
METHODS
published: 29 November 2016
doi: 10.3389/fninf.2016.00050

Frontiers in Neuroinformatics | www.frontiersin.org 1 November 2016 | Volume 10 | Article 50

Edited by:

Pedro Antonio Valdes-Sosa,

Joint China Cuba Lab for Frontiers

Research in Translational

Neurotechnology, Cuba

Reviewed by:

Xi-Nian Zuo,

Institute of Psychology (CAS), China

Gabriele Lohmann,

Max Planck Institute for Human

Cognitive and Brain Sciences,

Germany

*Correspondence:

Kristian Loewe

kl@kristianloewe.com

Received: 12 August 2016

Accepted: 31 October 2016

Published: 29 November 2016

Citation:

Loewe K, Donohue SE,

Schoenfeld MA, Kruse R and

Borgelt C (2016) Memory-Efficient

Analysis of Dense Functional

Connectomes.

Front. Neuroinform. 10:50.

doi: 10.3389/fninf.2016.00050

Memory-Efficient Analysis of Dense
Functional Connectomes
Kristian Loewe 1, 2, 3*, Sarah E. Donohue 1, 3, 4, Mircea A. Schoenfeld 1, 3, 5, Rudolf Kruse 2 and

Christian Borgelt 2

1Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany, 2Department of Computer Science,

Otto-von-Guericke University, Magdeburg, Germany, 3 Leibniz Institute for Neurobiology, Magdeburg, Germany, 4Center for

Cognitive Neuroscience, Duke University, Durham, NC, USA, 5 Kliniken Schmieder, Allensbach, Germany

The functioning of the human brain relies on the interplay and integration

of numerous individual units within a complex network. To identify network

configurations characteristic of specific cognitive tasks or mental illnesses,

functional connectomes can be constructed based on the assessment of synchronous

fMRI activity at separate brain sites, and then analyzed using graph-theoretical concepts.

In most previous studies, relatively coarse parcellations of the brain were used to define

regions as graphical nodes. Such parcellated connectomes are highly dependent on

parcellation quality because regional and functional boundaries need to be relatively

consistent for the results to be interpretable. In contrast, dense connectomes are

not subject to this limitation, since the parcellation inherent to the data is used to

define graphical nodes, also allowing for a more detailed spatial mapping of connectivity

patterns. However, dense connectomes are associated with considerable computational

demands in terms of both time and memory requirements. The memory required to

explicitly store dense connectomes in main memory can render their analysis infeasible,

especially when considering high-resolution data or analyses across multiple subjects

or conditions. Here, we present an object-based matrix representation that achieves

a very low memory footprint by computing matrix elements on demand instead of

explicitly storing them. In doing so, memory required for a dense connectome is reduced

to the amount needed to store the underlying time series data. Based on theoretical

considerations and benchmarks, different matrix object implementations and additional

programs (based on available Matlab functions and Matlab-based third-party software)

are compared with regard to their computational efficiency. The matrix implementation

based on on-demand computations has very low memory requirements, thus enabling

analyses that would be otherwise infeasible to conduct due to insufficient memory.

An open source software package containing the created programs is available for

download.

Keywords: functional connectivity, dense connectome analysis, resting-state fMRI, big data, graph theoretical

analysis

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/editorialboard
https://doi.org/10.3389/fninf.2016.00050
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2016.00050&domain=pdf&date_stamp=2016-11-29
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive
https://creativecommons.org/licenses/by/4.0/
mailto:kl@kristianloewe.com
https://doi.org/10.3389/fninf.2016.00050
http://journal.frontiersin.org/article/10.3389/fninf.2016.00050/abstract
http://loop.frontiersin.org/people/367139/overview
http://loop.frontiersin.org/people/24590/overview
http://loop.frontiersin.org/people/2860/overview
http://loop.frontiersin.org/people/392685/overview
http://loop.frontiersin.org/people/76639/overview

Loewe et al. Memory-Efficient Analysis of Dense Functional Connectomes

1. INTRODUCTION

Graph-based analysis of dense connectomes allows for spatially
precise mapping of fMRI-based functional connectivity patterns
but is associated with considerable computational demands (van
den Heuvel et al., 2008; Hayasaka and Laurienti, 2010; de Reus
and Van den Heuvel, 2013; Fornito et al., 2013). As a result,
some previous studies have been conducted at reduced spatial
resolution (Buckner et al., 2009; Valencia et al., 2009; Zuo et al.,
2012). However, most previous studies have not used dense
connectomes at all, neither at the full nor at a reduced resolution.
Instead, relatively coarse parcellations (or multiple regions of
interests) were used to define network nodes (e.g., Salvador et al.,
2005; Achard et al., 2006; Supekar et al., 2008; Fair et al., 2009;
He et al., 2009; Supekar et al., 2009; Dosenbach et al., 2010;
Fornito et al., 2011; Schoonheim et al., 2012; Agosta et al., 2013;
Brier et al., 2014; Suo et al., 2015; Rocca et al., 2016). While the
analysis of such parcellated connectomes offers many advantages
and led to impactful findings, their spatial sensitivity is rather
limited, as the use of region-level nodes typically involves the
aggregation of fMRI time series from the incorporated voxels,
at the cost of more detailed spatial information (Wang et al.,
2010; Scheinost et al., 2012; Stanley et al., 2013). Such analyes are
thus highly dependent on parcellation quality because regional
and functional boundaries need to be relatively consistent to
obtain meaningful results (Smith et al., 2011, 2013; Zuo and
Xing, 2014; Jiang et al., 2015; Jiang and Zuo, 2016). In this
regard, the suitability of a given parcellation also depends on
the application because functional boundaries may vary between
individuals (Biswal et al., 2010; Kelly et al., 2012), in the context
of different tasks (Lohmann et al., 2016; Mišić and Sporns, 2016),
or in association with dysfunction and disease (Matthews and
Hampshire, 2016).

Dense connectomes, in contrast to parcellated connectomes,
are less prone to these problems because the parcellation inherent
to the data is used to define graphical nodes, so that the mixing of
multiple, potentially dissimilar signals is avoided. To make the
analysis of dense connectomes more computationally efficient,
some efforts have recently been directed toward acceleration, e.g.,
through parallel computing (based on multi-core CPUs (Tomasi
and Volkow, 2011; Loewe et al., 2014), GPUs (Wang et al., 2013),
Intel R© Xeon PhiTM coprocessors (Wang et al., 2015), specialized
vector hardware (Minati et al., 2014), or CPU instruction set
extensions (Loewe et al., 2014)), or alternative measures of
internodal association (Loewe et al., 2014; Minati et al., 2014).

By focusing on time efficiency, however, memory- and
storage-related aspects are sometimes overlooked. With high-
resolution data, a single connectivity matrix can easily surpass
the available main memory of most computers. For example,
at an isometric resolution of 2 mm, about 200,000 gray matter
voxels exist in MNI template space. Using 4 bytes per element,
the corresponding voxel-level connectivity matrix, or dense
connectome (Van Essen and Ugurbil, 2012), would thus require
about 149 GiB. Of course, there are some straightforward
ways to reduce memory usage. As a side effect of the
recently introduced grayordinate space, all gray matter can be
represented by about 100,000 grayordinates because cortical

data are modeled in surface space (Glasser et al., 2013), so
that a grayordinate-based dense connectome would require only
about 37.3 GiB. Due to matrix symmetry, it would further be
sufficient to store only the upper or lower triangular part of a
functional connectivity matrix, reducing memory occupancy by
about 50%. Although the memory required to explicitly store
connectivity matrices can be reduced in this way, they still remain
too large for many applications, especially when considering
high-resolution data or analyses across multiple subjects
or conditions.

Here, we propose an object-based matrix representation that
achieves a very low memory footprint by computing matrix
elements on demand instead of explicitly storing them. In doing
so, the memory required for a dense connectome reduces to
the amount needed to store the underlying time series data.
Even for data that exhibit a very high temporal resolution,
this approach allows for immense reductions in memory
requirements.

2. MATERIALS AND METHODS

In the literature on functional connectivity, the terms matrix,
graph, and connectome are often used somewhat interchangeably
so that the exact meaning is often dependent on the context.
Typically, based on a set of separate brain sites defined
as nodes, pairwise statistical associations between the nodes’
corresponding time series are used to derive a functional
connectivity matrix. From a graph-theoretical perspective, this
matrix can also be regarded as an undirected weighted graph
or network, which is often binarized based on a connectivity
threshold. Formally, an undirected binary graph GB consists
of two sets, a set of nodes and a set of pairwise internodal
connections, or edges. GB can be represented as an adjacency
matrix B, where bij = 1 indicates that an edge exists between
the two nodes i and j. The term connectome, originally defined in
terms of structural brain connectivity (Sporns et al., 2005; Sporns,
2011), is now commonly used in a more ambiguous fashion
often referring to brain connectivity graphs or networks of any
kind (e.g., binary or weighted graphs, derived from structural,
functional, or effective connectivity) and on multiple scales (e.g.,
microscopic, macroscopic, or at the systems level).

In the context of MRI, one can further distinguish between
dense, i.e., voxel- or grayordinate-based, and parcellated
connectomes (see e.g., Akil et al., 2011; Marcus et al., 2011;
Glasser et al., 2013). In the latter, nodes are not individual voxels
or grayordinates, but rather parcels, each of which typically
comprises many voxels or grayordinates. Note that in this
context dense connectomes could also be viewed as parcellated
connectomes with atomic parcels. Note also that the use of
the term “dense” here is distinct from its typical use to denote
“dense” matrices as opposed to “sparse” matrices, even though
a dense connectome can be represented by a dense connectivity
matrix.

In this article, we describe our work with dense connectomes
in mind. Of course, the proposed methods could be applied to
parcellated connectomes as well, but, due to a much smaller

Frontiers in Neuroinformatics | www.frontiersin.org 2 November 2016 | Volume 10 | Article 50

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Loewe et al. Memory-Efficient Analysis of Dense Functional Connectomes

number of nodes, such analyses are typically less challenging
regarding computational efficiency.

The remainder of this section consists of three parts. We
begin with a discussion of possible implementation variants
for an object-based matrix representation, focusing on memory
requirements and computation time. Next, programs for an
example application (degree computation starting out from
nodal time series data) based on the proposed matrix object
implementation variants are described. The last part deals
with the comparison of these programs with each other
and with four additional programs based on external tools
to assess the computational performance of the different
implementation variants with respect to both time and memory
efficiency.

2.1. Matrix Representation
Essentially, to design an object-based representation of a
functional connectivity matrix (dense connectome), only three
methods are required for interfacing with the object: a
constructor (to create an object), an accessor (to access matrix
elements), and a destructor (to free the resources acquired by the
object during its lifetime when the object is destroyed). Let us
consider the expected memory requirements and computation
time of three storage schemes for such an object, which we will
refer to as full-stored, half-stored, and on-demand.

2.1.1. Memory Requirements
In the full-stored scheme, upon object construction all pairwise
internodal connectivity values are precomputed based on the
nodes’ corresponding time series data and the full connectivity
matrix is stored in main memory. This requires memory in the
order of N2 + NT, where N is the number of nodes and T is the
number of points in time for storing the full matrix and the time
series data.

In the half-stored scheme, taking advantage of matrix
symmetry, only the upper (or lower) triangular elements of the
matrix are stored in order to save memory. This requires memory
in the order of N(N − 1)/2+ NT.

In the on-demand scheme, a matrix element is computed on
demand, i.e., once that specific element is accessed. This requires
memory in the order of NT (the amount of memory needed for
the underlying time series data).

Note that in the full- and half-stored schemes the time series
data are needed during object construction only. After that, the
memory required for the time series data could be deallocated
if not otherwise needed. In contrast, in the on-demand scheme,
the time series data need to be kept in memory until the object
is destroyed. Nevertheless, because in the considered application
domain N is much greater than T, the on-demand scheme
provides superior memory efficiency compared to both other
schemes.

2.1.2. Computation Time
To speed up execution, we consider (1) parallelization through
concurrent computations onmultiple CPU cores based onmulti-
threading, (2) data locality optimization (within each thread)

through tiling, (3) vectorization through SIMD1 instruction
set extensions (within each thread), (4) using the tetrachoric
correlation coefficient rt instead of Pearson’s r to estimate
functional connectivity (the latter being used by the majority of
previous studies).

2.1.2.1. Multi-threading
To benefit from parallelization by dividing the computations
across multiple cores, parallelization through multi-threading
(based on Pthreads) is employed in the half-stored scheme so that
each of k threads computes (approximately) E/kmatrix elements,
where E=N(N−1)/2 is the total number of matrix elements. For
the on-demand scheme, parallelization through multi-threading
cannot be implemented by the object for obvious reasons.
However, it can be implemented by the client or application
code, i.e., the code that uses the object (at the cost of additional
programming efforts).

2.1.2.2. Data locality optimization
To benefit from data locality, the order in which the matrix
elements are computed can be determined in an attempt to
minimize the number of cache misses. For the half-stored
scheme, we adopted a cache-oblivious tiling (COBL) approach
to achieve this (Frigo et al., 1999; Prokop, 1999). Implementation
details can be found in Loewe et al. (2014). For the on-demand
scheme, data locality optimization has not been attempted, since,
on the part of the matrix object, information on the order of
accesses is not available in advance. Note that such information
is often available on the part of the application code, but inter-
dependencies between application code and implementation
details of the matrix object should be avoided because the object
implementation could change in the future. However, we discuss
a special case below (see Section 2.1.3).

2.1.2.3. Vectorization
An fMRI data set can be represented by a data matrix XN×T =

(xik), where 1 ≤ i ≤ N and 1 ≤ k ≤ T. By xi = (xi1, xi2, · · · , xiT),
i.e., the ith row of X, we denote the time series of the ith
node. Using Pearson’s r as a connectivity measure, the sample
correlation matrix is given by RN×N = (rij), where each matrix
element can be computed as the mean of the products of the
standard scores using

rij =
1

T − 1

T
∑

k= 1

(
xik − x̄i

sxi

)
(

xjk − x̄j

sxj

)

=
zi · zj

T − 1
,

where x̄i, sxi , and zi (with zi = (zi1, zi2, . . . , ziT) and z = x−x̄
sx

) are
the sample mean, the corrected sample standard deviation, and
the vector of standard scores corresponding to xi, respectively.
This equation can be rearranged to

rij =

T
∑

k= 1

xik − x̄i

√

(T − 1)s2xi

xjk − x̄j

√

(T − 1)s2xj

 = z′i · z
′
j,

1A single instruction can be applied to multiple data in parallel using CPU
instruction set extensions such as SSE2 (Streaming SIMD Extensions, version 2)
or AVX (Avanced Vector eXtensions).

Frontiers in Neuroinformatics | www.frontiersin.org 3 November 2016 | Volume 10 | Article 50

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Loewe et al. Memory-Efficient Analysis of Dense Functional Connectomes

where s2xi is the unbiased sample variance of xi and z′i is given by
z′i = (z′i1, z

′
i2, . . . , z

′
iT) with

z′ik =
xik − x̄i

√

(T − 1)s2xi

=
xik − x̄i

√
∑T

l= 1(xil − x̄i)2
.

To compute R (formed by all pairwise correlation coefficients),
we first compute z′i for every node (pre-normalization; linear
complexity) before computing ri,j = z′i · z

′
j for every node pair

(quadratic complexity), which saves one division per pair
compared to computing zi and

zi·zj
T−1 , respectively.

Depending on the processor’s capabilities, AVX or SSE2
instructions are used for SIMD-based vectorization. SIMD
instructions allow for data-level parallelism by carrying out
the same operation on multiple data elements simultaneously,
using 256-bit (AVX) or 128-bit (SSE2) wide SIMD registers. For
implementation details see Loewe et al. (2014).

2.1.2.4. Tetrachoric correlation estimation
Based on two binary variables xb and yb, the tetrachoric
correlation coefficient rt (Pearson, 1900) estimates the correlation
of the two latent continuous-valued variables xc and yc, which are
assumed to underlie xb and yb. Originally, rt has been devised for
those cases in which xb and yb are observable while xc and yc are
not. As recently proposed, it can also be used as a computationally
efficient, although less accurate, alternative to Pearson’s r as a
functional connectivity estimate (Loewe et al., 2014). The use
of rt for this purpose requires data reduction in the temporal
domain: each nodal time series is initially binarized based on its
median (Loewe et al., 2013, 2014). Assuming bivariate normality,
the correlation between two original (real-valued) time series
can then be estimated very efficently based on the binarized
time series by the tetrachoric correlation coefficient, exploiting
SSE2 and the POPCNT instruction for SIMD-based vectorization
for the necessary computations. If these instructions are not
supported by the processor, an alternative, albeit less efficient,
implementation based on a 16-bit lookup table can be used
instead. For implementation details see Loewe et al. (2014). An
additional advantage is that a binarized time series, being stored
in the bits of integer variables, requires only a fraction of the
memory that the original time series requires. This compression
seems to render data locality optimization unnecessary for most
data sets, presumably because the entire binarized time series data
set can be stored in the CPU cache.

Note that the considerations made above for the half-stored
scheme are also valid for the full-stored scheme. However, we
decided to forego an actual implementation of this scheme
within our framework at this point since it exhibits the highest
memory requirements and a full-stored matrix representation is
easily achieved based on already available software (for example,
Matlab’s corrcoef).

2.1.3. Cache-Based Implementation
To accomodate situations where all matrix elements need to
be traversed, but the order of traversal is essentially arbitrary,
a cache-based storage scheme was additionally devised. In this
scheme, upon construction, the matrix object is initialized such

that a cache of user-specified size is maintained internally. While
client code uses iterator functions to traverse the elements, the
object internally fills its cache when necessary.

Since the order of traversal is determined by the object, both
data locality (COBL) and multi-threading can be exploited when
the cache is filled. Thus, similar to the half-stored scheme, data
locality optimization andmulti-threading can be implemented by
the matrix object, which reduces the programmer’s efforts when
implementing applications, compared to the on-demand scheme.
As mentioned above, for the on-demand schememulti-threading
has to be implemented by application code, and data locality
optimization cannot be used at all, if inter-dependencies between
matrix object implementation and client code are to be avoided.
On the other hand, it is not possible to parallelize the traversal
when using the cache-based variant, which could be a significant
disadvantage in some situations.

2.2. Application: Degree Centrality
In this section, the task of node degree computation based
on nodal time series data will serve as an example application
to assess the performance of the different matrix object
implementations with respect to both time and memory
efficiency. The node degree, or degree centrality, is a simple
graph-theoretical metric aimed at investigating the importance
of individual nodes in a binary graph (Nieminen, 1974; Freeman,
1979). It is defined for each node as the number of other
nodes to which it is connected. More formally, given a
binary graph GB, the degree ki of a node i is defined as

ki=
∑|N|

j bi,j, where i, j∈N, i 6= j, and N is the set of nodes.
In the neuroimaging literature, centrality measures have been
used as a means to identify and analyze network hubs in the
human brain (Buckner et al., 2009; Lohmann et al., 2010; Tomasi
and Volkow, 2010, 2012; Wink et al., 2012; Zuo et al., 2012;
Di Martino et al., 2013; van den Heuvel and Sporns, 2013;
Binnewijzend et al., 2014; Markett et al., 2014, 2016; Schaefer
et al., 2014).

2.2.1. Programs
Combining the storage schemes half-stored, on-demand, and
cache-based with the two functional connectivity estimates,
Pearson’s r and tetrachoric correlation coefficient rt , we arrive
at six matrix object configurations. We will denote these
by FCMAT/s/ρ̂, where s indicates the storage scheme with
s ∈ {half-stored, on-demand, cache-based}, and
ρ̂ indicates the functional connectivity estimate2 with ρ̂ ∈ {r, rt}.

For typical fMRI data sets, data locality optimization turned
out not to be beneficial if rt is used as the functional
connectivity estimate. Only for a very large number of points
in time is a benefit observed. Presumably, this is because
the binarized time series, due to efficient bitwise storage,
take up far less memory than the original time series,

2The symbol ρ was chosen because the functional connectivity estimates that are
used here, r and rt , are, in fact, correlation estimates (estimating a hypothetical
population correlation ρ). This involves the simplistic assumption of time series
stationarity (Hutchison et al., 2013; Zalesky et al., 2014) of the involved time
series and also the assumption of bivariate normality between every two time
series (Hlinka et al., 2011).

Frontiers in Neuroinformatics | www.frontiersin.org 4 November 2016 | Volume 10 | Article 50

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Loewe et al. Memory-Efficient Analysis of Dense Functional Connectomes

thus enabling efficient CPU cache usage without additional
optimizations. This is why the cache-based variant is not
combined with rt here. For the same reasons, data locality
optimization is used for FCMAT/half-stored/r, but not for
FCMAT/half-stored/rt .

The matrix object variants were implemented in C. The
programs for degree computation based on the matrix object
were also written in C, but Matlab integration is provided
via MEX. A corresponding open source software package
is available for download3. In addition, four programs for
degree computation based on Matlab functions or Matlab-
based third-party software have been created. These programs
use corrcoef (Matlab built-in), corr (Matlab Statistics
Toolbox), IPN_fastCorr, and IPN_calLCAM (from the
Matlab toolbox “IPN_voxelGraph” by Xi-Nian Zuo available at
Matlab File Exchange4) for matrix computation, respectively.
Note that “IPN_voxelGraph” is now part of a new, much
more extensive toolbox called “Connectome Computation
System”5 (Xu et al., 2015).

In principle, each program first derives a weighted graph G
(correlation matrix) from the data, then derives a binary graph
GB (adjacency matrix) from G based on a functional connectivity
threshold, and finally determines the degree ki of each node i
in GB. Note that these basic steps are not necessarily performed
explicitly.

The programs based on corrcoef, corr, and
IPN_fastCorr use a full-stored matrix representation as
they first compute an N × N correlation matrix. This matrix is
thresholded to derive a binary adjacency matrix. Then, degrees
are obtained by summation over rows (or columns) of the
adjacency matrix.

The programs using FCMAT/half-stored/∗ first create
the matrix object, which, upon creation, computes and
internally stores the upper triangle of the correlation matrix
based on the input data. In doing so, multi-threading, data
locality optimization, and vectorization are used. Data locality
optimization is used only in combination with Pearson’s r for
the reasons stated above. The matrix elements are then traversed
using the object’s accessor method (traversal is parallelized
using multiple threads). Upon access, the appropriate pre-
computed element is returned by the matrix object. If an element
exceeds the threshold, the degree of the corresponding nodes is
incremented.

The programs using FCMAT/on-demand/∗ first create
the matrix object, which, upon creation, pre-normalizes
or binarizes the input data. The matrix elements are then
traversed using the object’s accessor method (traversal
is parallelized using multiple threads). Upon access, the
appropriate element is computed, and returned by the
matrix object. If an element exceeds the threshold, the
degree of the corresponding nodes is incremented. Neither
the correlation matrix nor the adjacency matrix is explicitly
stored.

3http://www.kristianloewe.com/software and https://github.com/kloewe/conan.
4http://www.mathworks.com/matlabcentral/fileexchange/32553-ipn-voxelgraph.
5https://github.com/zuoxinian/CCS.

The program using FCMAT/cache-based/r first creates
the matrix object, which, upon creation, initializes the internal
cache. The matrix elements are then traversed using the iterator
functions. When the next matrix element is requested during
traversal, the matrix object checks if the next element is in
the cache and retrieves it from there, if that is the case. If
not, the cache is filled by computing the next “tile of matrix
elements” exploiting multi-threading, data locality optimization,
and vectorization in the process. The matrix element along
with its coordinates is then returned by the matrix object.
Thresholding and incrementation of the appropriate degrees are
conducted during traversal in the same way as for the other
variants, with the notable exception that the traversal (and hence
also thresholding and degree incrementation) is not parallelized.

The program using IPN_calLCAM does not follow any of
the schemes described above. Based on a pre-defined correlation
threshold, it employs a block-wise approach to construct a sparse
adjacency matrix directly from the data (Zuo et al., 2012). The
adjacency matrix is efficiently stored using Matlab’s sparse matrix
functionality. Explicit storage of the full correlation matrix is
thus avoided, while memory requirements during adjacency
matrix construction depend on the selected block size, and
memory requirements for the final adjacency matrix depend on
its sparsity. To efficiently compute the correlation values for each
block, IPN_calLCAM internally uses IPN_fastCorr. Note
that IPN_calLCAM is not applicable to analyses that use the
(weighted) connectivity matrix rather than the adjacency matrix.

2.2.2. Benchmarks
Benchmarks were conducted using Matlab (R2011b) on two
machines, a desktop computer with an Intel Core i7-3960X CPU
(3.30 GHz, 6 cores, hyper-threading disabled) and 64 GB of main
memory running Linux (openSUSE 13.1, Kernel 3.11), and a
server with two Intel Xeon E5-2697 v2 CPUs (2.7 GHz, 12 cores,
hyper-threading enabled) and 256 GB of main memory running
Linux (Ubuntu 12.04.5 LTS, Kernel 3.13). The C/MEX routines
that are part of the programs that use the matrix object were
compiled using the GNU C compiler gcc (optimization level
3; version 4.8.1 and 4.6.3 on the desktop and the server system,
respectively). To assess the memory usage of the programs, we
used the function monMem6, which, in turn, uses the Linux proc
file system to monitor Matlab’s resident memory size during
program execution.

Three input data sets with a different number of nodes
(60,000, 120,000, and 240,000) and T = 256 points in time
were generated using pseudo-random single-precision floating
point numbers. Storage of the full matrix (assuming 4 byte per
element) would require 13.4, 53.6, and 214.6 GiB of memory for
60,000, 120,000, and 240,000 nodes, respectively. The correlation
threshold was chosen such that the density of the resulting binary
graph was approximately 0.01. For IPN_calLCAM, we used
10 (for the data sets with 60,000 and 120,000 nodes) and 25
blocks (for the data set with 240,000 nodes). The number of
threads was varied between 1 and 6 on the desktop computer
and between 1 and 48 on the server. For the programs based

6https://github.com/kloewe/util-m.

Frontiers in Neuroinformatics | www.frontiersin.org 5 November 2016 | Volume 10 | Article 50

http://www.kristianloewe.com/software
https://github.com/kloewe/conan
http://www.mathworks.com/matlabcentral/fileexchange/32553-ipn-voxelgraph
https://github.com/zuoxinian/CCS
https://github.com/kloewe/util-m
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Loewe et al. Memory-Efficient Analysis of Dense Functional Connectomes

on the FCMAT variants the number of threads was controlled
via the corresponding parameter. For the programs based on
corrcoef, corr, IPN_fastCorr, and IPN_calLCAM the
number of threads was controlled using the Matlab function
maxNumCompThreads.

3. RESULTS

To assess the performance of the different FCMAT variants, we
used the computation of node degrees based on nodal time series
data as an example application. Experiments were conducted on
the two machines described above. Note that, depending on the
number of nodes of the input data set and the available main
memory, some tests could not be conducted due to insufficient
memory on the respective systems. In correspondence with the
number of logical processors on each system, the number of
threads was varied between 1 and 6 on the desktop computer and
between 1 and 48 on the server.

In Figure 1, the main results regarding memory requirements
and computation time are illustrated. Here, only the best result
is reported for each program, i.e., the result based on the
number of threads for which the elapsed time was shortest
for that program. This seemed the most appropriate since
some programs continually gained performance from additional
threads, while for other programs additional threads turned
out to be detrimental to their performance after a certain
optimal number of threads was exceeded. The performance
gained by each program through multi-threading and the cache
effectiveness in terms of cache misses are illustrated in Figures 2

and 3, respectively.

3.1. Memory Requirements and Maximum
Performance
The benchmarks showed that the programs based on
corrcoef (1), corr (2), and IPN_fastCorr (3) had
the highest memory requirements of all programs (Figure 1),
which was expected because they employ full matrix storage.
However, they used more memory than expected (Table 1).
More specifically, the peak memory of these three programs was
about two times higher than expected. Instead of approximately
4(N2 + NT) bytes it was about twice that much, for example,
approximately 27 GiB instead of the expected 13.5 GiB for N =

60,000. Of these three programs, IPN_fastCorr executed
fastest, sometimes up to 3× faster than corrcoef, while corr
was only slightly faster than corrcoef (Figure 1).

The memory requirements of IPN_calLCAM (4) depend on
the number of blocks S, so that it is possible to reach lower
memory requirements at the cost of increased computation time
(due to additional overhead) by choosing a greater number of
blocks. Using S = 10, S = 10, and S = 25, the program
peaked at approximately 6.2, 24.3, and 44.4 GiB for N = 60,000,
N = 120,000, and N = 240,000, respectively. For N = 60,000,
IPN_calLCAM executed about 10–30% slower thancorrcoef
(depending on the system), while it was about 20% faster forN =

120,000 on the server (Figure 1).

The programs based on FCMAT/half-stored/r (5) and
FCMAT/half-stored/rt (8) showed the expected memory
requirements, which were significantly reduced compared to the
programs based on full storage, but still very high. They peaked
at about about 7, 27, and 108 GiB for N = 60,000, N = 120,000,
and N = 240,000, respectively. Here, the expected memory
requirements were computed as

2N(N − 1)
︸ ︷︷ ︸

resulting matrix

+ 4NT
︸︷︷︸

original data

+ 4NT
︸︷︷︸

normalized data

bytes

for FCMAT/half-stored/r, and

2N(N − 1)
︸ ︷︷ ︸

resulting matrix

+ 4NT
︸︷︷︸

original data

+
B

8
N⌈T/B⌉

︸ ︷︷ ︸

binarized data

bytes

where B is the number of bits per integer variable, for
FCMAT/half-stored/rt (Table 1). Depending on the system
and the number of nodes, FCMAT/half-stored/r and
FCMAT/half-stored/rt ran between 3 and 12× and 11 and
39× faster than corrcoef (Figure 1).

The memory requirements of the programs based on
FCMAT/on-demand/r (6) and FCMAT/on-demand/rt (9)
remained below 0.5 GiB for all three data sets. Specifically,
the former peaked at approximately 0.12, 0.23, and 0.46 GiB
corresponding to the expected 4NT (original data) + 4NT
(normalized data) bytes, while the latter peaked at approximately
0.06, 0.12, and 0.24 GiB, corresponding to 4NT (original
data) + B

8N⌈T/B⌉ (binarized data) bytes, for N = 60,000, N =

120,000, andN= 240,000, respectively. Depending on the system
and the number of nodes, FCMAT/on-demand/r executed
1.8–3.6× slower than the corresponding half-stored variant
FCMAT/half-stored/r, while FCMAT/on-demand/rt
executed up to 1.5× faster than its half-stored pendant
FCMAT/half-stored/rt (Figure 1).

The program based on FCMAT/cache-based/r (7) peaked
at approximately 0.36 (N = 60,000), 0.48 (N = 120,000), and 0.71
GiB (N = 240,000) corresponding to the expected 4C2 + 8NT
bytes (using a cache tile size of C = 8192). On the desktop,
depending on the number of nodes, FCMAT/cache-based/r
executed about 1.6–1.9× faster than the corresponding on-
demand variant and about 2.1× slower than the corresponding
half-stored variant. On the server, depending on the number
of nodes, it executed about 1.2–3× slower than the on-demand
variant and about 5.5× slower than the half-stored variant
(Figure 1).

3.2. Performance Gain through
Multi-Threading
After reaching a performance maximum at a certain
number of threads, the programs using corrcoef, corr,
IPN_fastCorr, and IPN_calLCAM exhibited stagnating and
even decreasing performance upon adding more computational
threads (Figure 2, especially on the server). A similar observation
can be made for FCMAT/cache-based/r, although
performance seems to reach a plateau state of maximum

Frontiers in Neuroinformatics | www.frontiersin.org 6 November 2016 | Volume 10 | Article 50

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Loewe et al. Memory-Efficient Analysis of Dense Functional Connectomes

FIGURE 1 | Performance comparison with respect to time and memory efficiency. The compared programs for degree computation are based on

corrcoef (1), corr (2), IPN_fastCorr (3), IPN_calLCAM (4) and the proposed functional connectivity matrix object FCMAT using the half-stored (5 and 8), the

on-demand (6 and 9) and the cache-based variant (7). The programs 1-7 use Pearson’s r as a functional connectivity estimate; the programs 8 and 9 use the

tetrachoric correlation coefficient rt. Comparisons were conducted on two machines, a desktop computer with an Intel Core i7-3960X CPU and 64GB of main

memory, and a server with two Intel Xeon E5-2697 v2 CPUs and 256GB of main memory. The number of threads was varied between 1 and 6 on the desktop

computer and between 1 and 48 on the server. For each program, only the best result is reported, i.e., the result based on the number of threads for which the

elapsed time was shortest for that program. See Figure 2 for more detailed results regarding the performance gained by each program through multi-threading. The

reported results are averages from 10 runs. For details see text. The number of timepoints T was fixed at T = 256. N: number of nodes; mem [GiB]: peak memory in

GiB; time [s]: elapsed time in seconds.

performance, such that additional threads do not improve
performance further but no performance decrease is observed
either. On a related note, FCMAT/cache-based/r is
significantly faster than FCMAT/on-demand/r for smaller
numbers of threads, but this advantage is lost in the course
of more threads being added (Figure 2, especially on the
Xeon system). This is because FCMAT/on-demand/r
sustains a relatively constant high performance gain per thread
over the entire range of the number of threads. A similar
observation can be made for FCMAT/on-demand/rt and
FCMAT/half-stored/rt (Figure 2, both systems).

3.3. Cache Misses
To assess how well the attempted data locality optimization
worked (especially with regard to FCMAT/cache-based/r),
we compared the programs’ computation time with the number
of cache misses (Figure 3). Note that these measurements were
conducted using only one thread.

Comparing the programs using FCMAT/*/r, the on-
demand variant had the greatest number of cache misses
and correspondingly exhibited the lowest performance (with
respect to computation time). The other two variants exhibited
a similar number of cache misses (both had significantly
fewer cache misses than the on-demand variant), but the half-
stored variant still ran faster than the cache-based variant,
while both ran significantly faster than the on-demand variant.
Similarly, the programs using corrcoef and corr exhibited
a similar number of cache misses, but the latter outperformed
the former. Furthermore, corrcoef was about as fast as
FCMAT/cache-based/r and corr was about as fast as
FCMAT/half-stored/r, although corrcoef and corr

exhibited more cache misses than the other two. The program
using IPN_fastCorr exhibited a lower number of cache
misses than both corrcoef and corr but higher than
FCMAT/half-stored/r and FCMAT/cache-based/r.
Its performance ranked between that of corrcoef and corr.

Frontiers in Neuroinformatics | www.frontiersin.org 7 November 2016 | Volume 10 | Article 50

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Loewe et al. Memory-Efficient Analysis of Dense Functional Connectomes

FIGURE 2 | Performance gained through multi-threading. The compared programs for degree computation and the two machines on which the comparisons

were conducted are the same as in Figure 1. The reported results are averages from 10 runs on each machine. The number of timepoints T was fixed at T = 256. N:

number of nodes; perf [elem./s]: performance in number of computed elements per second.

The number of cachemisses for IPN_calLCAMwas comparable
with that of corrcoef and corr, but it was significantly slower
than both.

4. DISCUSSION

Dense connectomes allow for spatially more fine-grained
connectivity analyses, but are associated with significant
computational demands (van den Heuvel et al., 2008; Hayasaka
and Laurienti, 2010; de Reus and Van den Heuvel, 2013; Fornito
et al., 2013). Available computing resources are often insufficient
to meet these demands, so that dense connectome analyses
become infeasible (e.g., Smith et al., 2014). In an attempt to
address this issue, we presented an object-based functional
connectivity matrix representation (FCMAT) and corresponding
implementation variants, tailored for the analysis of dense
functional connectomes. Based on theoretical considerations and
benchmarks, different implementation variants of this object and
four additional programs (based on available Matlab functions
and Matlab-based third-party software) were compared with

regard to their computational efficiency in terms of both memory
requirements and computation time.

The most memory-efficient FCMAT variant avoids explicit
matrix storage by computing matrix elements on demand based
on the underlying time series data (FCMAT/on-demand/∗).
Since, in the considered application domain, the number of
nodes is much greater than the number of scans, the memory
requirements of a dense connectome are effectively reduced
by orders of magnitude compared to explicit storage of the
connectivity matrix.

However, explicit storage has an advantage over on-
demand computation when it comes to computation
time because data locality optimization can be employed.
Accordingly, the implementation using explicit matrix storage,
FCMAT/half-stored/∗, is the fastest of the presented
variants. It is also faster than the alternatives based on explicit
storage (full-stored), corrcoef (Matlab built-in), corr

(Matlab Statistics Toolbox), and IPN_fastCorr (from
the Matlab toolbox “IPN_voxelGraph” by Xi-Nian Zuo)7.

7http://www.mathworks.com/matlabcentral/fileexchange/32553-ipn-voxelgraph.

Frontiers in Neuroinformatics | www.frontiersin.org 8 November 2016 | Volume 10 | Article 50

http://www.mathworks.com/matlabcentral/fileexchange/32553-ipn-voxelgraph
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Loewe et al. Memory-Efficient Analysis of Dense Functional Connectomes

FIGURE 3 | Speed vs. cache misses. The compared programs for degree computation and the two machines on which the comparisons were conducted are the

same as in Figures 1 and 2. The reported results are averages from 10 runs on each machine. The number of timepoints T was fixed at T = 256. N: number of

nodes; time [s]: elapsed time in seconds.

TABLE 1 | Expected and measured memory usage.

Name Memory Usage (expected) Memory Usage (measured)

bytes N = 6 · 104 12 · 104 24 · 104 6 · 104 12 · 104 24 · 104

corrcoef 4(N2 + NT) 13.47 53.76 214.81 26.94 107.52

corr 4(N2 + NT) 13.47 53.76 214.81 26.94 107.52

IPN_fastCorr 4(N2 + NT) 13.47 53.76 214.81 26.99 107.63

IPN_calLCAM ? + 4NT 6.23 24.21 44.33

FCMAT/half-stored/r 2N(N− 1)+ 8NT 6.82 27.05 107.75 6.83 27.06 107.75

rt 2N(N− 1)+ 4NT + B
8 N⌈T/B⌉ 6.76 26.94 107.52 6.77 26.94 107.52

on-demand/r 8NT 0.11 0.23 0.46 0.12 0.24 0.46

rt 4NT + B
8 N⌈T/B⌉ 0.06 0.12 0.24 0.06 0.12 0.24

cache-based/r 4C2 + 8NT 0.36 0.48 0.71 0.37 0.48 0.71

Of these, IPN_fastCorr was significantly faster
than the other two. Regarding memory requirements,
FCMAT/half-stored/∗ has an advantage over the full-
stored programs because it exploits matrix symmetry in order
to save memory. Nevertheless, the memory requirements
of FCMAT/half-stored/∗ are still too high for many
applications.

In addition to FCMAT/half-stored/∗ and
FCMAT/on-demand/∗, a third, cache-based variant,
FCMAT/cache-based/r, was implemented in an attempt
to combine the advantages of the first two. Regarding time
efficiency, this variant is at an advantage over the on-demand
variant, in that it can use data locality optimization, which
is reflected in the observed reduction in cache misses. It is,

Frontiers in Neuroinformatics | www.frontiersin.org 9 November 2016 | Volume 10 | Article 50

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Loewe et al. Memory-Efficient Analysis of Dense Functional Connectomes

however, at a disadvantage compared to the half-stored variant,
because of the overhead that results from maintaining the cache.
Regarding memory efficiency, the cache-based scheme requires
far less memory than the half-stored scheme although not quite
as little as the on-demand scheme (assuming a sensible choice for
the cache size). Depending on the application, the cache-based
scheme may thus provide a reasonable compromise between
explicit storage and on-demand computation, by being more
memory-efficient than the former, but faster than the latter.
However, while the computation of the matrix elements by the
matrix object can be parallelized (during cache fills), the traversal
of these elements by the client code can not be parallelized.
If additional, potentially expensive, computations need to be
conducted during matrix traversal, this drawback can tip the
balance in favor of one of the other implementations for some
applications (see Amdahl, 1967). In this context, the number
of cores of the system also needs to be taken into account. As
the benchmarks illustrate, the on-demand variant should be
chosen over the cache-based variant on a system with many
cores because the impact of this issue increases with the degree
of parallelization.

Considering the example application used for benchmarking,
each of the created programs for node degree computation
(implicitly or explicitly) derives a binary adjacency matrix from
the connectivity matrix based on a threshold. Depending on
the thresholding scheme used (e.g., based on graph density),
an additional run through the data may be necessary to
determine the threshold in terms of absolute correlation before
the degree map can be computed. For those programs that do not
operate on the explicitly stored connectome (IPN_calLCAM,
FCMAT/on-demand/∗ and FCMAT/cache-based/r), this
entails that the correlation values need to be computed twice.
This example makes clear that, especially in situations where the
matrix or connectome will be used more than once (e.g., when
subjected to multiple analyses), explicit storage should be used
if it is affordable (with respect to the available main memory) in
order to save computation time.

Although the present programs provide a highly efficient way
of conducting analyses, there are some limitations that should be
noted. First, in cases of extremely large multi-subject data sets
(in terms of number of subjects or scans), too much memory
may still be required for these methods to be applied because the
time series data of all subjects could already be too large to be
stored in main memory. In some cases, the analysis procedure

could be adapted to hold only a sufficiently small partition of

the data in memory at any given time. Second, the current
implementation only supports Pearson’s r and rt . In the case of
dense connectomes, the number of nodes and therefore edges
is a lot higher than the number of scans, so that the underlying
population correlation ρ cannot be estimated very accurately
using r or rt (e.g., Varoquaux and Craddock, 2013). The extension
of FCMAT to support other, possibly better estimates is a subject
for future work. Finally, while FCMAT provides the basis for the
efficient analysis of dense connectomes, the tools for the analyses
themselves (for example, graph-theoretical analyses or statistical
inference), still need to be implemented (on top of it), which,
depending on the analysis in question, may prove to be a lot more
difficult.

To summarize, when considering the computational burden
of dense functional connectome analysis, the manner in which
connectivity matrices are represented plays an important role.
We show here that a set of complementary implementation
variants of an object-based matrix representation (FCMAT)
provide a highly efficient foundation for dense connectome
analysis. If affordable in terms of available memory, explicit
matrix storage should be used, since it provides the best
performance in terms of CPU time. However, if its memory
requirements render the use of explicit storage infeasible, on-
demand computation or cache-based iteration provide memory-
efficient alternatives. In particular, the on-demand and cache-
based implementation variants allow for the analysis of larger
data sets on commonly available hardware, which may not
have been possible before, based on explicit storage. With the
ever-growing need for maximal spatial precision and resolution
among large sets of subjects in fMRI connectivity analyses,
the development of efficient tools such as these is paramount
to the advancement of our understanding of the human
brain.

AUTHOR CONTRIBUTIONS

KL conceived of the study. KL and CB wrote the software. KL
carried out the benchmarks. KL wrote the manuscript. SD, MS,
RK, andCB edited themanuscript. All authors read and approved
the final manuscript.

FUNDING

This work was in part supported by Deutsche
Forschungsgemeinschaft SFB 779 (A14N).

REFERENCES

Achard, S., Salvador, R., Whitcher, B., Suckling, J., and Bullmore, E. (2006).
A resilient, low-frequency, small-world human brain functional network
with highly connected association cortical hubs. J. Neurosci. 26, 63–72.
doi: 10.1523/JNEUROSCI.3874-05.2006

Agosta, F., Sala, S., Valsasina, P., Meani, A., Canu, E., Magnani, G., et al. (2013).
Brain network connectivity assessed using graph theory in frontotemporal
dementia. Neurology 81, 134–143. doi: 10.1212/WNL.0b013e31829
a33f8

Akil, H., Martone, M., and Van Essen, D. (2011). Challenges and
opportunities in mining neuroscience data. Science (New York, NY) 331:708.
doi: 10.1126/science.1199305

Amdahl, G. M. (1967). “Validity of the single processor approach to achieving
large scale computing capabilities,” in Proceedings of the April 18-20,

1967, Spring Joint Computer Conference (New York, NY: ACM), 483–485.
doi: 10.1145/1465482.1465560. Available online at: http://dl.acm.org/citation.
cfm?id=1465560

Binnewijzend, M. A., Adriaanse, S. M., Flier, W. M., Teunissen, C. E., Munck,
J. C., Stam, C. J., et al. (2014). Brain network alterations in alzheimer’s disease

Frontiers in Neuroinformatics | www.frontiersin.org 10 November 2016 | Volume 10 | Article 50

https://doi.org/10.1523/JNEUROSCI.3874-05.2006
https://doi.org/10.1212/WNL.0b013e31829a33f8
https://doi.org/10.1126/science.1199305
https://doi.org/10.1145/1465482.1465560.
http://dl.acm.org/citation.cfm?id=1465560
http://dl.acm.org/citation.cfm?id=1465560
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Loewe et al. Memory-Efficient Analysis of Dense Functional Connectomes

measured by eigenvector centrality in fmri are related to cognition and csf
biomarkers. Hum. Brain Mapp. 35, 2383–2393. doi: 10.1002/hbm.22335

Biswal, B., Mennes, M., Zuo, X., Gohel, S., Kelly, C., Smith, S., et al. (2010).
Toward discovery science of human brain function. Proc. Natl. Acad. Sci. U.S.A.
107:4734. doi: 10.1073/pnas.0911855107

Brier, M. R., Thomas, J. B., Fagan, A. M., Hassenstab, J., Holtzman,
D. M., Benzinger, T. L., et al. (2014). Functional connectivity and graph
theory in preclinical alzheimer’s disease. Neurobiol. Aging 35, 757–768.
doi: 10.1016/j.neurobiolaging.2013.10.081

Buckner, R., Sepulcre, J., Talukdar, T., Krienen, F., Liu, H., Hedden, T., et al.
(2009). Cortical hubs revealed by intrinsic functional connectivity: mapping,
assessment of stability, and relation to alzheimer’s disease. J. Neurosci. 29,
1860–1873. doi: 10.1523/JNEUROSCI.5062-08.2009

de Reus, M. A., and Van den Heuvel, M. P. (2013). The parcellation-
based connectome: limitations and extensions. Neuroimage 80, 397–404.
doi: 10.1016/j.neuroimage.2013.03.053

Di Martino, A., Zuo, X.-N., Kelly, C., Grzadzinski, R., Mennes, M., Schvarcz, A.,
et al. (2013). Shared and distinct intrinsic functional network centrality in
autism and attention-deficit/hyperactivity disorder. Biol. Psychiatry 74, 623–
632. doi: 10.1016/j.biopsych.2013.02.011

Dosenbach, N., Nardos, B., Cohen, A., Fair, D., Power, J., Church, J., et al. (2010).
Prediction of individual brain maturity using fMRI. Science 329, 1358–1361.
doi: 10.1126/science.1194144

Fair, D., Cohen, A., Power, J., Dosenbach, N., Church, J., Miezin, F., et al. (2009).
Functional brain networks develop from a local to distributedİ organization.
PLoS Comput. Biol. 5:e1000381. doi: 10.1371/journal.pcbi.1000381

Fornito, A., Yoon, J., Zalesky, A., Bullmore, E. T., and Carter, C. S. (2011).
General and specific functional connectivity disturbances in first-episode
schizophrenia during cognitive control performance. Biol. Psychiatry 70, 64–72.
doi: 10.1016/j.biopsych.2011.02.019

Fornito, A., Zalesky, A., and Breakspear, M. (2013). Graph analysis of the
human connectome: promise, progress, and pitfalls. Neuroimage 80, 426–444.
doi: 10.1016/j.neuroimage.2013.04.087

Freeman, L. (1979). Centrality in social networks conceptual clarification. Soc.
Netw. 1, 215–239. doi: 10.1016/0378-8733(78)90021-7

Frigo, M., Leiserson, C., Prokop, H., and Ramachandran, S. (1999). “Cache-
oblivious algorithms,” in Proceedings 40th IEEE Symposium on Foundations

of Computer Science (FOCS’99, New York, NY) (Piscataway, NJ: IEEE Press),
285–297. doi: 10.1109/sffcs.1999.814600

Glasser, M. F., Sotiropoulos, S., Wilson, J., Coalson, T., Fischl, B., Andersson, J.,
et al. (2013). The minimal preprocessing pipelines for the human connectome
project. Neuroimage 80, 105–124. doi: 10.1016/j.neuroimage.2013.04.127

Hayasaka, S., and Laurienti, P. (2010). Comparison of characteristics between
region-and voxel-based network analyses in resting-state fMRI data.
Neuroimage 50, 499–508. doi: 10.1016/j.neuroimage.2009.12.051

He, Y., Wang, J., Wang, L., Chen, Z. J., Yan, C., Yang, H., et al. (2009). Uncovering
intrinsic modular organization of spontaneous brain activity in humans. PLoS
ONE 4:e5226. doi: 10.1371/journal.pone.0005226

Hlinka, J., Palus, M., Vejmelka, M., Mantini, D., and Corbetta, M. (2011).
Functional connectivity in resting-state fMRI: is linear correlation sufficient?
Neuroimage 54, 2218–2225. doi: 10.1016/j.neuroimage.2010.08.042

Hutchison, R. M., Womelsdorf, T., Allen, E. A., Bandettini, P. A.,
Calhoun, V. D., Corbetta, M., et al. (2013). Dynamic functional
connectivity: promise, issues, and interpretations. Neuroimage 80, 360–378.
doi: 10.1016/j.neuroimage.2013.05.079

Jiang, L., Xu, T., He, Y., Hou, X.-H., Wang, J., Cao, X.-Y., et al. (2015).
Toward neurobiological characterization of functional homogeneity in the
human cortex: regional variation, morphological association and functional
covariance network organization. Brain Struct. Funct. 220, 2485–2507.
doi: 10.1007/s00429-014-0795-8

Jiang, L., and Zuo, X.-N. (2016). Regional homogeneity a multimodal, multiscale
neuroimaging marker of the human connectome. Neuroscientist 22, 486–505.
doi: 10.1177/1073858415595004

Kelly, C., Biswal, B. B., Craddock, R. C., Castellanos, F. X., and Milham, M. P.
(2012). Characterizing variation in the functional connectome: promise and
pitfalls. Trends Cogn. Sci. 16, 181–188. doi: 10.1016/j.tics.2012.02.001

Loewe, K., Grueschow, M., and Borgelt, C. (2013). “Mining local connectivity
patterns in fMRI data,” in Towards Advanced Data Analysis by Combining Soft

Computing and Statistics, vol. 285 of Studies in Fuzziness and Soft Computing,
eds C. Borgelt, M. Ángeles Gil, J. Sousa, and M. Verleysen (Berlin; Heidelberg:
Springer), 305–317. doi: 10.1007/978-3-642-30278-7_24

Loewe, K., Grueschow, M., Stoppel, C., Kruse, R., and Borgelt, C. (2014). Fast
construction of voxel-level functional connectivity graphs. BMC Neurosci.

15:78. doi: 10.1186/1471-2202-15-78
Lohmann, G., Margulies, D. S., Horstmann, A., Pleger, B., Lepsien, J.,

Goldhahn, D., et al. (2010). Eigenvector centrality mapping for analyzing
connectivity patterns in fmri data of the human brain. PLoS ONE 5:e10232.
doi: 10.1371/journal.pone.0010232

Lohmann, G., Stelzer, J., Zuber, V., Buschmann, T., Margulies, D., Bartels, A., et al.
(2016). Task-related edge density (ted)a new method for revealing dynamic
network formation in fMRI data of the human brain. PLoS ONE 11:e0158185.
doi: 10.1371/journal.pone.0158185

Marcus, D., Harwell, J., Olsen, T., Hodge, M., Glasser, M., Prior, F., et al. (2011).
Informatics and data mining tools and strategies for the human connectome
project. Front. Neuroinformatics 5:4. doi: 10.3389/fninf.2011.00004

Markett, S., Montag, C., Heeren, B., Saryiska, R., Lachmann, B., Weber, B., et al.
(2016). Voxelwise eigenvector centrality mapping of the human functional
connectome reveals an influence of the catechol-o-methyltransferase val158met
polymorphism on the default mode and somatomotor network. Brain Struct.

Funct. 221:2755. doi: 10.1007/s00429-015-1069-9
Markett, S., Reuter, M., Montag, C., Voigt, G., Lachmann, B., Rudorf, S., et al.

(2014). Assessing the function of the fronto-parietal attention network: insights
from resting-state fmri and the attentional network test. Hum. Brain Mapping

35, 1700–1709. doi: 10.1002/hbm.22285
Matthews, P. M., and Hampshire, A. (2016). Clinical concepts

emerging from fMRI functional connectomics. Neuron 91, 511–528.
doi: 10.1016/j.neuron.2016.07.031

Minati, L., Zacà, D., D’Incerti, L., and Jovicich, J. (2014). Fast computation of
voxel-level brain connectivity maps from resting-state functional mri using l1-
norm as approximation of pearson’s temporal correlation: Proof-of-concept
and example vector hardware implementation.Med. Eng. Phys. 36, 1212–1217.
doi: 10.1016/j.medengphy.2014.06.012

Mišić, B., and Sporns, O. (2016). From regions to connections and networks:
new bridges between brain and behavior. Curr. Opin. Neurobiol. 40, 1–7.
doi: 10.1016/j.conb.2016.05.003

Nieminen, J. (1974). On the centrality in a graph. Scand. J. Psychol. 15, 332–336.
doi: 10.1111/j.1467-9450.1974.tb00598.x

Pearson, K. (1900). Mathematical contributions to the theory of evolution. VII.
on the correlation of characters not quantitatively measurable. Philos. Trans. R.
Soc. Lond. 195, 1–47. doi: 10.1098/rsta.1900.0022

Prokop, H. (1999). Cache-oblivious Algorithms. MA thesis, Massachusets Institute
of Technology, Cambridge, MA.

Rocca, M. A., Valsasina, P., Meani, A., Falini, A., Comi, G., and Filippi, M. (2016).
Impaired functional integration in multiple sclerosis: a graph theory study.
Brain Struct. Funct. 221, 115–131. doi: 10.1007/s00429-014-0896-4

Salvador, R., Suckling, J., Coleman, M., Pickard, J., Menon, D., and
Bullmore, E. (2005). Neurophysiological architecture of functional
magnetic resonance images of human brain. Cereb. Cortex 15, 1332–1342.
doi: 10.1093/cercor/bhi016

Schaefer, A., Burmann, I., Regenthal, R., Arélin, K., Barth, C., Pampel, A., et al.
(2014). Serotonergic modulation of intrinsic functional connectivity. Current
Biol. 24, 2314–2318. doi: 10.1016/j.cub.2014.08.024

Scheinost, D., Benjamin, J., Lacadie, C. M., Vohr, B., Schneider, K. C., Ment, L. R.,
et al. (2012). The intrinsic connectivity distribution: a novel contrast measure
reflecting voxel level functional connectivity. NeuroImage 62, 1510–1519.
doi: 10.1016/j.neuroimage.2012.05.073

Schoonheim, M. M., Hulst, H. E., Landi, D., Ciccarelli, O., Roosendaal,
S. D., Sanz-Arigita, E. J., et al. (2012). Gender-related differences in
functional connectivity in multiple sclerosis. Multiple Sclerosis J. 18, 164–173.
doi: 10.1177/1352458511422245

Smith, S., Miller, K., Salimi-Khorshidi, G., Webster, M., Beckmann, C., Nichols, T.,
et al. (2011). Network modelling methods for fMRI. Neuroimage 54, 875–891.
doi: 10.1016/j.neuroimage.2010.08.063

Smith, S. M., Hyvärinen, A., Varoquaux, G., Miller, K. L., and Beckmann, C. F.
(2014). Group-pca for very large fmri datasets. NeuroImage 101, 738–749.
doi: 10.1016/j.neuroimage.2014.07.051

Frontiers in Neuroinformatics | www.frontiersin.org 11 November 2016 | Volume 10 | Article 50

https://doi.org/10.1002/hbm.22335
https://doi.org/10.1073/pnas.0911855107
https://doi.org/10.1016/j.neurobiolaging.2013.10.081
https://doi.org/10.1523/JNEUROSCI.5062-08.2009
https://doi.org/10.1016/j.neuroimage.2013.03.053
https://doi.org/10.1016/j.biopsych.2013.02.011
https://doi.org/10.1126/science.1194144
https://doi.org/10.1371/journal.pcbi.1000381
https://doi.org/10.1016/j.biopsych.2011.02.019
https://doi.org/10.1016/j.neuroimage.2013.04.087
https://doi.org/10.1016/0378-8733(78)90021-7
https://doi.org/10.1109/sffcs.1999.814600
https://doi.org/10.1016/j.neuroimage.2013.04.127
https://doi.org/10.1016/j.neuroimage.2009.12.051
https://doi.org/10.1371/journal.pone.0005226
https://doi.org/10.1016/j.neuroimage.2010.08.042
https://doi.org/10.1016/j.neuroimage.2013.05.079
https://doi.org/10.1007/s00429-014-0795-8
https://doi.org/10.1177/1073858415595004
https://doi.org/10.1016/j.tics.2012.02.001
https://doi.org/10.1007/978-3-642-30278-7
https://doi.org/10.1186/1471-2202-15-78
https://doi.org/10.1371/journal.pone.0010232
https://doi.org/10.1371/journal.pone.0158185
https://doi.org/10.3389/fninf.2011.00004
https://doi.org/10.1007/s00429-015-1069-9
https://doi.org/10.1002/hbm.22285
https://doi.org/10.1016/j.neuron.2016.07.031
https://doi.org/10.1016/j.medengphy.2014.06.012
https://doi.org/10.1016/j.conb.2016.05.003
https://doi.org/10.1111/j.1467-9450.1974.tb00598.x
https://doi.org/10.1098/rsta.1900.0022
https://doi.org/10.1007/s00429-014-0896-4
https://doi.org/10.1093/cercor/bhi016
https://doi.org/10.1016/j.cub.2014.08.024
https://doi.org/10.1016/j.neuroimage.2012.05.073
https://doi.org/10.1177/1352458511422245
https://doi.org/10.1016/j.neuroimage.2010.08.063
https://doi.org/10.1016/j.neuroimage.2014.07.051
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Loewe et al. Memory-Efficient Analysis of Dense Functional Connectomes

Smith, S. M., Vidaurre, D., Beckmann, C. F., Glasser, M. F., Jenkinson,
M., Miller, K. L., et al. (2013). Functional connectomics from resting-
state fMRI. Trends Cogn. Sci. 17, 666–682. doi: 10.1016/j.tics.2013.
09.016

Sporns, O. (2011). The human connectome: a complex network. Ann. N. Y. Acad.
Sci. 1224, 109–125. doi: 10.1111/j.1749-6632.2010.05888.x

Sporns, O., Tononi, G., and Kötter, R. (2005). The human connectome:
a structural description of the human brain. PLoS Comput. Biol. 1:e42.
doi: 10.1371/journal.pcbi.0010042

Stanley, M. L., Moussa, M. N., Paolini, B., Lyday, R. G., Burdette, J. H., and
Laurienti, P. J. (2013). Defining nodes in complex brain networks. Front.
Comput. Neurosci. 7:169. doi: 10.3389/fncom.2013.00169

Suo, X., Lei, D., Li, K., Chen, F., Li, F., Li, L., et al. (2015). Disrupted brain network
topology in pediatric posttraumatic stress disorder: a resting-state fMRI study.
Hum. Brain Mapp. 36, 3677–3686. doi: 10.1002/hbm.22871

Supekar, K., Menon, V., Rubin, D., Musen, M., and Greicius, M. D. (2008).
Network analysis of intrinsic functional brain connectivity in alzheimer’s
disease. PLoS Comput. Biol. 4:e1000100. doi: 10.1371/journal.pcbi.1000100

Supekar, K., Musen, M., and Menon, V. (2009). Development of large-
scale functional brain networks in children. PLoS Biol. 7:e1000157.
doi: 10.1371/journal.pbio.1000157

Tomasi, D., and Volkow, N. (2010). Functional connectivity density mapping.
Proc. Natl. Acad. Sci. U.S.A. 107:9885. doi: 10.1073/pnas.1001414107

Tomasi, D., and Volkow, N. (2011). Functional connectivity hubs in the human
brain. Neuroimage 57, 908–917. doi: 10.1016/j.neuroimage.2011.05.024

Tomasi, D., and Volkow, N. D. (2012). Aging and functional brain networks.Mol.

Psychiatry 17, 549–558. doi: 10.1038/mp.2011.81
Valencia, M., Pastor, M., Fernández-Seara, M., Artieda, J., Martinerie, J., and

Chavez, M. (2009). Complex modular structure of large-scale brain networks.
Chaos 19, 023119–023119. doi: 10.1063/1.3129783

van den Heuvel, M., Stam, C., Boersma, M., and Hulshoff Pol, H. (2008).
Small-world and scale-free organization of voxel-based resting-state
functional connectivity in the human brain. Neuroimage 43, 528–539.
doi: 10.1016/j.neuroimage.2008.08.010

van den Heuvel, M. P., and Sporns, O. (2013). Network hubs in the human brain.
Trends Cogn. Sci. 17, 683–696. doi: 10.1016/j.tics.2013.09.012

Van Essen, D., and Ugurbil, K. (2012). The future of the human connectome.
Neuroimage 62, 1299–1310. doi: 10.1016/j.neuroimage.2012.01.032

Varoquaux, G., and Craddock, R. C. (2013). Learning and comparing
functional connectomes across subjects. NeuroImage 80, 405–415.
doi: 10.1016/j.neuroimage.2013.04.007

Wang, J., Zuo, X., and He, Y. (2010). Graph-based network analysis of resting-state
functional MRI. Front. Syst. Neurosci. 4:16. doi: 10.3389/fnsys.2010.00016

Wang, Y., Anderson, M. J., Cohen, J. D., Heinecke, A., Li, K., Satish, N.,
et al. (2015). “Full correlation matrix analysis of fmri data on Intel R© Xeon
PhiTM coprocessors,” in Proceedings of the International Conference for High

Performance Computing, Networking, Storage and Analysis (New York, NY:
ACM), 23. doi: 10.1145/2807591.2807631. Available online at: http://dl.acm.
org/citation.cfm?id=2807631

Wang, Y., Du, H., Xia, M., Ren, L., Xu, M., Xie, T., et al. (2013). A hybrid cpu-
gpu accelerated framework for fast mapping of high-resolution human brain
connectome. PLoS ONE 8:e62789. doi: 10.1371/journal.pone.0062789

Wink, A. M., de Munck, J. C., van der Werf, Y. D., van den Heuvel,
O. A., and Barkhof, F. (2012). Fast eigenvector centrality mapping
of voxel-wise connectivity in functional magnetic resonance imaging:
implementation, validation, and interpretation. Brain Connect. 2, 265–274.
doi: 10.1089/brain.2012.0087

Xu, T., Yang, Z., Jiang, L., Xing, X.-X., and Zuo, X.-N. (2015). A connectome
computation system for discovery science of brain. Sci. Bull. 60, 86–95.
doi: 10.1007/s11434-014-0698-3

Zalesky, A., Fornito, A., Cocchi, L., Gollo, L. L., and Breakspear, M. (2014).
Time-resolved resting-state brain networks. Proc. Natl. Acad. Sci. U.S.A. 111,
10341–10346. doi: 10.1073/pnas.1400181111

Zuo, X., Ehmke, R., Mennes, M., Imperati, D., Castellanos, F., Sporns, O., et al.
(2012). Network centrality in the human functional connectome. Cereb. Cortex
22, 1862–1875. doi: 10.1093/cercor/bhr269

Zuo, X.-N., and Xing, X.-X. (2014). Test-retest reliabilities of resting-
state fMRI measurements in human brain functional connectomics: a
systems neuroscience perspective. Neurosci. Biobehav. Rev. 45, 100–118.
doi: 10.1016/j.neubiorev.2014.05.009

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2016 Loewe, Donohue, Schoenfeld, Kruse and Borgelt. This is an open-

access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) or licensor are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neuroinformatics | www.frontiersin.org 12 November 2016 | Volume 10 | Article 50

https://doi.org/10.1016/j.tics.2013.09.016
https://doi.org/10.1111/j.1749-6632.2010.05888.x
https://doi.org/10.1371/journal.pcbi.0010042
https://doi.org/10.3389/fncom.2013.00169
https://doi.org/10.1002/hbm.22871
https://doi.org/10.1371/journal.pcbi.1000100
https://doi.org/10.1371/journal.pbio.1000157
https://doi.org/10.1073/pnas.1001414107
https://doi.org/10.1016/j.neuroimage.2011.05.024
https://doi.org/10.1038/mp.2011.81
https://doi.org/10.1063/1.3129783
https://doi.org/10.1016/j.neuroimage.2008.08.010
https://doi.org/10.1016/j.tics.2013.09.012
https://doi.org/10.1016/j.neuroimage.2012.01.032
https://doi.org/10.1016/j.neuroimage.2013.04.007
https://doi.org/10.3389/fnsys.2010.00016
https://doi.org/10.1145/2807591.2807631.
http://dl.acm.org/citation.cfm?id=2807631
http://dl.acm.org/citation.cfm?id=2807631
https://doi.org/10.1371/journal.pone.0062789
https://doi.org/10.1089/brain.2012.0087
https://doi.org/10.1007/s11434-014-0698-3
https://doi.org/10.1073/pnas.1400181111
https://doi.org/10.1093/cercor/bhr269
https://doi.org/10.1016/j.neubiorev.2014.05.009
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

	Memory-Efficient Analysis of Dense Functional Connectomes
	1. Introduction
	2. Materials and Methods
	2.1. Matrix Representation
	2.1.1. Memory Requirements
	2.1.2. Computation Time
	2.1.2.1. Multi-threading
	2.1.2.2. Data locality optimization
	2.1.2.3. Vectorization
	2.1.2.4. Tetrachoric correlation estimation

	2.1.3. Cache-Based Implementation

	2.2. Application: Degree Centrality
	2.2.1. Programs
	2.2.2. Benchmarks

	3. Results
	3.1. Memory Requirements and Maximum Performance
	3.2. Performance Gain through Multi-Threading
	3.3. Cache Misses

	4. Discussion
	Author Contributions
	Funding
	References

