, Indel, and CNV,
respectively.
Figure 2A exhibits the SNPs profile SCSilicon automat-

ically generated across 10 single-cells. The cell population
was assumed to share similar but slightly varied SNPs pro-
files. In Fig. 2A, we only visualized 100 randomly selected
SNPs as we found when the number of SNP data increases
(for example, 1000 SNPs), the heatmap would look a little
fuzzy to clearly reflect the above characteristics.
Next, we leveraged IGV browser [24] to visualize the

landscape of simulated SNPs across 25kb local genome
region on gene SEZ6L (chr22:26,615,000-26,640,000) in
two cells. As expected in Fig. 2B, the synthetic SNPs
are randomly scattered in the reads. Likewise, cell 1 and
cell 2 share alike but slightly different SNPs profiles. We
then manually checked three SNPs (Fig. 2C). Located in
chr22:36,750,551, SNP1 has three reference alleles G and
three alternative alleles A in cell 1, and four alternative
alleles A in cell 2. Located in chr22:36,750,587, SNP2 has
seven reference alleles T and two alternative alleles A in
cell 1, and five reference alleles T in cell 2. Located in
chr22:36,750,622, SNP3 has five reference alleles G and
two alternative alleles T in cell 1, and three reference alle-
les G in cell 2. Similarly, Additional file 1 Supplementary
Fig. S1 and Fig. S2 demonstrates the SNV and Indel events
SCSilicon generated. We also evaluated the generating-
accuracy (the percentage of correctly generated SNPs,
SNVs or Indels in sequence data from all SNPs, SNVs or
Indels in ground truth data) of SCSilicon. We generated
three dataset, SNP dataset, SNV dataset and Indel dataset
respectively. Each dataset contained 10 cells and the aver-
age generating-accuracy was calculated for each dataset.
The result show that the average generating-accuracies of
these three dataset are all 100% which reflects the stability
of SCSilicon.
Figure 3A and Fig. 3B are illustrations of two CNV

matrices automatically generated by SCSilicon’s CNVSim-
ulator with the random seed. The configuration is 100
single cells among chr22 with 50M as a bin, leading to
matrices size of 100 × 70. The left-side matrix offers 20
normal cells and seven tumor cell clusters, with four

CNV breakpoints and five CNV segments. The right-side
matrix is more complicated. It owns 40% healthy cells and
eight tumor subclones, with nine CNV breakpoints and
ten CNV segments. Figure 3C is a snapshot of IGV visu-
alization of CNV breakpoint chr22:49,500,000 across two
cells. In cell 3, the breakpoint’s downstream region’s cover-
age is much higher than the upstream region. In cell 4, the
breakpoint’s downstream region’s coverage is much lower
than the upstream region. Meanwhile, the cell 3 break-
point’s upstream region coverage is lower than the cell 4
breakpoint’s downstream region. These observations are
concordant with the synthetic CNV ground-truth (cell 3
upstream region: 1, cell 3 downstream region: 8, cell 4
upstream region: 8, cell 4 downstream region: 3).

Benchmarking state-of-the-art single-cell CNV caller
Recall that copy number variation (CNV) is considered to
be a driving force in cancer progression and metastasis
in single-cell genomics study [4, 5, 25]. Over the decades,
an arsenal of scDNA-Seq CNV caller has been proposed.
AneuFinder automatically qualifies the CNV profile lever-
aging a Hidden Markov model [10]. SCOPE [11] detected
CNV by a Poisson latent factor model. SCYN [12] adopts
SCOPE’s normalization policy and utilizing dynamic pro-
gramming to conduct CNV segmentation. Be aware of
each scDNA-seq CNV caller’s merits and demerits and
choose the most robust one is essential to conduct single-
cell genomics studies. Herein, we utilized the synthetic
single-cell DNA reads generated by SCSilicon to evaluated
three state-of-the-art CNV callers: AneuFinder, SCOPE,
and SCYN.
We have mimicked two CNV matrices with 100 single

cells on chr22 (50M bp/bin), dataset1 and dataset2 with
noise rate 10% and 12%, respectively. For CNV dataset1,
Fig. 4A and Fig. 4E displays the noisy and clean CNV
ground-truth. This benchmark set has five cell subpop-
ulations, with one normal cells clusters (average CNV is
2) and four tumor cell clusters with different CNV gains
and losses. The ground-truth CNV matrix harbours six
CNV breakpoints (chr22:29,500,000, chr22:31,500,000,
chr22:39,000,000, chr22:40,500,000, chr22:43,000,000,
chr22:49,500,000), leading to seven CNV segments.
Figure 4B,C,D illustrates the estimated CNV matrix on
the synthetic reads from AneuFinder, SCOPE, and SCYN,
respectively. From bare-eye checking, SCOPE and SCYN
can absorb the noise and distinguish the healthy cells,
whereas AneuFinder’s performance is hugely skewed
by the bias, mistakenly recognizing a large proportion
of healthy cells as aneuploidy. However, AneuFinder
successfully detected all six CNV breakpoints just like
SCYN, while SCOPE attaches one fictional breakpoint
between CNV segment chr22:29,500,000-31,500,000, and
fails to call two vital breakpoints (chr22:40,500,000 and
chr22:49,500,000). Furthermore, Fig. 4F,G,H reveals that
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Fig. 2 Visualization of simulated SNP. A Heatmap of random selected 100 SNPs across single-cells. 0 is reference allele, 1 is alternative allele. B IGV
plot of SNP events. C IGV inspection of individual SNP events
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Fig. 3 Visualization of simulated CNV. A-B Heatmap of two randomly generated CNV configuration across single-cells. The column and row
represents the genome region bin and single cell, respectively. The value of the heatmap indicates the copy number, with blue, white, and red
stands for copy number less than, equal to, and larger than 2, respectively. C IGV inspection of CNV breakpoint

the CNV inferred from SCYN has the highest Pearson
correlation (R = 0.99, p < 2.2e−16) with ground truth
CNV. We checked the CNV calling accuracy as well. In
terms of neutral, gain, and loss, we treat them as three
binary classification problems. We labeled the ground-
truth and inferred CNV of each cell bin region with
“neutral” (CN = 2) and “not neutral” (CN �= 2), “gain”
(CN > 2) and “not gain” (CN ≤ 2), and “loss” (CN < 2)
and “not loss” (CN ≥ 2). We defined the CNV calling
accuracy as the correct predictions divided by the total
number of predictions and used Python sklearn “met-

rics.accuracy_score” function to calculate it. Figure 4I
and Additional file 1 Supplementary Table S1 demon-
strates that SCYN manifests the highest CNV calling
accuracy in neutral, gain, and loss region, respectively.
For CNV dataset2 with a higher noise rate, Additional
file 1 Supplementary Fig. S3 and Supplementary Table S2
demonstrate SCYN shows the highest Pearson correla-
tion (R = 0.96, p < 2.2e−16) and the highest CNV calling
accuracy in neutral, gain, and loss region respectively.
Overall, SCYN demonstrates the best efficacy in both

breakpoint detection and CNV estimation, whereas
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Fig. 4 Benchmarking of single-cell CNV Caller for CNV dataset1. A-E CNV Heatmap of noisy ground-truth, AneuFinder, SCOPE, SCYN, and clean
ground-truth, respectively. The column and row represents the genome region bin and single cell, respectively. The value of the heatmap indicates
the copy number, with blue, white, and red stands for copy number less than, equal to, and larger than 2, respectively. F-H Scatter plot and Pearson
correlation between clean ground-truth CNV and estimated CNV of AneuFinder, SCOPE, and SCYN, respectively. I-K The CNV calling accuracy on
loss, neutral, and gain bins, respectively

AneuFinder has a deficiency in CNV normalization, and
SCOPE is limited to correct breakpoint detection.

Discussion
Simulation software is crucial in developing and validating
the computational model for next-generation sequencing
(NGS) data [18], so does it for single-cell genomics. To
facilitate this necessity, we developed SCSilicon, a soft-
ware tool that efficiently generates single-cell in silicon
DNA reads with minimum manual intervention. SCSili-
con automatically simulates a collection of genomic aber-
rations, including SNP, SNV, Indel, and CNV. Likewise,
SCSilicon yields the ground truth of CNV segmentation
breakpoints and subclone cell labels. We have manu-
ally inspected a series of synthetic variations (SNP, SNV,
Indel, and CNV breakpoint) generated by SCSilicon. Fur-
thermore, we assessed three state-of-the-art single-cell

CNV callers AneuFinder, SCOPE, and SCYN. We dis-
covered that SCYN demonstrated the best efficacy in
both breakpoint detection and CNV estimation, whereas
AneuFinder had a deficiency in CNV normalization, and
SCOPE was limited on correct breakpoint detection.
Compared with existing single-cell genomics simula-

tors, like SCSsim, SCSilicon has the following credits to
highlight. (i) Our software is user-friendly. Users can eas-
ily install the package by PyPI management kit. SCSsim
can only generate one cell at a time, while SCSilicon
can generate a dataset that contains hundreds or thou-
sands of cells with just a few lines of code (less than five
lines). (ii) Our software provides more flexibility while it
needs minor user intervention. SCSsim needs a user man-
ual aberration configuration to generate the SNP, SNV,
Indel, and CNV step by step. While in SCSilison, users
can generate CNV datasets with different features by sim-
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ply adjusting the parameter configuration at one time,
like the percentage of normal cells, the number of cell
clusters, the number of segments for one chromosome,
and the rate of noise values. Then SCSilicon automati-
cally generates all genomics aberration configurations to
ease users from pre-processing. (iii) SCSilicon is useful
for the benchmarking of single-cell CNV calling tools.
Except for the sequence data of all cells in one dataset,
SCSilicon also generates the ground truth CNV matrix,
the detailed information of cell clusters and segments.
The ground truth CNV matrix can be interactively visu-
alized in scSVAS (https://sc.deepomics.org [26]). To our
knowledge, no existing tools pay special attention to CNV
segmentation breakpoints and subclone cell clusters. We
output these two ground-truth information, providing a
straightforward way to assess a CNV caller’s performance.
We plan to conduct several enhancements in the future.

(i) Currently, SCSilicon simulated the SNPs, SNVs, and
Indels through random sampling. We intend to create
the point mutations based on an evolutionary model. In
this way, SCSilicon can benchmark the SNV phylogeny
callers in the future. (ii) As SCSilicon employs the API
from SCSsim, the generated single-cell reads only fit the
multiple annealing and looping-based amplification cycles
(MALBAC) protocol. In the next step, we prepare to
implement a Protocol Profiler to learn ADO and bias
from diverse single-cell sequencing protocols, including
MALBAC [27], degenerate-oligonucleotide-primed poly-
merase chain reaction (DOP-PCR) [28], Transposon Bar-
coded (TnBC) [29], and 10x [2].

Conclusions
To conclude, we introduce a user-friendly single-cell DNA
reads simulator, SCSilicon, which automatically creates a
collection of genomic aberrations, including SNP, SNV,
Indel, and CNV. Moreover, SCSilicon yields the ground
truth of CNV segmentation breakpoints and subclone cell
labels. We have manually inspected a series of synthetic
variations. We assessed the state-of-the-art single-cell
CNV callers and found SCYN was the most robust one.

Availability and requirements
Project name: SCSilicon
Project home page: https://github.com/xikanfeng2/
SCSilicon
Operating system(s): Platform independent
Programming language: Python
Other requirements: Python 3.6 or higher
License:MIT License
Any restrictions to use by non-academics: None
Abbreviations
scDNA-Seq: Single-Cell DNA-Sequencing; ITH: Intra-Tumor Heterogeneity; SNP:
Single Nucleotide Polymorphism; SNV: Single Nucleotide Variation; Indel: Small
Insertion and Deletion; CNV: Copy Number Variation; ADO: Allele Dropout; rsid:
Reference SNP ID
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