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ABSTRACT: Living cells are neither perfectly elastic nor liquid and return a viscoelastic
response to external stimuli. Nanoindentation provides force−distance curves, allowing the
investigation of cell mechanical properties, and yet, these curves can differ from point to point
on the cell surface, revealing its inhomogeneous character. In the present work, we propose a
mathematical method to estimate both viscoelastic and noise properties of cells as these are
depicted on the values of the scaling exponents of relaxation function and power spectral
density, respectively. The method uses as input the time derivative of the response force in a
nanoindentation experiment. Generalized moments method and/or rescaled range analysis is
used to study the resulting time series depending on their nonstationary or stationary nature.
We conducted experiments in living Ulocladium chartarum spores. We found that spores in
the approaching phase present a viscoelastic behavior with the corresponding scaling
exponent in the range 0.25−0.52 and in the retracting phase present a liquid-like behavior
with exponents in the range 0.67−0.85. This substantial difference of the scaling exponents in
the two phases suggests the formation of biomemory as a response of the spores to the
indenting AFM mechanical stimulus. The retracting phase may be described as a process driven by bluish noises, while the
approaching one is driven by persistent noise.

■ INTRODUCTION

Living cells are continuously subject to mechanical forces both
by surrounding cells and by the microenvironment they belong
to. They adapt their bioresponse to extracellular environmental
conditions by tracing maximum viability lines.1,2 On a single
cell, mechanical forces may cause shear, stress, and torsion.
The generally accepted scenario is that in a cell, the response
to mechanical deformations is due to the activation of external
cell wall protein-like mechanosensors, which are connected
internally with an extended plasma membrane contractile
network formed mainly by actin filaments.3−6 Response to
external stimuli determines the elastic properties of a cell
surface and relates them to concrete tasks, for example,
softening supports cell mobility and migration.3 Cell elasticity
is a measure whose changes are used as indicators for
cytotoxicity, malignancy, viability, biomemory, and abnormal-
ities.1−9 Furthermore, changes of cell elasticity, resulting from
external stress, have been associated with cell abnormalities
such as cancer, cardiomyopathies, and generation of diverse
dysmorphic phenotypes.8,10,11 This property has been used for
on-the-fly cell mechanical phenotyping.12 Cell mechanics,
which examines the response of a cell to the stimuli of
biochemical, chemical, or physical nature,13,14 has been
investigated by applying different techniques, including atomic
force microscopy nanoindentation (AFM-NI); see a recent
comparison of methods to assess cell mechanical properties.15

AFM-NI has been widely used to characterize the
mechanical properties of both cells and tissues.13,16,17 It uses
a tip of well-defined geometry to punch into the cell placed on
a solid support and is commonly used to quantify mechanical
properties at a subcellular resolution. It can also perform
precise force measurements at desired cellular locations where
the tip of the cantilever is used as the indenter. The measured
force, attractive or repulsive, corresponds to the interaction
between tip atoms and those that belong to the sample surface.
The vertical displacement of a cantilever and its deflection are
recorded simultaneously and then converted into force−
distance curves (FDCs). FDCs are registered in both phases:
approach (tip moving toward the sample) and retraction (tip
withdrawing from the sample).
To a first approximation, Young’s modulus is estimated by

using the Hertz model,18,19 which describes the response of an
isotropic and fully elastic material under a load, to fit the
FDCs. In this approximation, Young’s modulus is time-
independent. For complex materials such as cells, the estimate
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of Young’s modulus based solely on the Hertz model and
without considering viscoelastic effects (combination of elastic
and liquid behavior) is highly questionable. Young’s modulus is
a time-dependent measure, and its estimate is affected both by
the thickness of the cell and by the solid support where it is
placed on.20,21 Experimentally, the nonidentical approach and
retraction parts of FDCs are signs of viscoelasticity. A reason
for the differences likely is the diverse hydrodynamic drag on
the cantilever. Furthermore, in the contact regime, a difference
between approach and retraction is an indication of plastic
deformations or, most typically, a viscoelastic behavior of the
sample, which underlines the formation of a type of memory
(biomemory) because the cell alters its local environment via
excessive protein activity at the activation site.2

Cells are not a simple fluid-filled envelope; they contain
different active intracellular structures that may display distinct
mechanical properties.14 Cells display both solid-like elastic
and fluid-like viscous properties and typically return a
viscoelastic behavior under external stress, which is reflected
on a power-law form satisfied by both the creep and the stress
relaxation functions.22,23 A vast number of studies based on a
variety of techniques showed that the rheological properties of
cells are better described by a power-law relaxation function of
the form E(t) = E0(t/t0)

−β with 0 ≤ β ≤ 1. E0 is Young’s
modulus at time t0, which can be chosen arbitrarily and is
usually set to 1 s.24 E0 deviates from Young’s moduli provided
by elastic models which are constant in time. The scaling
exponent β characterizes the degree of fluidity and energy
dissipation upon deformation. A value of β = 0 stands for a
perfectly elastic solid and a value of β = 1 for a Newtonian
liquid. Any value of the scaling exponent between these two
limits describes a viscoelastic medium. A typical value of β for
cells lies in the range 0.1−0.3, thus classifying a cell as a
viscoelastic solid.24−27 For cells, it has been reported that the
dependency of the elastic modulus on probing frequency
follows a weak power law, which resulted in the absence of
discrete relaxation times in the system.28 For viscoelastic
materials, such as cells, their response is not only a function of
the instantaneous deformations caused by the exerted
mechanical forces but also depends on the history of
deformations.29,30

In specific fungal and carcinogenic cells, an external stress is
always followed by a bioresponse for maximum viability via a
biomemory cell system.1,2,8,9 A memory kernel can describe
the history of deformations, and its form indicates how strong
is the memory formed under the action of mechanical forces.
For example, a Dirac delta memory kernel describes
memoryless deformations, an exponential decay can describe
a Poisson distribution of deformations, and a power-law
memory kernel accounts for strong memory effects. History-
dependent deformations in viscoelastic systems, where elastic
and viscous properties coexist to varying degrees, may cause
nonlocal effects in both time and space31 and may be modeled
by fractional calculus,32 which is an appropriate framework to
model complexity.33,34 Additionally, complexity may be
modeled by a fractional Langevin equation where the overall
noise may behave as a multiplicative process. The role of such
a class of noises has been studied for a variety of systems
ranging from ecology35 to pattern formation36 and to the
stability of biological systems.37 Experimentally, the complexity
of the mechanical behaviors to deformations in single cells
and/or tissues has been pointed out;30,38−41 see also a recent
review.42

Considering a cell as an incompressible material, its response
to a mechanical load may be expressed as a function of the
indentation depth and the creep relaxation function through
their convolution.42 In an AFM-NI experiment, the response
forces form a data set with a hierarchical time distribution and
define the observation window. The analysis of events in such a
window, which usually contains few data points, can infer past
and future events only if the process is deterministic or
periodic or stationary. For nonstationary processes, such as
approach and retraction parts of a FDC, one can use more
sophisticated methods, appropriate for time series analysis.
Among them,43−48 the generalized moments method (GMM)
is generally one of the more robust and works well even for
short time series.49 It has been successfully applied in
numerous fields,50−55 and it works for nonstationary time
series.54,55 For the stationary ones, rescaled range analysis
(RA)56,57 or some variations thereof58 are the proper analysis
methods. Both methods, GMM and RA, deliver the scaling
exponent, which is called the Hurst exponent, of a stochastic
process. Additionally, there is a link between these scaling
exponents and the scaling of the power spectral density (PSD)
whose value classifies the color of the stochastic process.59 To
distinguish the method applied for analysis, the symbols with
subscripts HGMM and HRA are used. If one treats a time series
with GMM and the latter returns a zero value for HGMM, it
means that the time series is stationary and its analysis should
be made either by rescaled RA or any other method proper for
the analysis of stationary time series. Instead, if a time series is
analyzed by RA and the latter returns a Hurst exponent higher
than one, then it is not stationary and analysis should be made
by GMM.
In the present work, viscoelastic and noise analyses of the

approaching−retracting AFM-NI responses of Ulocladium
chartarum spores suggest the presence of the biomemory
effect in the cell functionality during external forcing, in
agreement with previous works.1,2 We define the response
force, for the pyramidal tip, for both approach and retraction
parts of a FDC, and we extend the analysis in order to obtain
in a single run both the viscoelastic scaling exponent and the
scaling exponent of the PSD that underlines the type of the
environmental noise. The latter can operate as a starting input
in advanced mathematical modeling and fractional calculus,
where knowledge of the environment’s noisy properties is
mandatory.

Power-Law Rheology and FDCs under the Linear
Ramp. The response force, f(h), consists of the recorded
values of the deflection signal with h(t) being the indentation
depth. Assuming that a rigid indenter goes against and/or
penetrates a linear viscoelastic sample, f(t) and h(t) are related
through convolution integrals, first introduced for spherical
indenters60

f t C E t t
h t
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t n
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where C̅n = Cn
−1 and the index n stands for the type of the

indenter, with n = 1 for a flat-ended cylindrical indenter with
radius R, (C1 = 1 − ν/R),61 n = 3/2 for a spherical indenter,
(C3/2 = 3(1 − ν2)/4R),18 and n = 2 either for a conical
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indenter, (C2,con = π(1 − ν2)/2 tanα),62 or for a four-sided
pyramidal indenter with (C2,pyr = 1.342(1 − ν2)/tan α).63

Poisson’s ratio is represented by ν and for incompressible
materials takes the value of 0.5, and α is the average contact
angle. E(t) and J(t) are the time-dependent relaxation and
creep function, respectively. By taking the in-time-domain
Laplace transform, f(s) = L{f(t)} = ∫ 0

∞f(t) e−st, of each one of
eqs 1 and 2 and by setting h(0) = f(0) = 0, one can easily see
that E(s)J(s) = 1/s2. Creep and relaxation functions for
viscoelastic materials follow a power-law behavior, that is, J(t)
= J0(t/t0)

β and E(t) = E0(t/t0)
−β. E0 and J0 satisfy the relation

E0J0 = 1/Γ(1 − β)Γ(1 + β), with Γ(z) = ∫ 0
∞xz−1 e−x dx being

the gamma function; notice that E0 is expressed in units of
pressure (N/m2). Equations 1 and 2 hold when the contact
area is an increasing function of time.60

Approaching Phase. The indentation depth for constant
velocity, v0, is a linear function of time and reads h(t) = v0t, for
0 < t ≤ tm (loading or approaching phase), and h(t) = v0(2tm −
t), for tm < t ≤ 2tm (unloading or retracting phase). tm is the
time needed for the tip to reach its maximum penetration
depth, where the phase changes from approach to retract. At
this point, the direction of the velocity changes, but its speed is
kept constant. For a typical AFM FDC of 1024 sampling
points, tm corresponds to 512 sampling points and is converted
into time units when multiplied by the minimum lag time,
which is defined by the resolution of the machine. For a fixed
number of data points and for pretty much constant maximum
penetration depth, the surface anaglyph can lead to re-
adjusting the initial position of the piezo, see Figure 1.

For h(t) = v0t and by using eq 1, one ends up with the
recorded force, which reads
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For a pyramidal type of indenter, n = 2, eq 3 reads
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where C2,pyr = 3.2 since we assume α = 17.5° (the average
contact angle) and ν = 0.5 (incompressible material).
Retracting Phase. Equation 4 holds for 0 < t ≤ tm

(approach) where the contact area monotonically increases

as a function of time.60 Equation 4 can also be used for
retraction, when the contact area decreases, under proper
modification of time by following Ting’s method.64,65 The
method assumes that there exists a time moment t*, t* ∈ (0,
tm), such that the contact area in the approaching phase is the
same as the contact area in the retracting phase, t ∈ (tm, 2tm).
Therefore, the force can be obtained by eq 1 where we replace
the upper limit of the integral from t to t*(t), and then, the link
between the two time moments can be established by solving
the following integral equation64
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By replacing happ(t) = v0t and hret(t) = v0(2tm − t) in eq 5
and by carrying out the integrals, we find that t* = t − 21/1−β(t
− tm).

21 Notice that the value of t* depends only on the
loading conditions and neither on the geometry of the tip nor
on the thickness of the sample. The response force in the
retracting phase is given by eq 4 where we use t* instead of t
and reads
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for t ∈ (tm, 2tm). The time derivative of eqs 4 and 6 scales
approximately as

f
t

t1∂
∂

≈ β−
(7)

Corrections in eqs 4 and 6 should be introduced to consider
the influence of a solid support on the measured values of the
response force. Such corrections are needed when cells, and in
general samples that are measured, adhere on a surface (the
solid support), usually glass whose Young’s modulus is orders
of magnitude higher than that of cells. Back scattering effects
originated from the solid support give a significant
contribution to the force, especially when the tip radius is
comparable to the sample thickness.21,42,66

Treatment of FDCs as Time Series. FDCs, experimen-
tally recorded, can be considered as a sequence of values of
either force, F(n), or distance, h(n), at hierarchically
distributed time moments, tn, n = 1, 2, 3, ..., N with N as the
maximum number of data points. Response forces are in the
range of pN to μN and are affected by environmental random
forces that provide a stochastic contribution to the overall
system. On the one hand, such random forces contain
information about the environment and, on the other hand,
likely render questionable Young’s modulus values when they
are the result of a direct fit of FDCs to either eq 4 or 6, vide
infra.

Generalized Moments Method. A stochastic process can
be memoryless, persistent, and antipersistent, where the
characterization stands with respect to the kind of memory
maintained by the process. If every new value of the stochastic
sequence does not pose any dependence on its previous values,
then we call the process memoryless. Instead, if every new
value depends on its previous values, then the process
possesses memory. It is called persistent when every new

Figure 1. AFM image of an Ulocladium chartarum single spore
recorded under standard environmental conditions. Its surface is
characterized by an intense changing landscape against which the tip
is moving with constant velocity v0 (toward/away).
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value likely follows the previous ones’ trend and antipersistent
otherwise.
GMM is used to analyze nonstationary time series,55 it is

one of the most robust methods and works well even for short
time series,49 and it has been successfully applied in several
diverse fields.50−54,67 GMM uses the scaling of statistical
moments of various orders including fractional ones. Briefly,
GMM works as follows: It considers a time series of the form
{xn} with n = 1, 2, ..., N, where N is the total number of steps
(measurements). If the minimum lag time is τthe reciprocal
of the sampling frequencythen the total length of the
trajectory (time) is T = Nτ. If {xn} is a self-similar process,
then we expect that the time series, when zoomed in or
zoomed out, will reveal the same patterns scaled by a certain

amount, x d a xan n
H{ } = { }, where d.. ..{ } = { } stands for the

equality of finite dimensional distributions, and H ∈ (0, 1) is
the scaling exponent also known as the Hurst exponent.56 We
take the norm of the difference of {xn} at two distinct time
moments, t and s with (t > s), and we write ||xt − xs|| = ||x1||||t

H

− sH||. Furthermore, we consider three points xt, xs, and xt−s,
and their norms satisfy the inequality ||xt − xs|| ≤ ||xt−s|| + ||xt −
xs − xt−s||, and by using ||xt|| = ||x1||||t

H||, we then end up with ||
tH − sH|| ≤ ||t − s||H + ||tH − sH − (t − s)H||, where the second
term of the inequality goes as sH for s≪. In this limit, one can
write ||x(t) − x(s)|| ∼ |t − s|H, which for various moments of
order, q, reads ||x(t) − x(s)||q ∼ |t − s|qH. The latter has been
extended to include the dependence of the Hurst exponent on
the order of the moment, H(q) instead of H,33,45,68,69 since the
various moments may not scale precisely by the same factor.
The new exponent z(q) = qH(q) is called the structure
function. For discrete data sets, the time difference t − s
corresponds to a sliding window of length Δ, which must be
small with respect to the total length of the time series.
First step: we construct the time series characterized by

different lag times, Δ, which contain the absolute change of the
values between two points of the initial time series, let us say
x(n), that are apart by Δ

y x n x n( ) ( ) ( )n Δ = || + Δ − || (8)

for n = 1, 2, ..., (T − Δ)/τ and for Δ = τ, 2τ, ..., N/10τ. In
order to have statistically reliable results, we define the
maximum lag time as 1/10 of the maximum length of the
original time series, τmax = N/10, thus creating N/10 new time
series of length (T − Δ) each.
Second step: We estimate the statistical moments of yn(Δ)

according to

m q
T

y( , )
1

( )
n

T

n
q

1

∑Δ =
− Δ

Δ
=

−Δ

(9)

where fractional values of the moment, q, are also taken into
account. We use only positive values of the moments.70

Moments in the range 0 < q ≤ 2 are responsible for the core of
the probability density function (PDF), while moments higher
than 2, q > 2, contribute to the tails of the PDF.71

Third step: we expect that the moments scale according to
the elapsed time, Δ, as a power law

m q( , ) z q( )Δ ≈ Δ (10)

where z(q) is the structure function whose shape gives
information on the stochastic mechanism(s) governing the

motion. If the structure function is linear with respect to the
order of the moment

z q qH( ) GMM= (11)

then the process is monofractal, while if the structure function
has a convex shape, then the process is multifractal, see for
details.54,55 Note that in eq 11, H has been replaced by HGMM
to distinguish the analysis method.

Rescaled Analysis. Let us assume that f i is a stationary
time series, with i = 1, 2, 3, ..., N. We divide the time series into
L nonoverlapping windows (subperiods) of length Δ, L = ⌊N/
Δ⌋. Δ provides the number of data points in a given subperiod
that should be small with respect to N and takes on the role of
time when multiplied by the time lag. We fix its maximum
value to Δmax = ⌊N/4⌋, while its minimum value is set to Δmin
= 10. The number of the nonoverlapping windows lies in the
range ⌊N/Δmax⌋ ≤ L ≤ ⌊N/Δmin⌋. For each one of these
windows, we estimate the mean, <fm>Δ = 1/Δ∑j = 1

Δ f(m−1)Δ+j,
where m = 1, 2, ..., L, and the standard deviation Sm(Δ) = {1/
Δ∑j=1

Δ ( f(m−1)Δ+j − <fm>Δ)
2}1/2. We create the profile Ym(t) =

∑j=1
t ( f(m−1)Δ+j − <fm>Δ). We estimate the distance Rm(Δ) =

max1≤t≤Δ{Ym(t)} − min1≤t≤Δ{Ym(t)}. We average all over the
L-windows, S(Δ) = 1/L∑m=1

L Sm(Δ), and R(Δ) = 1/
L∑m=1

L Rm(Δ), and we define the rescaled range (R/S) (Δ)
which scales as72
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S S
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H
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RA
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∼ Δ
Δ

≤ ≤Δ ≤ ≤Δ

(12)

The quantity (R/S)(Δ) returns the rescaled distance
between the maximum and minimum values of the time series
of a given window of length Δ. According to the scaling
described by eq 12, this quantity is a monotonically increasing
function of the length of the window. If in this description f i
represents the differentiation of the response force recorded in
AFM-NI, then the scaling described by eq 12 is the discrete
analogue of the scaling described by eq 7. This is true because
the time derivative of the response force (approach or retract),
eq 7, is a monotonically increasing function of time for 0 < β <
1.
Linear regression of eq 12 provides the exponent HRA

i
k
jjj

y
{
zzz

R
S

A Hln ( ) ln( )RAΔ = + Δ
(13)

By equating the exponent of eq 7 with the scaling exponent
predicted by RA, eq 13, we end up with

H 1RA β= − (14)

Equation 14 allows estimating the scaling exponent β whose
value classifies the cell as elastic or liquid or viscoelastic.
For the construction of the time series f i from the recorded

FDC data, we work as follows. In the approaching phase, the
values F0

app and F1
app correspond to the response signal to the

left of and at the contact point (CP), and the value FN
app

corresponds to the response force at t = tm. In the retracting
phase, F0

ret and F1
ret correspond to the values of the response

force at t = tm and t = tm + τ, respectively, and FN
ret gives the

value at the CP. A two-step preprocessing is required for
further analysis; first, we define the time series ϕi

j = Fi
j − F0

j, i
= 0, 1, 2, ..., N, which describes the raw data shifted by the
initial value, (F0

j), and second, we differentiate the sequences
with respect to time, f i

j = ϕi
j − ϕi−1

j, with i = 1, 2, ..., N. The
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new time series, f i
j, is the derivative of the response force

multiplied by τ. On the other hand, the accumulation of f i
j up

to a certain time moment gives the shifted response signal, ϕm
j

= ∑i=1
m f i

j. For f i
j being stationary, RA is used and the

viscoelastic exponent is provided by eq 14. For nonstationary
f i
j, GMM is used and the viscoelastic exponent is again
provided by eq 14 where we replace HRA with HGMM.
Parallel to the environmental noise, an instrumental AFM

noise, which is a function of instrumental, thermal, acoustic,
electronic and quantum noises, and so forth, is also present.
These additional noise contributions are characterized by
different time scales and probably die out at the time scale
defined by the resolution of the instrument. Constant
contributions arising from an AFM noise cannot affect our
analysis because the proposed methodology is based on
differences between values of subsequent steps that cancel out
constant contributions. If, however, these components of AFM
noise are not constant in time and turn the measured signals
(their time derivatives) into multiplicative ones (i.e., nonsta-
tionary), then their nature can be identified by the GMM,
which returns a structure function of convex shape, vide infra.
Power Spectral Density. A widely accepted measure for

the classification of stationary time series is its PSD, while for
nonstationary time series, this measure is questionable.73 In
many phenomena, PSD scales as

z
z

PSD( )
1≈ γ (15)

where z is the variable in the frequency domain and γ is the
scaling exponent whose value defines the color of a stochastic
sequence. Colors are well-defined for −1 ≤ γ ≤ 1, white for γ =
0, blue for γ = −1, and pink for γ = 1. For γ < −1 or γ > 1,
colors exist, for example, purple for γ = −2, red or brown for γ
= 2, and black for γ > 3. Criteria for color classification are not
tight, so a signal with −1.3 ≤ γ ≤ −0.5 can be characterized as
bluish, and in the range 0.5 ≤ γ ≤ 1.5 as pink or flicker. For

time series defined in the time domain, the scaling of their PSD
does not exceed the value of 2.73 Equation 15 is an
approximation good only for low frequencies. In practice, eq
15 provides adequate scaling exponents for real-life time series
only if the scaling holds true for at least 2 decades in the
frequency domain.59 Spectral methods accurately predict the
scaling of synthetic time series produced in the frequency
domain, while for those produced in the time domain, half of
the spectra estimates deviate significantly for the nominal value
of γ.74 The sign of the exponent characterizes a process as
antipersistent, negative (purple, blue), and as persistent,
positive (pink, red, and black). Additionally classification is
made regarding the stationary or nonstationary nature of the
process: fractional Gaussian noises, fGn, (stationary processes)
for −1 < γ < 1, and fractional Brownian motion, fBm, for 1 < γ
< 3 (nonstationary process). Notice that fBm is the integration
of fGn up to time t. Assuming either fGn or fBm as the kind of
the underlying stochastic process, then there is a direct
connection between the Hurst exponent and the power
spectrum scaling exponent59

l
moo
noo

H

H

2 1 1 1

2 1 1 3
RA

GMM
γ

γ

γ
=

− − < <

+ < < (16)

In eq 16, the subscript refers to the analysis method used to
obtain the Hurst exponent: RA for stationary noises and GMM
for nonstationary. By using the path of analysis described
above, one can easily find the scaling exponent describing the
viscoelastic properties of the cell, eq 14, as well as the scaling
exponent providing information about the noise properties of
the cell, eq 16, assuming the existence of fractional Gaussian
noises.

■ MATERIALS AND EXPERIMENTAL PART
We test our model on a rubber that is a “nonliving” material;
polydimethylsiloxane (PDMS) has been used as the sample.

Figure 2. Color code: red for approach and green for retraction. A part of FDCs for some typical experiments analyzed in this study are depicted.
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Two sets of four AFM-NI experiments each have been carried
out with the same setup of the experiments carried out in
spores and two different control conditions. The first one
considers the velocity of penetration, u = 0.029 μm/s, very
similar to the velocity of penetration in spores, and the second
one considers a much higher velocity of penetration, u = 0.49
μm/s, see below. A detailed analysis of these experiments is
given at Section I of the Supporting Information, see also
Figures S1a,b, S2, and S3a,b as well as results listed in Table
S1. The time derivatives of the measured deflection signals
(Figure S1a,b) correspond to nonstationary time series, and
analysis has been made by GMM. For the first control
condition, GMM delivers viscoelastic exponents in the range
[0.758−0.850], for approach, and in the range [0.734−0.758],
for retraction. Both phases describe a liquid-like behavior of
the “nonliving” material. For the second control condition, the
corresponding values are [0.362−0.415] for approach and
[0.316−0.342] for retraction, and the “nonliving” material
behaves as a viscoelastic one. We found by using two control
conditions of substantial difference in the velocity of
penetration that the higher the velocity of penetration, the
more elastic the material appears.21 We also used eqs 4 and 6
to fit directly the measured deflection signals for all
experiments. Equation 4 fits well the approach phase for
both control conditions, returning exponents in very good
agreement with what has been obtained by GMM, see Table
S1. On the contrary, fittings with eq 6 (retraction) return
values of β reduced by at least a factor of 4(2) for 0.029(0.49)
μm/s with respect to the approaching phase and to what is
obtained by GMM. This inconsistency may be due to
additional contributions, for example, drift and/or feedback
electronics, which challenge the assumption of a monotonic
decreasing contact area, a necessary condition for the
application of eq 6. These contributions cannot affect the
GMM since the latter uses the absolute changes between two
observables.
Living Ulocladium chartarum spores were cultivated on

potato dextrose agar (Merck, pH = 5.6) at 298 K. A part of the
culture was uniformly spread over an area of 250 mm2 on the
coverslip substrate under an optical metallographic microscope
(Leica DMRX). The spore cells were left to dry on air after
removing traces of humidity with a paper filter. Caution was
taken to form monolayers of spores, preventing inner spore
shielding. The nanoindentation was carried out with the same
type of cantilever under ambient conditions using a
phosphorus-(n)-doped silicon cantilever (Bruker RTESPA-
300) having a nominal spring constant and a resonance
frequency of 40 N/m and 300 kHz, respectively. A stiff
cantilever has been chosen to ensure that the tip penetrates
inside the hard Ulocladium chartarum membrane.75 This
choice may reduce the hysteresis between approach and
retraction, see Figure 2.
FDCs were recorded at different points, regularly distributed

over preselected areas in the center of the cell, and away from
the spore edges, thus avoiding artifacts introduced by cell
boundaries. We have conducted 13 experiments, and three
constant velocities, namely, 0.0248/0.0289/0.0331 μm/s, have
been used. The maximum penetration depth lies in the range
of 100−133 nm, but there is also a value of 83 nm as well as of
207 nm.
Figure 2 shows some FDCs in AFM-NI experiments; note

that in all experiments we used only one type of cantilever. The
deflection signal in volts can be turned into force by

multiplying the voltage values by a proper conversion factor,
which may also present dependency on the geometry of the
laser beam. The treatment is independent on voltages or forces
since the beta value involves differences and does not
dependent on the conversion factor. The recorded curves
consist of 1024 sampling points, and thus, the phase changes
from approach to retraction at the time moment tm, which
corresponds to the 512 sampling point. The curves are
converted into time units when multiplied by the minimum lag
time (reciprocal of the sampling rate), which is approximately
equal to 23.6 ms.

■ RESULTS AND DISCUSSION
The approach and retraction pathways do not coincide, Figure
2. Approach and retraction evolve under constant velocity,
which has been kept slow with respect to the timescale of
molecular re-organization. The two processes, therefore, form a
pair of dynamical processes that do not coincide and evolve
near equilibrium. In principle, the response mechanisms
governing these processes in living cells can differ and,
accordingly, differentiate the response of a biological system
under the stimulus of the same mechanical object. Approach
and retraction are treated separately for each experiment. To
estimate the scaling exponent β, we use the curves depicted in
Figure 3a/Figure 3c, which are parts of the overall FDCs and

correspond to measurements taken with the tip in contact with
the sample. These parts of a FDC form discrete time series of
equidistant points, Fi

j, i = 0, 1, 2, .., K, where every pair of two
consecutive points is separated by the minimum time lag, τ,
and K provides the maximum number of data points of which
the analyzed part of the curve is consisted of. The obtained
time series are nonstationary, see Figure 3a,c.The index j
stands for the phase and takes two values, j = app or j = ret for
approach and retraction, respectively.
We apply GMM in order to verify if f i

j is stationary or not,
Figure 3b,d. For all experiments, for both approach and
retraction, GMM analysis returns a zero value for HGMM. It
implies that f i

j are stationary and their further analysis is made
using RA by means of eq 12. Linear regression of eq 12 returns

Figure 3. Color code: approach (red) and retraction (green).
Recorded deflection signal in a typical AFM-NI experiment is
illustrated in (a,c) where data after/before the contact point for
approach/retraction are used. The differentiation of the recorded
signal is given in (b,d) for approach and retraction, respectively.
These data sets are studied by using GMM and RA.
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the values of HRA, eq 13. Figure 4 shows the best fits as well as
the estimated exponents for four experiments. The obtained

Hurst exponents, HRA, differentiate pathways for approach and
retraction. For the approaching phase and for similar maximum
penetration depths of about ∼100 nm (only in one experiment
the maximum penetration depth is ∼200 nm), we obtain
values of HRA lying in the range 0.48 ≤ HRA ≤ 0.75. For the
same experiments in the retracting phase, the returned value of
HRA lies in the range 0.15 ≤ HRA ≤ 0.33, see Table 1.
The scaling exponents characterize the viscoelastic proper-

ties of the cell, which are obtained by using eq 14; their values
are listed in Table 1; and they are illustrated in Figure 5. In the
approaching phase, the Hurst exponents are greater than or
equal to 0.48, which is typical either of uncorrelated processes
for values close to 0.5 or of slightly persistent processes for
larger values. It means that the cell, in most of the cases,
attempts to counterbalance nearly perfect the effect of the tip.
Additionally, the conjugated scaling exponents, β, eq 14, lie in
the range of 0.25 ≤ β ≤ 0.52. The values align with the
literature where β is often found to lie in the range of 0.1−
0.3.26,27 Values of β close to 0.4 have been reported for

fibroblast (NIH 3T3),21 and values close to 0.5 have been
found for the maximum penetration depth deeper than 1 μm30

(not reached in the current study). On the other hand,
increased values of β and close to 0.5 have been associated
with regions of the cell in the periphery of the center. The
values of β are somewhat scattered, and they do not depend on
the values of the low velocities used here.21 The exception is
the single value for the control condition 0.033 μm/s, which
might introduce a dependency condition, and its statistical
significance possibly remains to be clarified in future
experiments. A comprehensive microscopic interpretation of
what the scaling exponent β represents is still missing, albeit
that it has been proposed that β represents the turnover
dynamics of cytoskeletal proteins and cross-linkers, including
myosin motor activity.26 Cytoskeletal protein dynamics is
essential for contraction and locomotion76 and has been
reported to be higher in peripheral areas of the cell such as in
the lamella and the lamellipodium, resulting in increased values
of β. The scattered values of β, Figure 5, for similar penetration
depths likely indicate cell inhomogeneity. It has been reported
that there is no evidence for a dependence of the value of β on

Figure 4. Four different experiments are illustrated. Each panel
describes the application of RA for the approach and the retraction
phase of the same experiments. Color code: red for approach and
green for retraction. Fittings have been performed by using eq 13,
dashed blue/black lines for approach and retraction, respectively. The
slope of each fit returns the Hurst exponent, HRA, which is also
depicted in the graphs.

Table 1. Approach/Retraction Process for Different Points Regularly Distributed over Preselected Areas in the Center of a
Ulocladium chartarum Sporea

Approach retraction

exp. u (μm/s) HRA β γ HRA β γ

1, 2 0.0248 0.48 ± 0.025, 0.61 ± 0.014 0.52, 0.39 −0.04, 0.22 0.19 ± 0.031, 0.23 ± 0.015 0.81, 0.77 −0.62, −0.44
3, 4 0.0248 0.55 ± 0.015, 0.60 ± 0.016 0.45, 0.40 0.10, 0.20 0.25 ± 0.018, 0.15 ± 0.016 0.75, 0.85 −0.50, −0.70
5, 6 0.0289 0.66 ± 0.024, 0.63 ± 0.022 0.34, 0.37 0.32, 0.26 0.19 ± 0.013, 0.24 ± 0.024 0.81, 0.76 −0.62, −0.52
7, 8 0.0289 0.62 ± 0.027, 0.52 ± 0.021 0.38, 0.48 0.24, 0.04 0.27 ± 0.035, 0.20 ± 0.024 0.73, 0.80 −0.46, −0.60
9, 10 0.0289 0.61 ± 0.030, 0.52 ± 0.020 0.39, 0.48 0.22, 0.04 0.31 ± 0.026, 0.24 ± 0.026 0.69, 0.76 −0.38, −0.52
11, 12 0.0289 0.59 ± 0.027, 0.58 ± 0.035 0.41, 0.42 0.18, 0.16 0.24 ± 0.031, 0.33 ± 0.017 0.76, 0.67 −0.52, −0.34
13 0.0331 0.75 ± 0.030 0.25 0.50 0.23 ± 0.023 0.77 −0.54

aThe f i
j time series created by the raw data are first treated by using GMM. The method delivers HGMM = 0.0 for all experiments and for both

phases, thus proving the stationary nature of the f ij. The same time series are then treated by RA, which delivers the scaling exponents, HRA, of the
derivative of the response force by means of eq 14, and the standard error of estimate is also provided. By using eqs 14 and 16, we obtain the scaling
exponents characterizing the viscoelastic material and the PSD, β and γ, respectively.

Figure 5. Color code to assist the eye for different constant loads: red
for u1 = 0.0248 μm/s, blue for u2 = 0.0289 μm/s, and green for u3 =
0.0331 μm/s. Symbols: circles for the approaching phase and squares
for the retracting one. Top: scaling exponents, β, of the viscoelastic
properties of cell. Bottom: scaling exponent, γ, of the power spectrum.
Three horizontal lines stand for some well-defined colors: blue for γ =
−1, white for γ = 0, and pink for γ = 1.
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the depth of penetration,30 an argument also satisfied in this
study for the experiment number 5, where the penetration
depth is almost double with respect to the other ones.
The retracting phase of each experiment reveals an entirely

different picture. The values of the Hurst exponent lie in the
range of 0.15 ≤ HRA ≤ 0.33, suggesting an antipersistent
process, where each step likely goes in the opposite direction of
the previous one. It means that the tip experiences forces that
oppose the predefined motion imposed by the tip and are of
the same order of the latter. These forces are likely to be of
capillary nature, caused by liquid filling of the path created by
the tip during the penetration. The liquid nature of the path is
corroborated by the values of the scaling exponent β lying in
the range 0.67 ≤ β ≤ 0.85, which is typical of liquid-like
materials.26,27,30 Different responses of approaching retracting
AFM-NI curves are associated with biomemory effects of cells
for tracing maximum viability lines. External stress is
responsible for exuding intracellular substances on the cell
wall and a change in the intracellular environment for
protecting the cell.1,2,77−79

For stationary processes, the value of γ underlines the color
of the process. γ can be obtained by using either eq 15 or eq
16. Application of eq 15, which requires a direct trans-
formation of the differentiated data to Fourier space and then
fitting with eq 15, presents significant standard error of the
estimate, see Section II of the Supporting Information. We
obtained the scaling exponents by using eq 16. In the
approaching phase, we find 0 < γ ≤ 0.5, persistent noises,
and accordingly, during this phase, the cell retains a memory.
On the other hand, the retracting phase is described by −0.7 ≤
γ ≤ −0.34, bluish type of noises, and values describe the
antipersistence process again in line with properties underlined
by the values of β. Bluish noises have been reported in the
literature as noise patterns used by retina cells to yield the
visual resolution.80 For both approach and retraction, the time
derivative of the response force is described as the fractional
Gaussian noise, obtained values of γ, see Figure 5. This finding
is introduced here for the very first time and could be exploited
in the modeling of the AFM-NI motion, for instance, in terms
of a fractional Langevin-type equation where the proper form
of the environmental noise must be chosen. Such a strict
mathematical description of the cell response under an AFM
indenter of pyramidal shape can provide further information
on the microscopic nature of the scaling exponent β. We leave
this task for a future work.

■ CONCLUSIONS
In summary, a robust methodology for the analysis of AFM-NI
FDCs is proposed, which can also be extended to incorporate
contributions from the solid support. The analysis of
experiments conducted in living Ulocladium chartarum spores
shows that approaching and retracting phases are truly
different processes. Their different natures appear (a) by the
scaling exponents describing their viscoelastic properties and
(b) by the scaling exponents of their PSD, which is connected
to the type of the environmental noise. In the approaching
phase, the cell presents a viscoelastic behavior similar to what
has already been reported in the literature. The process is
persistent, underlining a synergic action of the inner
components of cell opposing the motion of the tip. The
retracting phase corresponds to an antipersistent process and
displays characteristics of a liquid-like material, which interacts
with the tip by forces that are likely of capillary nature. These

forces originate on the release of proteins and biosubstances,
triggered by a mechanical stimulus, that fill the path created by
the tip and indicate a biomemory response of cells to local
mechanical stress as the one imposed by the AFM tip during
indentation. The environmental noise is bluish for the
retracting phase and persistent, quasi flicker, for the
approaching one.
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