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Although habitat loss has large, consistently negative effects on biodiversity, its genetic 
consequences are not yet fully understood. This is because measuring the genetic 
consequences of habitat loss requires accounting for major methodological limitations like 
the confounding effect of habitat fragmentation, historical processes underpinning genetic 
differentiation, time-lags between the onset of disturbances and genetic outcomes, and 
the need for large numbers of samples, genetic markers, and replicated landscapes 
to ensure sufficient statistical power. In this paper we overcame all these challenges to 
assess the genetic consequences of extreme habitat loss driven by mining in two herbs 
endemic to Amazonian savannas. Relying on genotyping-by-sequencing of hundreds of 
individuals collected across two mining landscapes, we identified thousands of neutral 
and independent single-nucleotide polymorphisms (SNPs) in each species and used 
these to evaluate population structure, genetic diversity, and gene flow. Since open-pit 
mining in our study region rarely involves habitat fragmentation, we were able to assess 
the independent effect of habitat loss. We also accounted for the underlying population 
structure when assessing landscape effects on genetic diversity and gene flow, examined 
the sensitivity of our analyses to the resolution of spatial data, and used annual species 
and cross-year analyses to minimize and quantify possible time-lag effects. We found that 
both species are remarkably resilient, as genetic diversity and gene flow patterns were 
unaffected by habitat loss. Whereas historical habitat amount was found to influence 
inbreeding; heterozygosity and inbreeding were not affected by habitat loss in either 
species, and gene flow was mainly influenced by geographic distance, pre-mining land 
cover, and local climate. Our study demonstrates that it is not possible to generalize 
about the genetic consequences of habitat loss, and implies that future conservation 
efforts need to consider species-specific genetic information.

Keywords: gene flow, genetic diversity, isolation by resistance, landscape genomics, open-pit mining, RAD 
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iNTRODUCTiON
In spite of ample evidence showing that habitat loss has large, 
consistently negative effects on biodiversity (Fahrig, 2003), 
very few studies have assessed the consequences of habitat 
amount on genetic variation (DiLeo and Wagner, 2016; 
Monteiro et al., 2019). Habitat loss can potentially impact the 
demographics of natural populations, reducing population 
size, gene flow, and genetic diversity, and thereby increasing 
inbreeding and extinction risk (Allendorf et al., 2013). 
Understanding the genetic consequences of habitat loss is 
therefore essential to safeguard biological diversity and fulfill 
Aichi Biodiversity Targets and Sustainable Development 
Goals (Tittensor et al., 2014).

Important limitations constrain the quantification of 
habitat amount effects on genetic variation. Firstly, habitat loss 
and fragmentation are often confounded, so disentangling the 
relative contribution of habitat amount requires controlling 
for fragmentation (Fahrig, 2003). Secondly, landscape effects 
can also be easily confounded with historical demographic 
processes that underly population structure (Llorens et al., 
2018). Thirdly, a coarse resolution of spatial data and time-lags 
between the onset of disturbances and genetic responses may 
mask the effects of recent landscape modification (Anderson 
et al., 2010; Balkenhol et al., 2016). Finally, large numbers of 
samples and genetic markers, and replicated sampling designs 
that capture enough landscape heterogeneity are needed to 
detect or rule out possible landscape effects with sufficient 
statistical power (Storfer et al., 2010; McCartney-Melstad 
et al., 2018). Failure in overcoming any of these limitations 
may hide important detrimental effects to the maintenance 
of genetic variability, or reveal spurious patterns unrelated to 
habitat loss.

Few studies have attempted to quantify the impact of habitat 
loss on both genetic diversity and gene flow, and none has 
yet accounted for all the methodological limitations outlined 
above (Balkenhol et al., 2016; DiLeo and Wagner, 2016). Here 
we fill this important knowledge gap assessing the genetic 
consequences of extreme habitat loss driven by open-pit mining 
in two endemic plants from the Eastern Amazon. Firstly, we 
were able to assess the independent effect of habitat loss, as 
open-pit mining in our study region rarely involves habitat 
fragmentation (see Figure S1 in Supplementary Material). 
We also controlled for historical demographic processes by 
accounting for the underlying population structure when 
assessing landscape effects on genetic diversity and gene 
flow; assessed the sensitivity of our analyses to the resolution 
of spatial data; and used annual species (which complete a 
full reproductive cycle and die within one year) to minimize 
possible time-lag effects. Finally, we sampled hundreds of 
individuals scattered across two separate regions exposed to 
mining, and genotyped them at thousands of single-nucleotide 
polymorphisms (SNPs) distributed across their genomes to 
ensure high statistical power.

The banded iron formations known as Cangas from the 
Carajás Mineral Province in the Eastern Amazon harbor one 
of the world’s largest deposits of high-grade iron ore (Skirycz 

et  al., 2014), which has attracted substantial attention from 
mining companies. In fact two of the world’s largest iron ore 
mines are located in the region (Figure 1), with operations 
in Serra Norte dating back to the 1980s, while Serra Sul only 
began activities in 2014. Based on a curated inventory of 
Canga plants from this region (Viana et al., 2016), we selected 
annual herbs (to minimize time-lag effects), occurring 
exclusively in Canga ecosystems (where mining activities 
are concentrated), and endemic to our study region. From 
the few available species meeting these criteria, Brasilianthus 
carajensis (Melastomataceae) and Monogereion carajensis 
(Asteraceae), were among the easiest to find and identify in the 
field. Since both species seem to be pollinated by insects and 
their seeds dispersed by the wind (Cruz et al., 2016; Rocha et 
al., 2017), we expected them to be susceptible to habitat loss, 
given that the progeny of insect- and wind-pollinated plants 
has been shown to be strongly negatively affected by habitat 
fragmentation (Aguilar et al., 2019). Relying on genotyping-
by-sequencing of hundreds of individuals from both species 
collected across these two mining landscapes, we assessed 
the influence of habitat loss on genetic diversity and gene 
flow. We also performed a suit of germination experiments to 
determine if these plants are able to successfully colonize iron 
ore mines. We predicted that: i) individuals surrounded by 
undisturbed habitats would show higher genetic diversity and 
lower inbreeding than those exposed to habitat loss driven 
by mining; ii) gene flow would be best explained by recent 
landscape modifications, and mining areas would represent 
barriers to gene flow; iii) mining waste substrates would 
hinder germination.

MATERiALS AND METHODS

Sampling, DNA Extraction, and Genome 
Size Estimation
We collected leaf tissue samples of 150 individuals of B. carajensis 
and 207 individuals of M. carajensis between February and June 
2017 (SISBIO collection permit N. 48272-4). Samples were 
collected in the main Canga plateaus of our study area, comprising 
the entire occurrence range of both species. Care was taken to 
sample individuals at or around iron ore mines and separated by 
at least 20 m from each other to avoid collecting siblings (Figure 
1). Both species exhibit a patchy distribution, with B. carajensis 
usually occurring in aggregates of up to hundreds of individuals 
occupying rocky exposed soils, while isolated individuals of M. 
carajensis were often found in shaded areas and soils with a larger 
organic matter content (personal observation). Our study area 
harbors some of the world’s largest iron ore mines, one located 
in Serra Norte, comprised of an archipelago of Canga plateaus, 
and one in Serra Sul formed by a large continuous plateau. 
While in Serra Norte we collected 103 and 120 individuals, 
in Serra Sul we sampled 17 and 49 individuals of B. carajensis 
and M. carajensis respectively. To ensure high DNA quality and 
concentration, we preserved B. carajensis samples in silica and 
M. carajensis samples in 10 ml of a NaCl-saturated solution of 2% 
cetrimonium bromide (CTAB) (Rogstad, 1992), and stored them 
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at −80°C until analysis. Total DNA of B. carajensis was extracted 
using a CTAB 2% protocol (Doyle and Doyle, 1987) followed by 
a DNA purification protocol (Michaels et al., 1994); whereas the 
DNeasy Plant Mini Kit (Qiagen, EUA) was used for M. carajensis. 

DNA concentration for both species was quantified using 
the Qubit High Sensitivity Assay Kit (Invitrogen), and DNA 
integrity assessed through 1.2% agarose gel electrophoresis. All 
DNA samples were adjusted to a final concentration of 5 ng/µl 

FiGURE 1 | Map of the study region depicting the location of the collected samples from Brasilianthus carajensis (blue circles) and Monogereion carajensis (white 
triangles) in Serra Norte (right panels) and Serra Sul (left panels). Hill shade maps are shown overlaid with land cover color maps for the different years analyzed. The 
location of the Carajás Mineral Province within Brazil is shown on the upper left corner.
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in a final volume of 30 µl. We used flow cytometry to estimate 
genome size in both species. Nuclei were obtained from fresh leaf 
tissues chopped along with references in general purpose buffer 
with 1% Triton X-100 and 1% PVP-30 (Loureiro et al., 2007). The 
whole sample preparation was conducted on ice until the events 
acquisition on a PI fluorescence mean under a 575/26 bandpass 
filter. Triplicates of 1000 PI stained nuclei were analyzed under 
a 488 nm laser on BD FACSAria II cytometer. The internal 
standard used was tomato [Lycopersicon esculentum; 2C = 1.98 
pg, (Dolezel et al., 1992)].

RAD Sequencing and Single-Nucleotide 
Polymorphisms Discovery
DNA samples were shipped to SNPSaurus (http://snpsaurus.
com/) for sequencing and bioinformatic analyses of raw reads 
(trimming and variant calling). Briefly, nextRAD genotyping-by-
sequencing libraries were prepared (Russello et al., 2015) using 
Nextera DNA Flex Reagent (Illumina, Inc.) and considering the 
estimated genome size of each species (2C DNA content was 508 
Mbp in B. carajensis and 6,284 Mbp in M. carajensis). Fragmented 
DNA was then amplified for 25 cycles at 75°, with one of the 
primers matching the adapter and extending 8 nucleotides into 
the genomic DNA with the selective sequences GTGTAGAA 
(B. carajensis) and TGCAGGAG (M. carajensis). Thus, only 
fragments starting with a sequence that can be hybridized by 
the selective sequence of the primer will be efficiently amplified. 
The nextRAD libraries were sequenced on a HiSeq 4000 with 
four lanes of 150 bp reads (University of Oregon). Genotyping 
analysis used custom scripts (SNPsaurus, LLC) that trimmed 
the reads using bbduk (BBMap tools, http://sourceforge.net/
projects/bbmap/): bbmap/bbduk.sh in = $file out = $outfile ktrim 
= r k = 17 hdist = 1 mink = 8 ref = bbmap/resources/nextera.fa.gz 
minlen = 100 ow = t qtrim = r trimq = 10. A de novo reference 
was created by collecting 10 million reads in total, evenly from 
the samples, and excluding reads that had counts fewer than 5 
or more than 700 for B. carajensis; and fewer than 6 or more 
than 1,000 for M. carajensis. The remaining loci were then 
aligned to each other to identify allelic loci and collapse allelic 
haplotypes to a single representative. All reads were mapped 
to the reference with an alignment identity threshold of 90% 
using bbmap (BBMap tools). Genotype calling was done using 
Samtools and bcftools (Samtools mpileup -gu -Q 12 -t DP, DPR -f 
ref.fasta -b samples.txt | bcftools call -cv - > genotypes.vcf). The 
variant call format (vcf) file was filtered to remove alleles with a 
population frequency of less than 3%. Loci were removed that 
were heterozygous in all samples or had more than two alleles in 
a sample (suggesting collapsed paralogs). The absence of artifacts 
was checked by counting SNPs at each read nucleotide position 
and determining that SNP number did not increase with reduced 
base quality at the end of the read. A total of 43,887 contigs were 
generated for B. carajensis (sequencing depth ranged between 18 
and 239), and 36,040 for M. carajensis (depth ranging between 14 
and 246). Geographic coordinates in decimal degrees, genotypes 
in vcf and sequences in FASTA format for both species are 
provided here: https://figshare.com/articles/Habitat_loss_does_
not_always_entail_negative_genetic_consequences/8224175.

Neutral Datasets
The R package r2vcftools (https://github.com/nspope/
r2vcftools)—A Wrapper for Vcftools (Danecek et al., 2011)—
was used to perform final quality control on the genotype 
data (see detailed script here: https://github.com/rojaff/
r2vcftools_basics). We excluded loci containing more than 
30% missing data, and filtered them for quality (phred score > 
50 both species), read depth (30–240 both species), linkage 
disequilibrium (LD, R2 < 0.6 and R2 < 0.4 for B. carajensis and m. 
carajensis, respectively), and strong deviations from the hardy 
weinberg equilibrium (HWE, P < 0.0001 both species) (O’Leary 
et al., 2018). Additionally, we removed any potential loci under 
selection detected through genome scans, whereby FST outlier 
tests were applied after assessing population structure with 
the snmf function from the LEA package (Frichot et al., 2014). 
The genomic inflation factor and a trial-and-error approach 
were used to calibrate P-values, and the Benjamini-Hochberg 
algorithm (Q = 0.05) was used to correct for false discovery 
rates (François et al., 2016), see example script here: http://
membres-timc.imag.fr/Olivier.Francois/LEA/files/LEA_snmf.
html). The resulting sets of neutral and independent loci were 
then used in all subsequent analyses.

Genetic Structure
We used two complementary genetic clustering method to assess 
population structure: Admixture (Alexander et al., 2009) and 
discriminant analysis of principal components—DAPC from 
the adegenet package (Jombart et al., 2010; Jombart and Ahmed, 
2011). Admixture assigns individuals into groups to maximize 
HWE while DAPC minimizes allelic differences. For the former 
analysis, the number of ancestral populations (k) was allowed to 
vary between 1 and 10, and the best k was chosen based on cross-
validation errors (Frichot et al., 2014). For the second analyses, the 
number of clusters was assessed using the function find.cluster, 
which runs successive k-means clustering with an increasing 
number of clusters, and then determined the best-supported 
number of genetic clusters using the Bayesian Information 
Criterion (BIC). Considering the ancestry coefficients assigned 
by Admixture, we then estimated expected heterozygosity (HE) 
and inbreeding coefficients (F) for each genetic cluster using the 
“het” option in VCFtools implemented in r2vcftools (Danecek 
et al., 2011). Additionally, we assessed fine-scale spatial genetic 
structure within each genetic cluster by quantifying spatial 
autocorrelation in Yang’s genetic relatedness between pairs of 
individuals (Yang et al., 2010). To do so we used local polynomial 
fitting (LOESS) of pairwise relatedness and pairwise geographic 
distance. In order to test if the average observed relatedness 
predicted by LOESS at a given distance differs from the null 
model, row and column indices for the relatedness matrix were 
permuted 999 times. The smoothing parameter was fixed as 
the default for loess in R (span = 0.75). At each permutation a 
LOESS model was re-fitted using the permuted relatedness 
and geographic distance matrix, and 95% percentiles of the 
permutation-derived LOESS predictions were used to generate 
confidence envelopes around the null expectation (see example 
script here: https://github.com/rojaff/Lplot).
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Land Cover Maps
To account for time-lag effects when assessing the genetic 
consequences of habitat loss, we built land cover maps for 
different years (2016, 2014, 2011, and 1979), comprising pre-
mining maps (1979). Landsat 2 images (spatial resolution of 80 
m in seven spectral bands) were used for year 1979, Landsat 7 
images (spatial resolution of 30 m in seven spectral bands) for 
year 2011, and Sentinel images (spatial resolution of 10 m in 4 
spectral bands) for years 2014 and 2016. Images were downloaded 
from the Earth Explorer Server (https://earthexplorer.usgs.gov/), 
selecting scenes from the month of July to minimize clouds. 
All images were converted to ground reflectance in percentage 
using the Atmospheric and Topographic Correction algorithm 
of the PCI Geomatica 2016 software. The scenes were joined 
to create a mosaic of the study area and derive the Normalized 
Difference Vegetation Index—NDVI (Tarpley et al., 1984). We 
then employed the eCognition 9 software using a Geographic 
Object-Based Image Analysis (GEOBIA) to classify land cover 
types. The multi-resolution classification algorithm was selected, 
given that it allows obtaining segments with different sizes due 
to brightness, shape, smoothness, and compactness. Montane 
savanna (Canga), water, forest, mine, pasture, and urban classes 
were identified.

Genetic Diversity
To assess the effect of habitat loss on genetic diversity, we regressed 
individual-level diversity metrics (H and f), estimated with “het” 
option in VCFtools (Danecek et al., 2011), on historical habitat 
amount and habitat loss (measured in area) driven by mining in 
different years, using high resolution land cover maps (10 x 10 m). 
By so doing we explicitly evaluated the effect of habitat loss within 
a buffer accounting for historical habitat amount. Historical 
habitat amount was calculated by extracting the proportion of 
Canga habitat in a buffer surrounding each individual using 
pre-mining maps (1979). Habitat loss in different years (2011, 
2014, and 2016) was calculated by subtracting habitat amount 
for a given year from historical habitat amount. To select an 
optimal buffer size we first ran uni-variate models using habitat 
amount extracted from the most recent land cover maps (2016) 
with buffers varying in size between 100 and 900 m, and then 
compared all models using the Akaike Information Criterion 
(AIC). As habitat amount calculated with the largest buffers (900 
m) was always among the best models (∆AIC ≤ 2), we chose this 
buffer size to encompass a greater portion of lost areas (Table 
S1). Additionally, the small flowers of our study species suggest 
their pollinators do not forage beyond 1 Km (Greenleaf et al., 
2007). In Serra Norte, 44% of individuals of B. carajensis and 41% 
of M. carajensis experienced habitat loss, whereas 55 and 57% of 
individuals of B. carajensis and M. carajensis, respectively, faced 
habitat loss in Serra Sul.

Because genetic parameters (H and f) are affected by 
demographic processes, we explicitly accounted for demography 
either by analyzing individuals belonging to the same cluster or 
by including genetic cluster identity as a random effect in our 
models. In Serra Norte, which comprises an archipelago of Canga 
plateaus, we fit linear mixed-effect models, using each plateau as 

a random effect to account for site-specific characteristics and 
spatial autocorrelation. In the case of B. carajensis from Serra 
Norte, we also included a random effect specifying the genetic 
cluster containing each individual (see genetic structure results 
using the Admixture software). In Serra Sul, which comprises a 
single large plateau, we used generalized least-squares models 
(GLS) fitted with different correlation structures (linear, 
exponential, Gaussian, and spherical) to explicitly model spatial 
autocorrelation. The “weight” argument was used in some cases 
to account for heteroscedasticity. Raw f and logit-transformed H 
were used as response variables and models fitted using the nmle 
R package (Pinheiro et al., 2009). For each model, we calculated 
AIC, the difference of each model and the best model (ΔAIC), 
and the Akaike’s weight of evidence (wAIC). Models with ΔAIC ≤ 
2 were considered as equally plausible (Zuur et al., 2009). The set 
of best models (∆AIC ≤ 2) were compared to reduced models 
without each predictor variable, using likelihood ratio tests (LRT, 
α = 0.05), and all models were validated by plotting residual 
vs. fitted values and by checking for residual autocorrelation. 
Relative variable importance was calculated summing the Akaike 
weights of the best-fitting models in which the variable of interest 
was present (https://github.com/carolinacarvalho/Importance_
plot). Model averaging across the set of best models was used 
to compute parameters estimates that account for uncertainty 
in model selection (Burnham and Anderson, 2002). We also 
estimated confidence intervals for parameter estimates to assess 
the statistical power of our models (Hoenig and Heisey, 2001).

Gene Flow
To assess the effect of habitat loss on gene flow, we first optimized 
gene flow hypotheses and then tested them by modeling isolation 
by resistance (IBR, (McRae, 2006)). Yang’s genetic relatedness 
between pairs of individuals (Yang et al., 2010) was used as a 
proxy for recent gene flow, given that it represents the number 
of common ancestors in the recent past (Wang, 2017). Although 
relatedness is not a direct measure of gene flow, it has been 
widely used to describe genetic connectivity among individuals 
(Storfer et al., 2010; Balkenhol et al., 2016; Monteiro et al., 2019) 
and a recent simulation study showed that it is among the most 
accurate individual-based genetic distance metric for landscape 
genetic studies (Shirk et al., 2017). Resistance to gene flow due to 
mining was modeled using land cover maps for different years 
(2016, 2014, 2011, and 1979) containing only the major land 
cover classes of our study region: Montane savanna (Canga), 
forest (evergreen forest), and mine. Water bodies, pasture, and 
urban areas were excluded because they occurred outside the 
extent of our samples (Figure 1). By so doing we were able to 
evaluate the permeability to gene flow of each land cover class; 
and test whether habitat loss driven by mining hindered gene 
flow across our replicated landscapes. Additional variables 
found to be important predictors of gene flow in other plants 
(Dyer, 2016; Lanes et al., 2018) were modeled along with land 
cover, including geographic distance, elevation [digital elevation 
model (DEM) retrieved from the USGS Earth Explorer], terrain 
roughness (generated from the DEM using the Terrain Analysis 
plug-in from QGIS), and bioclimatic variables (retrieved from 
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WorldClim). To select a set of orthogonal variables explaining 
most climatic variation across our study area, we first ran 
separate principal component analyses (PCA) for each species 
using the extracted values from all 19 WorldClim bioclimatic 
layers plus elevation (scaled) (Figure S2). We then selected 
the three variables showing the strongest correlation with the 
first, second and third PCA axis (which explained more than 
85% of total variance in both B. carajensis and M. carajensis). 
These were minimum temperature of coldest month (bio06) 
and precipitation of wettest (bio16) and coldest quarter (bio19) 
for B. carajensis; and minimum temperature of coldest month 
(bio06), precipitation of wettest quarter (bio16), and temperature 
seasonality (bio04) for M. carajensis.

A genetic algorithm (unrelated to the genetic data) was 
implemented through the ResistanceGA package to generate 
optimized resistance surfaces for each one of these variables 
(Peterman, 2018). The advantage of this optimization procedure 
is that it relies on empirical genetic data, ensuring that resistance 
values attributed to resistance surfaces will relate meaningfully 
to the movement of genes across the landscape (Peterman, 
2018). Moreover, since resistance values are not defined a 
priori, the optimized resistance surfaces can be considered 
unbiased by any existing knowledge or human preferences. In 
the case of land cover maps, random initial resistance values 
were assigned for each class; then pairwise resistance distances 
were measured using random-walk commute times; and finally 
pairwise genetic distance was regressed on resistance distance 
using maximum likelihood population effect models (MLPE, 
see below). The whole process was iterated until no significant 
change was found in the objective function (Peterman, 
2018). We then performed the same steps for the remaining 
continuous predictors, but instead of assigning random initial 
resistance values, eight types of transformations were applied 
to the raw values. In this case, two parameters controlling 
Ricker and monomolecular functions were iteratively varied 
during the optimization (Peterman, 2018). Ten independent 
runs of optimization were conducted for each surface to assess 
the convergence in parameter estimates (Khimoun et  al., 
2017). All rasters were set to Universal Transverse Mercator 
(UTM) projection, and cropped to the extent of sampling 
locations plus a buffer area of 5 km to minimize border effects 
(Lanes et al., 2018). Land cover resistance surfaces and terrain 
roughness were optimized using 250 x 250 m resolution maps, 
while 900 x 900 m resolution maps were used for WorldClim 
layers as this is the highest available. Serra Norte and Serra Sul 
were analyzed separately aiming to replicate IBR analyses in 
two separate areas exposed to open-pit mining.

Using the program Circuitscape V4.0 (McRae, 2006), 
we then calculated pairwise resistance distances between 
all samples, employing the optimized resistance surfaces 
described above plus a surface where all pixels were set to 
1 to create a null model of isolation by geographic distance 
(IBD). To assess IBR, defined as the correlation between 
genetic and resistance distances (McRae, 2006), we fitted 
mixed-effects regression models using penalized least squares 
and a correlation structure designed to account for the non-
independence of pairwise distances (maximum-likelihood 

population effects—MLPE: https://github.com/nspope/
corMLPE; (Clarke et al., 2002)). Yang’s genetic relatedness 
between individuals was used as the response variable and the 
different resistance distances (contemporary and historical 
land cover, elevation, terrain roughness, temperature, 
precipitation, and geographic distance) as predictors. All 
MLPE models accounted for the underlying population 
structure, either by considering only individuals belonging 
to the same genetic cluster (most cases), or by including an 
additional random effect specifying if pairwise distances 
represented individuals from the same or from different genetic 
clusters (the case of B. carajensis from Serra Norte, see genetic 
structure results using the Admixture software). To evaluate 
the incidence of time-lag effects potentially masking mining 
effects on gene flow, we first fitted uni-variate models for each 
species and region using resistance distances from land cover 
surfaces for all years, plus those from geographic distance 
surfaces. The best models were selected using the Akaike 
Information Criterion (∆AIC < 2), and whenever geographic 
distance was found among the best models we considered 
IBD as the most parsimonious gene flow model (Burnham 
and Anderson, 2002; Balkenhol et al., 2016). To evaluate the 
sensitivity of our analysis to the resolution (grain size) of 
spatial data, we also compared uni-variate land cover models 
containing resistance distances computed from surfaces with 
different grain sizes (100 x 100, 300 x 300, 600 x 600, and 900 x 
900 m). Results were consistent across the different resolutions 
(Table S2), so we ran all subsequent analysis using a grain 
size of 900 x 900 m. We then fitted multiple regression models 
containing resistance distances from the best uni-variate land 
cover models selected in the previous step and resistance 
distance from all other optimized surfaces for each species 
and region. Models containing all possible combinations of 
non-collinear predictors (r < 0.6, Figure S3) were compared 
using the dredge function from the package MuMIn [(https://
github.com/rojaff/dredge_mc; (Barton and Barton, 2015)], 
and best models were selected using AIC. Likelihood ratio 
tests (LRT) were performed to assess the influence of each 
predictor variable on the best model’s log-likelihood (Jaffé et 
al., 2016), and relative variable importance, model-averaged 
parameter estimates, and confidence intervals were calculated 
as described above. Finally, we carried out a barrier analysis to 
identify genetic discontinuities between individuals by using 
Monmonier’s algorithm and Gabriel graphs implemented in 
package adegenet (Jombart and Ahmed, 2011).

Germination Experiments
To evaluate if seeds from both study species are able to germinate 
inside iron ore mines, we ran a set of germination experiments. 
Seeds from both species were sown over four different substrates 
(Whatman® paper, Canga topsoil, forest topsoil, and mining waste 
substrate) placed in plastic boxes (Gerbox—11 x 11 x 4 cm) and 
kept in a growth chamber (Fitotron SGC 120, Weiss Technik, UK) 
under continuous darkness, constant temperature (20°C) and air 
humidity (60%) for 33 consecutive days, from September 4th to 
October 7th 2018. Substrates received distilled water until the 
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retention capacity, and water losses by evaporation were replaced 
daily. All treatments were carried out with five replicates for each 
substrate in each species. Each replicate contained 25 seeds from 
B. carajensis and 12 seeds from M. carajensis. The number of 
germinated seeds was recorded daily, with germination defined 
as the emission of 2 mm of primary root.

RESULTS

Neutral Dataset
We collected leaf tissue samples of 150 individuals of B. carajensis 
and 207 individuals of M. carajensis distributed across the 
entire occurrence range of both species and surrounding two 
large iron ore mines (Figure 1). Samples were frozen and their 
DNA later extracted and shipped for genotyping-by-sequencing 
(RAD-sequencing) and bioinformatic processing. We identified 
a total of 10,016 SNPs in B. carajensis and 20,464 SNPs in M. 
carajensis, but after filtering these for missing data, quality, depth, 
linkage disequilibrium, deviations from the Hardy-Wenberg 
Equilibrium, and FST outlier loci, we obtained sets of neutral and 

independent markers containing 1,411 and 6,052 loci for each 
species, respectively.

Genetic Structure
Two complementary genetic clustering approaches used to assess 
population structure (Admixture and DAPC) indicated the 
presence of three clusters in B. carajensis and two in M. carajensis 
(Figure 2, Figures S4–S6). Cluster-level heterozygosity was 
slightly higher in B. carajensis than in M. carajensis, and 
significant albeit low inbreeding was found in one genetic 
cluster of each species (Figure 2). Both species showed spatial 
autocorrelation in genetic relatedness in Serra Norte but not in 
Serra Sul, and the strength of spatial autocorrelation was higher 
in B. carajensis (Figure 2).

Genetic Diversity
To assess the effect of habitat loss on genetic diversity, we 
regressed individual-level diversity metrics on historical 
habitat amount and habitat loss driven by mining in different 
years. Heterozygosity (H) and inbreeding (f) were not 

FiGURE 2 | Map showing the ancestry coefficients from Brasilianthus carajensis (A and C) and Monogereion carajensis (B and D) in Serra Norte (upper panels) and 
Serra Sul (lower panels) determined using the Admixture software. Montane savanna areas are shown in green against hill shade layers. Smaller lower-left corner 
plots show spatial autocorrelation in genetic relatedness, where black solid lines are the LOESS fit to the observed relatedness, gray shaded regions are 95% 
confidence bounds around the null expectation (black dotted lines), and short vertical lines at the bottom of the figure are observed pairwise distances. Genetic 
diversity measures for each genetic cluster are shown in the upper tables. Sample sizes (N) are followed by mean expected heterozygosity (HE) and mean inbreeding 
coefficient (F), and values represent 95% confidence intervals.
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influenced by habitat loss, either in Serra Norte nor in Serra 
Sul, as the set of best-fitting models always included null 
models or historical (pre-mining) habitat amount (Figure 3, 
Table  S3). Although confidence intervals for the effect of 
habitat loss on heterozygosity were usually narrow, those 
describing the effect of habitat loss on inbreeding were very 
broad in B. carajensis and moderately so in M.  carajensis 
(Table  S4). Historical habitat amount was found to be 
associated with inbreeding in both species, although the 
direction of the effect varied (Figure 4, Table S4).

Gene Flow
To assess the effect of habitat loss on gene flow, we first employed 
a genetic algorithm to optimize gene flow hypotheses, then 
calculated resistance distances between individual samples, and 
finally modeled IBR regressing pairwise genetic relatedness on 
resistance distances through MLPE models. While resistance 
to gene flow due to mining was modeled using land cover maps 
for different years (2016, 2014, 2011, and 1979), additional 
covariates modeled along with land cover included geographic 
distance, terrain roughness, elevation, and bioclimatic 
variables. The optimization of resistance surfaces revealed 
that Canga was the land cover class representing lowest 
resistance to gene flow in both species, whereas mining areas 

and evergreen forests imposed higher resistance (Figures S7–
S10). However, univariate MLPE regression models revealed 
that geographic distance usually explained relatedness patterns 
as well as land cover (Table S2), and only pre-mining land 
cover (1979) was found to explain relatedness patterns better 
than geographic distance in M. carajensis from Serra Norte. 
Our results thus reveal that mining neither hinders nor 
facilitates gene flow in these two endemic annual plants. While 
these results hold across different resolutions (Table S2), an 
independent barrier analysis also failed to identify barriers 
between individuals separated by mining areas (Figure S11). 
Multiple MLPE regression models showed that IBD explained 
genetic relatedness patterns in B. carajensis, whereas IBR was 
more important in M. carajensis (Figure 3, Table S5). In all 
cases, genetic relatedness decreased with increasing resistance 
(Figure 4, Table S6).

Germination Experiments
Germination experiments revealed that seeds from both species 
are able to germinate in mining waste substrates. Whereas M. 
carajensis showed similar germination in Canga and mining 
substrates, germination rates of B. carajensis were higher in 
Canga topsoil (Figure S12).

FiGURE 3 | Relative variable importance in the set of best-fitting models (ΔAIC ≤ 2) for Brasilianthus carajensis and Monogereion carajensis in Serra Norte 
and Serra Sul (see Materials and Methods and Supplementary Tables S3 and S5 for details). Individual-level genetic diversity metrics (H and f) were response 
variables and habitat amount in 1979 and habitat loss in 2011, 2014, and 2016 were predictors in genetic diversity models. Pairwise inter-individual genetic 
relatedness was the response variable and resistance distances computed from optimized surfaces were predictors in isolation by resistance models. 
Likelihood Ratio Test (LRT) were performed to assess if each predictor variable significantly improved the model’s log-likelihood (significant variables are 
highlighted with *).
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DiSCUSSiON
Our study is the first to assess the genetic consequences of 
habitat loss while accounting for all the major limitations 
constraining the quantification of habitat amount effects on 
genetic variation. Our results reveal that habitat loss driven 
by mining did not affect genetic diversity or gene flow in 
two endemic herbs from Amazonian savannas. Whereas 
historical habitat amount was found to influence inbreeding, 
heterozygosity and inbreeding were not affected by habitat loss 
in either species. Finally, gene flow was mainly influenced by 
geographic distance in B. carajensis and by pre-mining land 
cover and local climate in M. carajensis.

The genetic structure in B. carajensis mirrored that from the 
co-occurring perennial morning glory Ipomoea maurandioides 
(Lanes et al., 2018), showing two differentiated genetic clusters in 
Serra Norte, while M. carajensis only presented one cluster in Serra 

Norte and another one across the remaining distribution range. This 
genetic structure was considered when assessing landscape effects 
on genetic diversity and gene flow in order to control for historical 
demographic processes. Additionally, since open-pit mining in 
our study region did not usually result in decreased structural 
connectivity between habitat patches (since these were already 
separated, Figure S1), we were able to assess habitat loss effects that 
were not heavily influenced by habitat fragmentation (Fahrig, 2003).

The maintenance of genetic diversity in spite of extreme habitat 
loss suggests that our study plants are able to colonize mining 
environments and maintain gene flow across open-pit mines. 
Germination experiments revealed that seeds from both species 
can indeed germinate in mining waste substrates. Additionally, 
both plant species showed extensive gene flow across mining areas, 
and mining neither enhanced nor hindered  gene flow. Similar 
results were found for a threatened orchid and the American pika, 
which showed analogous levels of genetic diversity in mining 

FiGURE 4 | Coefficient plots for the set of best-fitting models (ΔAIC ≤ 2) for Brasilianthus carajensis and Monogereion carajensis in Serra Norte and Serra Sul 
(see Materials and Methods and Supplementary Tables S4 and S6 for details). Points represent model-averaged regression coefficients and lines the 95% 
confidence intervals.
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and natural habitats (Esfeld et al., 2008; Waterhouse et al., 2017), 
although neither gene flow nor historical effects were assessed. 
Inbreeding levels in our focus species are comparable to those 
observed in the widespread I. maurandioides (Lanes et al., 2018), 
and since they were associated with historical habitat amount 
they seem to reflect density-dependent selfing (Leimu et al., 
2006). Our results thus reveal that some insect-pollinated and 
wind-dispersed plants do not experience genetic erosion due to 
habitat loss (Aguilar et al., 2008; Aguilar et al., 2019). A possible 
mechanism explaining the maintenance of genetic diversity is 
seed dormancy over long periods of time, which would result in 
multiple overlapping generations being represented in the seed 
bank (Honnay et al., 2008).

Both species presented spatial autocorrelation in genetic 
relatedness in Serra Norte but not in Serra Sul, indicating a more 
restricted gene flow in the Canga archipelago of Serra Norte than in 
the large continuous plateau of Serra Sul. Additionally, geographic 
distance was weakly correlated with recent land cover resistance in 
Serra Norte but not in Serra Sul, where it was strongly correlated with 
land cover resistance from all years (Figure S3). We thus expected 
that IBR would be easier to disentangle from isolation by distance 
(IBD) in Serra Norte than in Serra Sul. In Serra Norte, however, 
geographic distance and pre-mining land cover (highly correlated 
with geographic distance) were the best predictors of current gene 
flow in B. carajensis and M. carajensis populations, respectively. 
Considering the strong winds characterizing Montane savanna 
ecosystems from the Carajás Mineral Province (Skirycz et al., 2014), 
and the fact that wind currents in open landscapes are known to 
facilitate long-distance dispersal of plant propagules (Soons et al., 
2004; Heydel et al., 2014), we posit that wind-mediated dispersal 
is driving gene flow across Montane savannas and open-pit mines. 
High levels of gene flow have also been detected in other wind-
dispersed species in open anthropogenic landscapes like agricultural 
areas (Kamm et al., 2010; Aavik et al., 2013; Heydel et  al., 2014), 
suggesting that open areas promote genetic connectivity in wind-
dispersed plants. On the other hand, local climate differences also 
appear to explain gene flow patterns in M. carajensis populations 
from Serra Sul better than IBD, suggesting mismatches in flowering 
periods (Dick et al., 2008) or different local adaptations (Lenormand, 
2002; Hoffmann and Sgrò, 2011). We nevertheless caution that our 
study design and the little available knowledge on the natural history 
of these plants do not allow disentangling the relative contribution of 
pollen and seed dispersal on gene flow.

The absence of an effect of habitat loss on genetic variation 
can be attributed to time-lags between the onset of disturbances 
and genetic responses (Schlaepfer et al., 2018). We overcame this 
methodological limitation by focusing on species with a short 
generation time (i.e. completing their life cycle within one year), and 
by explicitly incorporating time scale into our analyses (evaluating 
land cover maps from different years). Moreover, historical 
demographic processes are unlikely to have biased our results, since 
our IBR models explicitly accounted for the underlying population 
structure. Mining operations began in the 1980s in Serra Norte, 
allowing enough time (~40 generations) to assess genetic responses 
to mining. On the other hand, Serra Sul was still pristine by 2013, 
so only three plant generations were exposed to mining before our 

samples were collected in 2017. This could explain why in Serra Sul 
recent land cover did not explain relatedness patterns better than 
geographic distance alone (Table S2). However, the fact that recent 
land cover did not explain relatedness patterns in either species in 
Serra Norte, suggests that gene flow has been maintained across 
mines. In contrast, land cover in existence two decades ago was 
found to explain gene flow in a perennial narrow endemic morning 
glory occurring in Serra Norte (Lanes et al., 2018), indicating that 
our methods should be sufficient to detect an effect of mining should 
there be one, although differences in reproductive systems and 
dispersal modes could also underlie these different results (Aguilar 
et al., 2008; Vranckx et al., 2012). Additionally, our findings were 
unaffected by the resolution of spatial data and were supported by 
an independent barrier analysis, so they strongly indicate that gene 
flow in our two annual herbs is not affected by habitat loss driven 
by mining.

The incidence of time-lag effects on the response of genetic 
diversity to habitat loss is nevertheless more difficult to assess, 
since different metrics respond at different rates. Empirical and 
simulations studies have shown changes in inbreeding and allelic 
richness immediately after the onset of disturbances, whereas 
heterozygosity is usually lost more slowly, over subsequent 
generations (Keyghobadi et al., 2005; Lowe et al., 2005). We therefore 
caution that longer time lags would be needed to rule out an effect 
of habitat loss on the observed heterozygosity of our study species. 
On the other hand, ~40 generations should be enough to detect a 
response in the levels of inbreeding, and confidence intervals for 
the effect of habitat loss on inbreeding (Table S4) suggest that our 
models had sufficient power to identify non-significant effects. Our 
results thus indicate, with moderate confidence, that habitat loss did 
not result in increased inbreeding in our study plants.

CONCLUSiONS
Using thousands of genetic markers to study two annual endemic 
plants in replicated landscapes, we found that extreme habitat 
loss driven by mining did not result in any detectable genetic 
consequences. Since our results are largely unbiased by the effect 
of habitat fragmentation, the underlying genetic structure of plant 
populations, the resolution of spatial data, or time-lag effects, they 
reveal that habitat loss does not always entail negative genetic 
consequences. Although habitat fragmentation has been shown 
to disrupt gene flow and increase inbreeding across plants species, 
regardless of their characteristics (Aguilar et al., 2019), our study 
unveils remarkably resilient species to extreme habitat loss, as 
similar levels of genetic diversity and gene flow were found in mining 
and natural habitats. These findings imply that it is not possible to 
generalize about the genetic consequences of habitat loss, so future 
conservation efforts need to consider species individually.
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