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om-temperature fabrication of
carbon nanocomposites including Ni nanoparticles
for supercapacitor electrodes
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With the increasing importance of power storage devices, demand for the development of supercapacitors

possessing both rapid reversible chargeability and high energy density is accelerating. Here we propose

a simple process for the room temperature fabrication of pseudocapacitor electrodes consisting of

a faradaic redox reaction layer on a metallic electrode with an enhanced surface area. As a model

metallic electrode, an Au foil was irradiated with Ar+ ions with a simultaneous supply of C and Ni at room

temperature, resulting in fine metallic Ni nanoparticles dispersed in the carbon matrix with local

graphitization on the ion-induced roughened Au surface. A carbon layer including fine Ni nanoparticles

acted as an excellent faradaic redox reaction layer and the roughened surface contributed to an increase

in surface area. The fabricated electrode, which included only 14 mg cm�2 of Ni, showed a stored charge

ability three times as large as that of the bulky Ni foil. Thus, it is believed that a carbon layer including Ni

nanoparticles fabricated on the charge collective electrode with an ion-irradiation method is promising

for the development of supercapacitors from the viewpoints of the reduced use of rare metal and

excellent supercapacitor performance.
1. Introduction

The development of power storage facilities is a current topic for
the realization of a future carbon-neutral society,1–3 and super-
capacitors are one of the key devices to achieve this goal.4–7

Supercapacitors are roughly categorized into two types by the
charge storage mechanism: electric double-layer capacitors
(EDLCs)8,9 and pseudocapacitors,10–14 including their hybrid
combinations.15–18 The former is advantageous for rapid
reversible charge transfer through a non-faradaic process on an
electrode with a huge specic surface area, while the latter has
great potential for higher energy density due to the reversible
surface faradaic redox reactions of active materials in the elec-
trodes. Therefore, in the development of next-generation
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supercapacitors, a scenario to enhance both contributions
simultaneously should be explored.

The pseudocapacitive component may be inherent to the
material, as in the case of conducting polymers and transition
metal oxides,19–22 or acquired by chemical modication using
a functionalization agent to create reactive groups or through
the addition of heteroatoms to the skeleton of nanocarbon
materials, to introduce redox-activity under electrochemical
charging.23,24 The rst category of material suffers from low
electric conductivity, while the second compromises both the
electrode conductivity by functionalization and a cycle life due
to the tendency of the pseudocapacitive component of such
materials to fade with cycling.25 An alternative approach that
has been the focus of attention in the eld of supercapacitor
development, is the decoration of the surface of conductive
nanocarbons with redox-active nanoparticles (NPs) to obtain
a composite electrode that combines the benets of its two
components.

The most investigated pseudocapacitive nanoparticles have
been conductive polymers and metal oxides, particularly the
oxides of transition metals like nickel, cobalt, manganese,
titanium, vanadium, molybdenum, tungsten and others.26–39

The strategies used to prepare such composites can be classied
as either in situ decoration of the NPs during the synthesis
phase of the nanocarbonmaterial, or post-synthesis methods in
which the nanocarbon material is processed to allow for the
© 2022 The Author(s). Published by the Royal Society of Chemistry
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formation of stable composites upon the addition of the NPs.
Methodology-wise, the composite synthesis may proceed
through diverse routes, such as solution chemistry,40–50 hydro-
thermal or solvothermal methods,51–54 self-assembly,55–57

microwave-irradiation,58–60 photo-reduction,61 mechanical
routes,62,63 electrochemical deposition,64,65 electrospinning or
templating with a carbon precursor,66,67 and others.

One promising synthesis route, in which high controllability
of the NP size and product composition can be achieved, is the
decoration of the surface of the nanocarbon host material with
NPs using atomic layer deposition.68–73 However, while this
approach allows controllability of the NP size and composition
of the nal product, it normally requires somewhat elevated
temperature for the synthesis of nanocarbon and the use of
inert gases to handle NPs, and is therefore neither energy effi-
cient nor environmentally friendly, which hinders the scal-
ability of processes using this approach. Here, we will
demonstrate a simple, one-step fabrication of carbon nano-
composites including Ni NPs at room temperature for applica-
tion to supercapacitors that will move us in the direction of the
above-described scenario. In order to derive the maximum
possible potential of the redox activity of NPs, sufficiently small
NPs should be dispersed well on and in the nanocarbon matrix
without agglomeration into large particles, so as not to lose
their reaction sites. This work provides a novel strategy to ach-
ieve such a NP-nanocarbon matrix system without any heating
process.
2. Experimental

The capacitor layer of the Ni NPs including carbon was fabri-
cated directly onto a current collector electrode. In the present
work, an Au foil (10 � 10 � 0.05 mm3; Nilaco Co. Ltd., AU-
173265) was employed as a model of the current collector
electrode (Fig. 1). As was described above, the prerequisites for
the capacitor layer to be developed here are a larger surface area
and the inclusion of NPs contributing to the redox reactions. In
order to achieve both, an ion irradiation method was employed
for the sample preparation at room temperature. Ion irradiation
onto a solid surface sometimes entails the formation of conical
structures (cones) on the surface even at room temperature,
resulting in an increase in the surface area. And the cone
formation is known to be enhanced with a supply of so-called
Fig. 1 Schematic representation of the sample setup for the direct
fabrication of carbon nanocomposites including Ni NPs onto an Au foil
using ion irradiation.

© 2022 The Author(s). Published by the Royal Society of Chemistry
“seed” material whose sputtering yield is lower than that of
the surface component element.74 Carbon is one of the typical
materials with low sputtering yield, and needless to say, is
commonly used in supercapacitor applications. Thus, carbon
acts as both the seed material to enhance the formation of
conical structures and the matrix for carbon-based
nanocomposites75–80

For the fabrication of the capacitor layer of Ni NPs including
carbon, an Au foil was irradiated with Ar+ ions at room
temperature with a simultaneous supply of both C and Ni. As
shown in Fig. 1, for the simultaneous supply of C and Ni during
the ion irradiation, a graphite platelet (25 � 45 � 0.7 mm3) with
an attached Ni platelet (10 � 45 � 0.05 mm3) was placed next to
the Au foil, and they were co-sputtered with Ar+ ions using
a Kaufman type ion gun (Iontech In Ltd., model 3-1500-100FC).
In order to investigate the effect of Ni NPs, an Au foil and
a graphite platelet without an attached Ni platelet was also co-
sputtered with Ar+ ions. The energy and the incidence angle
of the Ar+ ions employed were 1 keV and 45 deg normal to the Au
foil surface, respectively. To measure the capacitor property and
observe the morphology by scanning electronmicroscope (SEM)
of the coned surface, a 10 � 10 mm2 face area of the Au foil was
ion-irradiated. An edge of the foil (10 � 0.05 mm2 face) was ion-
irradiated to observe the crystal structure and texture of the
individual cones in the cross-sectional direction using a trans-
mission electron microscope (TEM).

Aer the ion irradiation, the surface morphology and crystal
structure were observed by SEM (JEOL JEM-5600) and TEM
(JEOL JEM-ARM200F), respectively. For the TEM analyses,
a prepared sample was cut into a small piece to mount it on
a TEM sample holder without any post-treatment. Raman
spectra were measured for the ion-irradiated edge of the foil (10
� 0.05 mm2 face) in the cross-sectional direction using a micro
Raman spectrometer (JASCO Corporation NRS-3300) with
a laser operating at a wavelength of 532.08 nm. For these Raman
analyses, a laser beam (1 mm in diameter) was focused onto the
very edge of the foil. The chemical states were analyzed for the
ion-irradiated 10 � 10 mm2 face using X-ray Photoelectron
Spectroscopy (XPS; PHI QuanteraSXM) with monochromatic Al
radiation (hv¼ 1486.6 eV). In order to remove the contaminated
surface layer, light sputter-removal was also carried out using
1.0 keV Ar+ ions for XPS analysis. The sputter-removal rate was
measured to be �2 nm min�1 for SiO2. Thanks to the Au
substrate, the Au4f7/2 peak (84.0 eV) was used for the calibration
reference for XPS spectra.

The supercapacitor properties were measured by cyclic vol-
tammetry (CV), galvanostatic charge/discharge (GCD; Biologic
SP-50F), and electrochemical impedance spectroscopy (EIS;
VersaSTAT 3, Princeton Applied Research). Those measure-
ments were conducted using 1 M KOH aqueous solution as the
electrolyte. Fig. 2(a) depicts a schematic diagram of the CV
measurement, with a three-electrode system consisting of
a counter electrode (platinum mesh), a Hg/HgO reference
electrode and a working electrode. The samples prepared by the
ion-irradiation were used as the working electrode, and
a sample area of 5 mm in diameter was exposed for the CV
measurement. All the electrodes were immersed into 1 M KOH.
RSC Adv., 2022, 12, 21318–21331 | 21319



Fig. 2 Schematic representation of the setups for (a) CV and (b) GCD measurements.
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For the GCD measurement, a single cell of tri-electrode
conguration, in which Pt, an activated carbon counter elec-
trode (Kuraray Co., YP-50F) and a working electrode were
stacked with a separator of qualitative lter paper and assem-
bled in a polytetrauoroethylene (PTFE) cell, as shown in
Fig. 2(b), was employed in order to reduce the resistance
between electrodes.
3. Results and discussion

Fig. 3 shows SEM images of the Au foils aer ion irradiation
with a simultaneous supply of only C (Fig. 3(a); referred to as the
“Au–C” sample hereaer) and of both C and Ni (Fig. 3(b);
referred to as the “Au–C–Ni” sample hereaer). As was expected,
C acted as the seed for the formation of conical structures. For
Fig. 3 (a) and (b) Typical SEM images of the ion-irradiated sample
surfaces of Au–C and Au–C–Ni, respectively.

Fig. 4 (a) Typical Raman spectra of the Au–C and Au–C–Ni samples. (b) 1
red ellipse for the Au–C–Ni sample in (a).

21320 | RSC Adv., 2022, 12, 21318–21331
both samples, the surfaces were covered with densely distrib-
uted conical structures which were pointing in the ion beam
direction.

The ion-irradiated surfaces were measured by Raman spec-
troscopy. As seen in Fig. 4, graphitized-related G and defect-
related D peaks, as well as the broad bump at about the 2D
peak position were observable for both the Au–C and Au–C–Ni
samples. The difference in intensity of the C related Raman
peaks between those samples would be due to the difference in
the size of the graphite plate of the C supply source exposed to
Ar+ ions for those samples. It was smaller by 40% for the Au–C–
Ni sample, agreeing with the smaller Raman peak intensity for
the Au–C–Ni sample. However, the difference in the Raman
peak position and shape was not so prominent for those
samples, and thus further discussion is difficult based on the
Raman analyses. Therefore, the local crystal structure (local
graphitization) should be investigated in atomic dimensions
using TEM for detailed analysis of the ion-irradiated surfaces.

In order to analyze the local graphitization and to conrm
the inclusion of Ni NPs, the crystal structures of individual
cones fabricated on the Au–C and Au–C–Ni samples were
observed by TEM. Fig. 5 shows typical TEM images of a conical
structure fabricated on the Au–C sample. The inset in Fig. 5(a) is
an electron diffraction pattern (EDP) of the tip region of the
cone indicated by the red ellipse. The EDP consists of spotty
Debye rings (inner and outer rings) corresponding to Au (111)
0 timesmagnified spectrum at around 2D peak region indicated by the

© 2022 The Author(s). Published by the Royal Society of Chemistry



Fig. 5 (a) Typical low magnification TEM image of cones of the Au–C sample with an EDP in the inset. (b) Magnified TEM image of the tip region
in (a). (c), (d) HRTEM images of the regions indicated by arrows A and B in (b), respectively. Inset in (c) shows the intensity line profile of the HRTEM
image.

Fig. 6 (a) Typical low magnification TEM image of cones of the Au–C–Ni sample with the EDP in inset. (b) Magnified TEM image of the region
indicated by the red ellipse in (a). (c), (d), (e) HRTEM images of the region indicated by arrows A, B, and C in (b), respectively, with their intensity line
profiles.

© 2022 The Author(s). Published by the Royal Society of Chemistry RSC Adv., 2022, 12, 21318–21331 | 21321
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and Au (200), respectively, indicating the polycrystalline Au
nature of the cone, whereas no distinct Debye ring corre-
sponding to graphite is observable due to the amorphous
nature of carbon matrix. Fig. 5(b) shows a magnied image of
the tip region of the cone in Fig. 5(a), revealing that the various
sizes of particles with a black contrast (shown by arrow A) are
dispersed in the matrix (shown by arrow B), which has a gray
contrast. The black contrast particles ranged from �1 to
�20 nm. As typically conrmed by the high resolution TEM
(HRTEM) image shown in Fig. 5(c), whose lattice spacing of
0.244 nm corresponds to Au (111), the black contrast particles
were identied as Au NPs. In the gray contrast matrix, no
distinct lattice fringe was observable, indicating its amorphous
nature [Fig. 5(d)]. From the contrast difference and energy
dispersive X-ray spectroscopy (EDS) analysis, the matrix was
shown to be amorphous carbon due to the carbon supply. Thus,
the cones formed on the Au–C sample were characterized by the
amorphous carbon matrix with the dense dispersion of poly-
crystalline Au nanoparticles ranging from �1 to �20 nm
therein.

Fig. 6 shows typical TEM images of fabricated conical
structures of the Au–C–Ni sample. Similar to the Au–C sample,
Fig. 7 (a), (b) Typical cyclic voltammograms at scan rates of 10, 50 and 10
(c) Scan rate dependence of the capacitance determined at 0.4 V in the

21322 | RSC Adv., 2022, 12, 21318–21331
black contrast particles dispersed in gray contrast matrix are
seen in Fig. 6(b). The relatively large particles (shown by arrow A
in Fig. 6(b)) were identied as Au from analysis of the HRTEM
image, as shown in Fig. 6(c), which corresponds to Au(111). A
careful inspection of Fig. 6(b) reveals that ne NPs, less than
�2 nm, with different lattice spacing from Au were dispersed in
the gray contrast matrix (shown by arrow B in Fig. 6(b)). From
analysis of the lattice spacing, these ne NPs were identied to
be Ni, as shown in Fig. 6(d). It should be noted that the metallic
state of the Ni NPs was preserved in the nanocomposite. In
general, metal NPs are quite reactive and readily oxidized.
However, in the present system, the metallic state is preserved
thanks to the surrounding carbon matrix. Such preservation of
the metallic state of the metal embedded in the carbonmatrix is
also observed for Li–C nanocomposites.79 Another important
nding is the formation of a partially graphitized layer in the
matrix, as shown in Fig. 6(e), which is the HRTEM image of the
region indicated by arrow C in Fig. 6(b). This is due to the
spontaneous graphitization induced by the enhanced catalytic
activity for graphitization of Ni NPs explained in detail else-
where.81 In brief, with a decrease in particle size, in general, the
melting point decreases while the carbon solubility
0mV s�1 for the samples of as-received Au foil and Au–C, respectively.
cyclic voltammograms (a) and (b).

© 2022 The Author(s). Published by the Royal Society of Chemistry
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increases.82,83 For NPs-carbon systems, due to the decrease in
melting point of NPs, C atoms dissolved into NPs would readily
displace to form sp2 bonding even at room temperature, similar
to those in the bulk catalyst–C system at high temperatures.84 In
the ion irradiation process, agglomeration of NPs would readily
occur, and the solubility of C would slightly decrease with
increasing NP size in the agglomeration process, yielding
a graphitized layer behind the trace of moving agglomerated
NPs. Such a spontaneous graphitization is observed also for Co
NPs.85

The capacitance properties were measured by CV for both
the Au–C and Au–C–Ni samples. Fig. 7 shows the cyclic vol-
tammograms at scan rates of 10, 50 and 100 mV s�1 for the Au–
C samples. For comparison, the result obtained for an as-
received Au foil without any ion irradiation treatment is also
demonstrated in Fig. 7(a). Without the inclusion of Ni NPs, the
current density increased with the potential, different from the
typical electric double layer capacitor characteristic which
shows the rectangular shape in the cyclic voltammograms. This
would be due the DC resistance component of the electrode and
the electrolyte. For both samples, the irreversible oxidation
wave is recognizable at around 0.5 V at high scan rates. This
would be due to the oxygen evolution reaction resulting from
Fig. 8 (a), (b) Typical cyclic voltammograms at scan rates of 10, 50 a
respectively. (c) Comparison of the CV profiles with an enlarged vertical s
shown in (a) and (b), respectively.

© 2022 The Author(s). Published by the Royal Society of Chemistry
the electrolysis of electrolyte. Fig. 7(c) shows a scan rate
dependence of the capacitance determined at 0.4 V in the cyclic
voltammograms at which the slope of the cyclic voltammo-
grams is smallest. From Fig. 7(c), the electrochemical surface
area estimated from the electric double layer capacitance was
estimated to be about three times larger for the sample Au–C
than that for the as-received Au, due to the roughening treat-
ment by ion irradiation. The increase in the estimated electro-
chemical surface area would correspond to the increase in the
geometrical surface area induced by ion irradiation.

Fig. 8 shows the cyclic voltammograms at scan rates of 10, 50
and 100 mV s�1 for the Au–C–Ni samples. For a comparison, the
result obtained for an as-received Ni foil (10 � 10 � 0.05 mm3;
44.5 mg) without any ion irradiation treatment is also demon-
strated in Fig. 8. Different from the Au and Au–C samples,
a glance at the CV proles of the Au–C–Ni in Fig. 8(a) shows a so-
called duck-shaped cyclic voltammogram, suggesting that the
specic capacity is attributable to faradaic redox reaction. The
strong redox peaks are attributed to the reversible transition of
Ni2+ and Ni3+. It should be also noted that the contour of the CV
proles shows no apparent distortion with an increase in the
scan rate, indicating the fast charge transfer kinetics and
excellent rate performance. For the as-received Ni foil, the
nd 100 mV s�1 for the samples of Au–C–Ni and as-received Ni foil,
cale for Au–C–Ni and as-received Ni foil at the scan rate of 10 mV s�1

RSC Adv., 2022, 12, 21318–21331 | 21323
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surface is oxidized due to the exposure to air. In aqueous elec-
trolytes, the possible redox reaction for Ni oxide is known to be
expressed as follows:86

NiO + H2O / Ni(OH)2, (1)

or

NiO + OH� / NiOOH + e� (2)

NiOOH + H2O + e� % Ni(OH)2 + OH� (3)

So the redox reaction is readily understandable for the as-
received Ni foil, and it occurs only at and near the top surface
Fig. 9 (a) Typical XPS spectra for an Au–C–Ni sample. (a) Survey spectra
CV measurements with peak fittings.

21324 | RSC Adv., 2022, 12, 21318–21331
of the Ni foil. By contrast, Ni nanoparticles were dispersed in the
carbon matrix for the Au–C–Ni sample. So the surface area of Ni
exposed to air should be much smaller for the Au–C–Ni sample
than for the as-received Ni foil. Nevertheless, it is surprising that
the redox peaks are more prominent for the Au–C–Ni sample
than for the as-received Ni foil, as seen from a comparison
between Fig. 8(a) and (b). In the Au–C–Ni sample, the aqueous
electrolyte would penetrate into the carbon matrix to induce the
redox reaction on the surface of individual Ni NPs. This would
be due to the imperfect nature (partial graphitization) of the
carbon matrix surrounding the Ni NPs, because continuous
graphene lms are known to act as a separator of liquid from
a vacuum.87

Fig. 8(c) shows a comparison of typical CV proles at a scan
rate of 10 mV s�1 for Au–C–Ni and as-received Ni foil samples.
and (b), (c) narrow spectra of Ni2p, C1s and O1s (b) before and (c) after

© 2022 The Author(s). Published by the Royal Society of Chemistry
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The redox peaks are located at lower positions for the Au–C–Ni
sample than for the as-received Ni foil. This would be attribut-
able to the better electrical conductivity of substrate Au than of
Ni. The lower redox peak position implies lower energy density,
but would be advantageous in avoiding overcharging, which
induces the formation of g-Ni(OH)2 and Ni2O3H. Since the
formation of those crystalline phases is known to shorten the
cycle lifetime, prevention against the formation of those phases
will be essential for higher cycle lifetimes and Coulomb
efficiency.88

Fig. 9 shows XPS survey spectra and narrow spectra before
and aer the CV measurements for Au–C–Ni samples. For the
respective XPS measurement, spectra for the as-evacuated
samples and those aer the light sputter-removal (Ar+ irradia-
tion for 30 sec corresponding to 1 nm removal for SiO2) of the
surface contaminated layers were taken.

From Fig. 9(b), it is seen that the chemical states of the
NiNPs before CV measurement were featured by metallic Ni
(852.80 eV) covered with a thin Ni(OH)2 (856.10 eV) layer,
agreeing with the TEM observation. The formation of a Ni(OH)2
layer, which was also conrmed by O1s spectra,89–92 would be
due to the adsorbed water molecules or hydroxyl group.29 This
layer, which is like a natural contamination due to exposure to
Fig. 10 (a), (b) Typical GCD profiles of an Au–C–Ni as a function of (a)
retention rate relative to that at a current density of 0.1 mA cm�2.

© 2022 The Author(s). Published by the Royal Society of Chemistry
air, was so thin that it was removed readily by the light sputter-
removal. Two C1s peaks are prominent aer light sputtering,
namely, peaks at 284.8 and 283.5 eV. The former is attributed to
commonly observed C–C or C–H bonding. The latter would be
attributable to sp2, Ni carbide, or a solid solution of carbon
interstitially dissolved in metallic Ni.85,93,94 Since no trace of
a Ni–C related peak is observed in the Ni2p3/2, nickel-related
assignments will be ruled out. Taking the TEM result into an
account, it would be an sp2 related peak formed by the spon-
taneous catalytic reactivity of Ni nanoparticles.81

Aer the CV measurement, Ni NPs were covered with
a thicker Ni(OH)2 layer than before CV measurement, as seen in
the as-evacuated spectrum (etching time: 0 sec) of Fig. 9(c)
where no other Ni-related peak was observable. This would be
due to the reaction between Ni NPs and the electrolyte. (The
peak position of NiOOH in Ni2p3/2 spectrum is almost the same
as that of Ni(OH)2.91 However, similar to Fig. 9(b), NiOOH is
ruled out because of no peak at �530 eV in O1s spectra.) Aer
light sputtering, a Ni(OH)2 and/or NiOOH layer, which would be
due to reaction eqn (3), was still observed. It should be noted
that NiO (Ni2p3/2 ¼ 854.90 eV) newly formed aer the CV
measurement and metallic Ni (Fig. 9(c); etching time: 30 sec)
were observed. This would be evidence of the Ni(OH)2 and/or
time and (b) capacity. (c) Current density dependence of the capacity

RSC Adv., 2022, 12, 21318–21331 | 21325
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NiOOH formation through reaction eqn (1) or (2) from the
metallic Ni. The metallic Ni state would be the unreacted
metallic residue inside the Ni NPs of large size. Therefore, the
size of Ni NPs should be kept as small as possible to use the
catalyst resource effectively. Another important nding is the
chemical state of carbon. Aer the repeated redox reaction, the
sp2-related state disappeared. Since the initial graphitization
was very localized and uncompleted around Ni NPs, such a sp2-
related carbon state would be readily deformable during CV
measurement.

Fig. 10(a) and (b) show the GCD proles for an Au–C–Ni
sample at various current densities ranging from 0.1 to 20 mA
cm�2 in the discharge process under a constant current density
of 0.2 mA cm�2 in the charge process. As typically seen with the
0.1 mA cm�2 in Fig. 10(a), the plateau region was recognizable
at 0.35–0.45 mV. The plateau was more prominent and almost
independent of the current density in discharge in the potential
vs. capacity plot [Fig. 10(b)]. This indicates that NiNPs contained
in Au–C–Ni contributed well to the pseudo-capacitance even in
the rapid discharge process.27

Fig. 10(c) shows the current density dependence of the
capacity retention rate normalized by that at a current density of
0.1 mA cm�2. Although the capacity retention rate gradually
decreased at current densities higher than 0.5 mA cm�2, its
variation was kept within 15% in the range of the current
density of 0.1 to 20 mA cm�2. Table 1 summarizes the
comparison of the capacitive property between the Au–C–Ni
sample and the reported values for Ni based electrodes.
Although the capacitance value of the Au–C–Ni electrode is
moderate for aqueous electrolyte cells, the rate performance is
Table 1 Capacitive property of Au–C–Ni, compared with the previously

Sample Electrolyte Performance

Au–C–Ni (this study) 1 M KOH/H2O 310 F g�1@0
NiO/carbon nanotube 2 M KOH/H2O 258 F g�1@1
Ni@carbon ber 5 M KOH/H2O 397 F g�1@0
Mesoporous NiO 6 M KOH/H2O 358 F g�1@2
Ni/N-doped porous carbon 2 M KOH/H2O 164 mA h g�

Ni2P1�xSx/Ni@carbon/
graphene

1 M NaClO4/EC + DMC (1 : 1) 922 mA h g�

Fig. 11 (a) Procedure to estimate the component of the faradaic reacti
charge estimated for the Au–C–Ni sample and for the as-received Ni fo

21326 | RSC Adv., 2022, 12, 21318–21331
superior to the previous results. Thus, Au–C–Ni is believed to be
promising as a supercapacitor.

In order to compare capacitor properties more quantita-
tively, the amount of the stored charge by faradaic reaction was
estimated from the CV proles at a scan rate of 10mV s�1 for the
Au–C–Ni sample and the as-received Ni foil. The obtained CV
proles contained the contributions of both EDLC and faradaic
reaction. Fig. 11(a) shows the procedure to estimate the
component of the faradaic reaction alone, which corresponds to
the hatched area enclosed by the CV prole and the base line of
the EDLC component. The extrapolated straight line in the
region where the increment of the CV prole is the smallest was
dened as the base line of the EDLC component here. Fig. 11(b)
shows the comparison of the faradaic reaction component of
the stored charge thus estimated for the Au–C–Ni sample and
for the as-received Ni foil. The stored charge of the Au–C–Ni
sample was three times as large as that of the as-received Ni foil.
It should be stressed that the small amount of Ni NPs dispersed
in the carbon matrix possessed a much higher supercapacitor
performance than bulky Ni. In fact, the amount of Ni included
in the Au–C–Ni layer was measured to be only 14 mg cm�2 by
inductively coupled plasma atomic emission spectrophotom-
etry (ICP). This is quite fascinating for the practical applications
from the viewpoints of the reduction in both the use of the rare
metal and the weight of the supercapacitor. Thus, it is believed
that the combination of NPs and carbon matrix prepared by the
ion irradiation method is quite promising for the development
of the next generation of supercapacitors.

Charge transfer kinetics of the Au–C–Ni sample was studied
by using the EIS methods conducted in the frequency ranges of
100 kHz to 0.1 Hz with an AC excitation signal of 10 mV at room
reported Ni based electrodes

at low current density Performance at high current density Reference

.1 mA cm�2 (�7 A g�1) 258 F g�1@20 mA cm�2 (�1429 A g�1) This work
A g�1 197 F g�1@5 A g�1 29
.5 A g�1 325 F g�1@5 A g�1 22
.5 mA 292 F g�1@10 mA 14
1@1A g�1 122 mA h g�1@20 A g�1 95
1@0.1 A g�1 519 mA h g�1@4 A g�1 96

on. (b) Comparison of the faradaic reaction component of the stored
il.
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Fig. 12 (a) Nyquist plots of the Au–C–Ni sample in the frequency ranges of 100 kHz to 0.1 Hz obtained at 0 and 0.4 V, and (b) cycling stability of
the Au–C–Ni sample in the potential range of 0.25–0.55 V at 10 mV s�1 for 300 cycles.
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temperature. Fig. 12(a) shows the Nyquist plots obtained at
0 and 0.4 V. As shown in the gure, although a semicircle was
observed at 0.4 V, it disappeared at 0 V. This semicircle would be
attributed to charge-transfer resistance of the redox reaction of
Ni nanoparticles.96 The value of charge-transfer resistance is
negligibly small compared to the DC resistance and electrolyte
diffusion resistance observed at 0 V. This feature is preferable
for high-speed charge/discharge operation.

The cycling stability test for the Au–C–Ni sample was
carried out in the potential range of 0.25–0.55 V at 10 mV s�1

for 300 cycles. As seen in Fig. 12(b), the duck-shaped cyclic
voltammogram attributable to redox reaction of Ni NPs still
retained aer 300 cycles, suggesting that the exfoliation of Ni
NPs did not occur during the charge/discharge process. In
Fig. 12(b), the peak top on the oxidation reaction side gradu-
ally shied to the higher potential with an increase of the
number of the cycles. This would be due to the gradual prog-
ress of the redox reaction for various size of Ni NPs at various
depths. The redox reaction would proceed from the surface of
the Ni NPs at the shallower depth to the inside of the NPs at
the deeper depth.
4. Conclusion

A redox reactive carbon layer including the densely dispersed
Ni NPs was directly fabricated on an Au charge collective
electrode with a surface area enhanced by a simple one-step
ion-irradiation method at room temperature. The high reso-
lution TEM observation revealed metallic Ni NPs of less than
�2 nm dispersed in a carbon matrix layer with local graphiti-
zation. The amount of the included Ni was 14 mg cm�2 as
determined by ICP analysis. The CV measurements using 1 M
KOH revealed the typical faradaic redox reaction, and the
stored charge of the Au–C–Ni sample was three times as large
as that of the as-received bulky Ni foil. Thus, the proposed
pseudocapacitor electrode fabricated by ion irradiation is
believed to be promising for the development of the next
generation of supercapacitors.
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R. Schlögl and S. Hofmann, In situ characterization of alloy
catalysts for low-temperature graphene growth, Nano Lett.,
2011, 11, 4154–4160.

95 P. Wu, S. Yu, M. Feng, H. Liu, S. Liu and J. Fu, Controllable
synthesis of the polymorphic porous carbon with N-doping/
Ni magnetic nanohybrids for high performance
supercapacitor and environment applications, Appl. Surf.
Sci., 2021, 567, 150875.

96 X. Zhao, Y. Song and Z. H. Liu, Kinetics enhanced
hierarchical Ni2P1�xSx/Ni@carbon/graphene yolk–shell
microspheres boosting advanced sodium/potassium
storage, J. Mater. Chem. A, 2020, 8, 23994–24004.
RSC Adv., 2022, 12, 21318–21331 | 21331


	One-step and room-temperature fabrication of carbon nanocomposites including Ni nanoparticles for supercapacitor electrodes
	One-step and room-temperature fabrication of carbon nanocomposites including Ni nanoparticles for supercapacitor electrodes
	One-step and room-temperature fabrication of carbon nanocomposites including Ni nanoparticles for supercapacitor electrodes
	One-step and room-temperature fabrication of carbon nanocomposites including Ni nanoparticles for supercapacitor electrodes
	One-step and room-temperature fabrication of carbon nanocomposites including Ni nanoparticles for supercapacitor electrodes
	One-step and room-temperature fabrication of carbon nanocomposites including Ni nanoparticles for supercapacitor electrodes
	One-step and room-temperature fabrication of carbon nanocomposites including Ni nanoparticles for supercapacitor electrodes


