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Smooth muscle cells play an important role in the pathophysiology
of atherosclerotic cardiovascular disease. Following the accumulation
of lipid-laden macrophages within arterial intima, smooth muscle cells
undergo a phenotypic transition and migrate from the vessel media into
the growing neointima [1]. While these cells contribute to plaque size,
the smooth muscle cells in the plaque proliferate and deposit extensive
extracellular matrix to form a protective fibrous cap that limits plaque
rupture and subsequent clinical thrombotic events. However, smooth
muscle migration and proliferation can drive the development of rest-
enotic vascular remodeling following vascular injury, such as post-
balloon angioplasty and stent placement, suggesting both positive and
negative consequences for smooth muscle fibroproliferative remodeling
in cardiovascular disease [2]. In addition to growth and migration,
smooth muscle cells can also take on proinflammatory and macro-
phage-like phenotypes that may contribute to plaque development
[1,3]. While these phenotypes are thought to contribute to leukocyte
recruitment and lipid handling, respectively, their relative contribution
to atherosclerosis remains largely unknown [1,3].

NADPH oxidases play a critical role in multiple aspects of cardio-
vascular disease. In smooth muscle cells, the primary NADPH oxidase
isoforms include NOX1 and NOX4, although NOX2 has been detected at
low levels [4]. NOX1 shows enhanced expression following carotid
injury [5], and both NOX1 and NOX4 show enhanced expression in
response to mitogenic stimuli, such as PDGF-BB and Ang II [4,6].
However, these enzymes differ considerably in their localization and
enzymatic activity. NOX1 is primarily found in the plasma membrane,
caveoli, and endosomes, whereas NOX4 localizes to focal adhesions, the
endoplasmic reticulum, and mitochondria [7–9]. Additionally, NOX1
interacts with multiple regulatory proteins to drive inducible super-
oxide production, while NOX4 is constitutively active and generates
primarily hydrogen peroxide [10,11]. Consistent with this discrepancy,
NOX1 knockdown blunts superoxide production in response to Ang II
and PDGF-BB, and NOX1 deletion reduces Ang II-induced superoxide

production and increases in blood pressure in vivo [12,13]. Similarly,
smooth muscle-specific NOX1 overexpression enhances superoxide
production, smooth muscle proliferation, and neointimal area following
carotid injury, whereas NOX1 knockout mice show decreased super-
oxide production, reduced proliferation, and diminished neointima
[12,14]. However, the role of NOX1 in atherosclerosis has been con-
troversial with both enhanced plaque formation and reduced plaque
formation described following NOX1 deletion [15–17]. NOX1 deletion
shows a strong reduction in diabetic atherosclerosis [18], which could
be due to the enhanced expression of NOX1 in diabetic atherosclerosis
or due to the enhanced activation of PKCβ in diabetic atherosclerosis
which stimulates NOX1 activation [19–21].

In this issue of Redox Biology, Vendrov et al. utilized a combination
of genetic mouse models and cell culture studies to provide strong
evidence that the NOX1 coactivator protein NoxA1 critically regulates
smooth muscle growth, migration, and phenotypic modulation in ste-
notic and atherosclerotic vascular remodeling. In a previous study by
this group, NoxA1 expression was shown to be elevated during stenotic
and atherosclerotic vascular remodeling, and NoxA1 overexpression
worsened stenosis following carotid wire injury [22]. The current study
utilized global NoxA1 deletion and smooth muscle-specific NoxA1 de-
letion to definitively demonstrate a critical role for NoxA1 in patho-
genic vascular remodeling (Vendrov et al., Redox Biol., 2018). NoxA1
knockout mice showed reduced stenotic vascular remodeling following
wire injury associated with reduced smooth muscle proliferation and
migration in cell culture models. Furthermore, NoxA1 global deletion in
LDL receptor knockout mice and ApoE knockout mice showed dimin-
ished superoxide production with reduced plaque formation, and
smooth muscle-specific NoxA1 deletion in ApoE knockout mice simi-
larly showed reduced superoxide levels and atherosclerotic plaque
formation (Vendrov et al., Redox Biol., 2018). These data are consistent
with an important role for smooth muscle NOX1 in promoting athero-
sclerotic plaque formation, adding further evidence to a pathological
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role for NOX1 signaling in atherosclerotic vascular remodeling.
The conversion of smooth muscle cells to a proinflammatory, mac-

rophage-like phenotype is thought to promote atherosclerosis plaque
progression [1]. This smooth muscle phenotypic transition is dependent
upon the induction of reprogramming transcription factors, including
KLF4 and Oct4 [23,24]. In the current study, the authors show that the
loss of NOXA1 in smooth muscle cells reduces nuclear KLF4 expression
within atherosclerotic plaques and reduces oxidized phospholipid eli-
cited expression of KLF4 and the macrophage marker CD68 (Vendrov
et al., Redox Biol., 2018). The loss of KLF4 from smooth muscle cells
reduces the expression of multiple proinflammatory genes (e.g. MCP-1)
[23], and the loss of NOXA1 in smooth muscle cells similarly results in
diminished proinflammatory gene expression (MCP-1, VCAM-1,
MMP2). Therefore, these studies provide strong evidence implicating
NOXA1 as a key regulator of smooth muscle cell dedifferentiation into
the proinflammatory, macrophage-like phenotype.

The work of Vendrov et al. highlights the importance of smooth
muscle-derived, NOX1-dependent superoxide production in athero-
sclerotic plaque formation and identifies NoxA1/NOX1 as a potential
new therapeutic target to treat cardiovascular disease. However, sev-
eral important questions remain. While NoxA1/NOX1 clearly regulates
plaque formation, the effect of NoxA1/NOX1 inhibition in models of
atherosclerotic plaque regression, which could be accomplished using
the NoxA1ds inhibitor [25], would provide better insight into its po-
tential as a therapeutic target. The reduction in smooth muscle pro-
liferation and migration observed with NoxA1/NOX1 inhibition could
result in a vulnerable plaque phenotype, and the role of NOX1 in plaque
stability or matrix deposition has not been addressed. As such, NOX1
inhibitors may be better suited to limit restenotic vascular remodeling
that is driven primarily by smooth muscle proliferation and migration.
Finally, smooth muscle phenotypic transition occurs bidirectionally,
and it remains unknown whether NOXA1/NOX1 inhibition would re-
verse the phenotypic transition in cells that have already attained the
smooth muscle macrophage-like phenotype.

In summary, NOX1 signaling plays a critical role in vascular re-
modeling through the regulation of smooth muscle proliferation and
migration. The study by Vendrov et al. definitively demonstrates a
critical role for NoxA1/NOX1 signaling in atherosclerotic plaque for-
mation by driving both smooth muscle proliferation and migration and
by promoting the KLF4-dependent transition to a proinflammatory,
macrophage-like phenotype (Fig. 1).
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Fig. 1. Smooth muscle NOX1 signaling in atherosclerosis. NoxA1 critically regulates NOX1-dependent superoxide production in atherosclerotic smooth muscle cells
to drive plaque formation through smooth muscle proliferation, migration, and transition to a proinflammatory, macrophage-like phenotype.
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