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Abstract

Background: Chronic lymphocytic leukemia (CLL) is typically regarded as an indolent B-cell malignancy. However, there is
wide variability with regards to need for therapy, time to progressive disease, and treatment response. This clinical
variability is due, in part, to biological heterogeneity between individual patients’ leukemias. While much has been learned
about this biological variation using genomic approaches, it is unclear whether such efforts have sufficiently evaluated
biological and clinical heterogeneity in CLL.

Methods: To study the extent of genomic variability in CLL and the biological and clinical attributes of genomic
classification in CLL, we evaluated 893 unique CLL samples from fifteen publicly available gene expression profiling datasets.
We used unsupervised approaches to divide the data into subgroups, evaluated the biological pathways and genetic
aberrations that were associated with the subgroups, and compared prognostic and clinical outcome data between the
subgroups.

Results: Using an unsupervised approach, we determined that approximately 600 CLL samples are needed to define the
spectrum of diversity in CLL genomic expression. We identified seven genomically-defined CLL subgroups that have distinct
biological properties, are associated with specific chromosomal deletions and amplifications, and have marked differences
in molecular prognostic markers and clinical outcomes.

Conclusions: Our results indicate that investigations focusing on small numbers of patient samples likely provide a biased
outlook on CLL biology. These findings may have important implications in identifying patients who should be treated with
specific targeted therapies, which could have efficacy against CLL cells that rely on specific biological pathways.
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Introduction

Chronic lymphocytic leukemia (CLL) is a generally indolent B-

cell malignancy. However, since the time that clinical staging

systems were developed [1,2], it has been appreciated that there is

clinical variability between CLL patients. Efforts to better

characterize this variability led to the identification and extensive

validation of numerous molecular prognostic markers [3,4,5,6,7].

Research in this field has highlighted the concept that molecular

markers can link biology with clinical outcomes. For example,

CD38 and ZAP70 are involved in surface receptor signaling, and

patients with high expression of these markers have worse survival

outcomes [8]. Thus, biologic heterogeneity, defined by these

markers, appears to underlie clinical variability.

The use of gene expression profiling of CLL cells as an

experimental approach has informed the understanding of CLL

biology dramatically. Comparisons of genomic expression of CLL

cells from patients grouped by clinical outcomes or by prognostic

markers have led to the identification of numerous genes or gene

signatures associated with these phenotypes

[4,9,10,11,12,13,14,15,16,17]. Our previous work identified

genomic signatures that were associated with prognosis and

response to treatment in limited numbers of CLL patients [12].

Further research has studied identified genes, such as ZAP70, to

identify their biological and cellular significance [18,19,20,21].

Genomic approaches have also informed research on the CLL

microenvironment, for example dissecting biological differences of

CLL cells that reside in different anatomic niches [22].

Despite these contributions, it is unclear whether the gene

expression profiling approach used to date is sufficient. The

marked clinical and biological heterogeneity of CLL and limited

numbers of subjects in individual studies may make it difficult to

fully and accurately assess genomic heterogeneity in CLL. To

address this methodically and objectively, we evaluated publicly

available CLL gene expression datasets in concert in order to

assess the number of samples required to capture genomic

heterogeneity in CLL and to determine if CLL subgroups defined

by gene expression profiling have biological and clinical relevance.
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Table 1. Publicly available datasets, with available molecular prognostic factors.

Dataset Batch (Figure 1)
Reference
Number

Number of
Samples

Interphase
Cytogenetics CD38 ZAP70

IgVH Mutation
Status

GSE6691 1 30 11 NA: 11 NA: 11 NA: 11 NA: 11

GSE9250 2 27 20 13qdel: 10 NA: 20 Neg: 14 M: 15

Normal: 10 Pos: 6 UM: 5

GSE9992 15 33 60 17qdel: 7 NA: 60 NA: 60 M: 24

NA: 53 UM: 36

GSE10137 3 12 40 NA: 40 Neg: 26 Neg: 21 M: 15

Pos: 14 Pos: 15 UM: 25

NA: 4

GSE10138 4 12 68 13qdel: 18 Neg: 51 Neg: 18 M: 39

Normal: 14 Pos: 14 Pos: 44 UM: 26

Tri12:9 NA: 6 NA: 3

11qdel: 4

17pdel: 5

NA: 18

GSE12734 5 24 14 13qdel: 3 Neg: 4 Neg: 7 M: 8

Normal: 3 Pos: 10 Pos: 7 UM: 6

Tri12:2

11qdel: 1

17pdel: 1

6qdel: 4

GSE13159 10 29 448 NA: 448 NA: 448 NA: 448 NA: 448

GSE15490 12 25 20 13qdel: 5 NA: 20 NA: 20 M: 7

Normal: 3 UM: 11

Tri12:4 NA: 2

11qdel: 5

17pdel: 2

NA: 1

GSE15777 14 34 22 NA: 22 Neg: 13 Neg: 14 M: 16

Pos: 5 Pos: 6 UM: 4

NA: 4 NA: 2 NA: 2

GSE15913 6 31 20 13qdel: 6 Neg: 14 Neg: 8 M: 1

Normal: 5 Pos: 5 Pos: 10 UM: 19

Tri12:1 NA: 1 NA: 2

11qdel: 5

17pdel: 3

GSE16455 7 32 17 NA: 17 NA: 17 NA: 17 NA: 17

GSE16746 8 28 60 13qdel: 17 Neg: 31 Neg: 39 M: 23

Normal: 17 Pos: 29 Pos: 21 UM: 37

Tri12:12

11qdel: 7

17pdel: 7

GSE21029 9 22 62 13qdel: 22 Neg: 27 Neg: 21 M: 26

Normal: 6 Pos: 35 Pos: 41 UM: 36

Tri12:15

11qdel: 12

17pdel: 5

NA: 2

GSE26526 11 26 19 13qdel: 2 NA: 19 Neg: 5 M: 4

Normal: 6 Pos: 14 UM: 15

CLL Genomic Heterogeneity
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Methods

Dataset Selection, Combination, and Normalization
The Gene Expression Omnibus (GEO) at the National Center

for Biotechnology Information (NCBI) website was queried using

terms including lymphoma, B-cell lymphoma, CLL, chronic

lymphocytic leukemia, small lymphocytic lymphoma, and SLL.

Datasets were then filtered to include only Homo sapiens and

Affymetrix U133 generation gene expression arrays. Thereafter,

datasets were manually sorted to remove duplicate data files

(between datasets) or data files that represented culture experi-

ments. Of the fifteen identified datasets, one publicly available

dataset was from our previous research at the Duke University and

Durham VA Medical Centers [12,22,23,24,25,26,27,28,29,

30,31,32,33,34].

Gene expression data (CEL) files from selected datasets were

downloaded from the GEO website. CEL files were normalized

using RMA and MAS5 normalization methods using the affy

package in Bioconductor [35]. Thereafter, normalized datasets

were filtered to common probes between the three chips (22,277

probes). The datasets were combined and normalized for batch

effect with the Bayesian Factor Regression Method (BFRM), using

the BFRM normalize module on the Duke license of GenePattern

[36]. Batch effect was assessed prior to and after normalization

using principal component analysis.

Table 1. Cont.

Dataset Batch (Figure 1)
Reference
Number

Number of
Samples

Interphase
Cytogenetics CD38 ZAP70

IgVH Mutation
Status

Tri12:1

11qdel: 10

GSE26725 13 23 12 13qdel: 2 Neg: 5 Neg: 4 M: 2

Normal: 1 Pos: 7 Pos: 7 UM: 9

Tri12:1 NA: 1 NA: 1

11qdel: 6

17pdel: 2

Fifteen publicly available datasets were obtained from GEO that had unique gene expression profiling files representing CLL. The number of CLL samples per dataset
ranged from 11 to 448. Molecular prognostic markers that correspond to the gene expression profiling data were available for a majority of the total samples, but the
prognostic markers were not evenly spread between the different datasets, largely owing to experimental design of each dataset. NA signifies data not available, Neg
represents negative, Pos represents positive, M represents IgVH mutated, and UM represents IgVH unmutated.
doi:10.1371/journal.pone.0057356.t001

Figure 1. CLL gene expression data files from the fifteen individual datasets were evaluated by principal component analysis
(PCA). A) PCA prior to Bayesian Factor Regression Modeling (BFRM) normalization was performed, and the first principal component (PC) is plotted
against the second PC. Numbers represent dataset order found in Table 1. CLL samples from each dataset cluster together. B) PCA following BFRM
normalization was performed, and the first PC is plotted against the second PC. Samples retain the same numbering as in Figure 1A. CLL samples now
cluster together in one cloud.
doi:10.1371/journal.pone.0057356.g001

CLL Genomic Heterogeneity

PLOS ONE | www.plosone.org 3 February 2013 | Volume 8 | Issue 2 | e57356



CLL Genomic Heterogeneity

PLOS ONE | www.plosone.org 4 February 2013 | Volume 8 | Issue 2 | e57356



Creation of Subgroups
We identified subgroups of the combined RMA normalized

dataset by performing Consensus Clustering [37] with unsuper-

vised hierarchical clustering (Euclidean distance and Ward

agglomerative method) using the R package ConsensusCluster-

Plus. The dataset was initially filtered to the 10% of probes with

the highest standard deviation across all samples (2222 probes).

Within the Consensus Clustering algorithm, 90% of the samples

were resampled in each of the 50 total iterations. We defined the

number of subgroups (seven subgroups) based on the point on the

delta area plot at which there was minimal relative decrease in the

consensus cumulative distribution function (CDF). Thereafter,

samples were assigned subgroup membership by performing

unsupervised hierarchical clustering on the complete filtered

dataset using the same clustering settings.

Sub-sampling of the Combined Dataset
The combined dataset was reordered randomly. Subsequently,

sub-datasets of the combined dataset (comprised of first 50

samples, the first 100 samples, and so on in multiples of 50

samples, through the entire dataset) were defined. The probes in

these sub-datasets were filtered to approximately the top 10% with

the highest standard deviation (2222 probes). Thereafter, Con-

sensus Clustering was performed on the sub-datasets using the

settings outlined above. This process was iterated twenty-five

times. CDF plots for the sub-datasets were compared to CDF plot

for the entire dataset and scored for similarity in terms of area

under the curve and slope of the curves. Statistical difference in

score of the sub-datasets compared to the entire dataset was

assessed using the Fisher’s exact test.

Gene and Pathway Annotation
Assessment of gene and genomic pathway annotation was

performed using Gene Set Enrichment Analysis (GSEA) [38] and

genomic signatures of oncogenic pathway deregulation (Score-

Signature) [36,39]. For GSEA analysis, RMA normalized data

were used; for ScoreSignature analysis, both RMA and MAS5

normalized data were used. In GSEA, all probes in the combined

gene expression dataset were used, and samples in each subgroup

were compared to the remaining samples. Since the purpose of this

analysis was exploratory, we considered any gene set with a

nominal p value of less than 0.01 to be significant. Genomic

signatures of oncogenic pathway activation were evaluated in the

combined dataset using the Duke GenePattern license. Significant

differences in pathway scores between subgroups were evaluated

using the Kruskal-Wallis rank sum test.

Single Nucleotide Polymorphism (SNP) Analysis
GSE16746 contained 60 samples that had been arrayed with

Affymetrix U133A gene expression array and with Affymetrix

250K Nsp SNP Array [28]. The CNAT processed log2 copy

number data which were posted to the GEO website were

downloaded. Thereafter, using the DNAcopy package from

bioconductor, circular binary segmentation was used to identify

change-points at which the underlying DNA copy number was

altered [40,41]. This identified regions of SNPs that were linked

together and had normal copy number or copy number variation

(amplifications or deletions). With a value of 2 representing normal

copy number, a value of 2.2 or greater was considered to be an

amplification, and a value of 1.8 or below was considered to be a

deletion. Copy number variation in chromosome X was not

evaluated, since sex of the CLL patients was not known. We

focused on copy number variation found in two or more CLL

samples.

The samples in GSE16746 were assigned into subgroups based

on their branch membership in unsupervised hierarchical cluster-

ing. The frequency of each copy number variation within each

subgroup was compared to the expected frequency using the

Figure 2. Results of Consensus Clustering to define the smallest number of subgroups that define genomic variation within the
entire combined dataset. A) A heatmap of the consensus matrix, displaying samples with high consensus (blue) are grouped together, compared
to those with low consensus (white). B) The delta area plot shows a negligible increase in area under the Consensus cumulative distribution function
in more than seven subgroups. Thus, dividing the data into more subgroups does not improve sample classification.
doi:10.1371/journal.pone.0057356.g002

Figure 3. Representative examples of Consensus Cumulative Distribution Function (CDF) plots for the entire dataset (right) and
randomly selected sub-datasets of 100 and 600 CLL samples (left and middle, respectively). By evaluating area under the curve and
slope of the curves, it is appreciated that CDF plots of Consensus Clustering of sub-datasets the include 600 CLL samples are similar to the CDF plot
of the entire dataset containing 893 CLL samples. However, CDF plots obtained upon using smaller sub-datasets, for example comprised of 100 CLL
samples, is not similar to the CDF plot of the entire dataset.
doi:10.1371/journal.pone.0057356.g003

CLL Genomic Heterogeneity
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Pearson’s Chi-squared test, and regions of copy number variation

with a p-value of less than 0.05 was considered significant.

Insufficient total number of samples per group precluded

performing multiple testing corrections.

Clinical Variable Analysis
Molecular prognostic marker and outcome data were gathered

for each sample included in the analysis, if available. In most cases,

the data were available on GEO or in supplemental tables in the

publications, but in some cases we retrieved the information from

the corresponding author directly.

Samples in the combined dataset were separated based on

subgroup. Significant differences in available molecular prognostic

markers between subgroups were assessed using Pearson’s Chi-

squared test. For datasets with clinical treatment response data

(GSE15490 and GSE10137) [12,25], the rates of complete

response, partial response, stable disease, and progressive disease

were compared between samples in different subgroups using

Pearson’s Chi-squared test. For the dataset with clinical outcome

data (GSE10138) [12], samples were divided by genomic

subgroup, and Kaplan-Meier analysis was performed to assess

overall survival divided on subgroup. The log-rank test was used to

statistically compare clinical outcomes between groups. A p-value

of less than 0.05 was considered to be significant.

Statistics and Computational Analysis Methods
Statistical analyses, raw gene expression normalization, Con-

sensus Clustering, and circular binary segmentation were per-

formed using R. Genomic pathway analyses were performed using

Gene Set Enrichment Analysis (java applet from the Broad

Institute, version 2). We used the Duke University GenePattern

server (https://genepattern.genome.duke.edu/gp/pages/login.jsf)

[42] to assess genomic signatures of oncogenic pathway activation

and perform BFRM normalization. Code used to perform the

analyses in R can be found in the Text S1.

Results

Dataset Characteristics and Processing
From a query of the GEO database for CLL-containing

datasets, we identified fifteen datasets that contained 893 unique

CLL sample data files (Table 1). The number of data files within

each dataset ranged from eleven to 448. Associated CLL

molecular prognostic markers (interphase cytogenetics, CD38

and ZAP70 expression, and IgVH mutation status) were available

for many, but not all, data files.

After downloading datasets from GEO and normalizing the files

from individual datasets, we combined the datasets, filtering the

data to include common probes. The combined dataset was

further normalized with the Bayesian Factor Regression Method

(BFRM) to reduce batch effect. We evaluated the efficacy of this

normalization process using principal component analysis of the

combined dataset prior to and after normalization. Prior to BFRM

normalization, samples were grouped with other samples from the

same dataset (Figure 1A). However, after BFRM normalization,

samples were spread evenly with samples from other datasets

(Figure 1B), demonstrating that batch effect has been reduced

dramatically.

Table 2. Genomically-defined CLL subgroups with biological annotation.

Group Number of Samples Enriched pathways identified in GSEA

1 88 RNA processing, TNFa and MAPK pathways, proteosome and ubiquitination

2 120 Cytokine/Interferon receptor signaling, cell motility and adhesion, RAS pathway

3 225 Hematopoietic progenitor cell, amino acid metabolism

4 90 Suppression of TNFa, TGF-b, and MAPK pathway activity

5 168 B-cell receptor signaling

6 32 Interferon pathway, NOTCH signaling, MYC pathway

7 170 Suppression of MYC pathway and TACI receptor signaling

Unsupervised hierarchical clustering of the combined and normalized gene expression profiling dataset defined seven CLL subgroups. The number of CLL samples per
subgroup ranged from 32 to 225. Gene Set Enrichment Analysis (GSEA) was used to evaluate biological pathways that distinguished each subgroup from the others.
doi:10.1371/journal.pone.0057356.t002

Figure 4. A heatmap of oncogenic pathway signature predictions, with CLL samples grouped by genomically-defined subgroups
on the x-axis, and signatures on the y-axis. Red denotes high signature prediction, and blue denotes low signature prediction, with prediction
scores scaled by row. This demonstrates that subgroups have distinct patterns of oncogenic pathway activity, which confirm results obtained from
GSEA analysis.
doi:10.1371/journal.pone.0057356.g004

CLL Genomic Heterogeneity
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Evaluating the Extent of Genomic Complexity
To assess the extent of genomic heterogeneity in CLL, we

evaluated the combined dataset with unsupervised hierarchical

clustering using the Consensus Clustering algorithm. As seen in

Figure 2, this approach identifies seven subgroups that group

together based on consensus. Further dividing of the entire dataset

into a larger number of subgroups has minimal improvement in

classification, as demonstrated by the minimal change in the

Consensus cumulative distribution function (CDF) beyond seven

subgroups.

Before assessing the biological and clinical relevance of

genomically-defined CLL subgroups, it was important to deter-

mine if the number of samples in the combined dataset were

sufficient to evaluate genomic heterogeneity in CLL. Assuming

there is no bias in the availability of genomic data, we would

expect that increasing the number of samples in the combined

dataset would cease to increase the number of subgroups once

maximum genomic heterogeneity has been reached. Therefore,

we evaluated the combined dataset in an iterative fashion to

determine if a smaller number of CLL samples could be used to

obtain the same subgroups as the entire combined dataset. To do

Table 3. Single nucleotide polymorphism deletions and amplifications that are statistically enriched in genomically-defined CLL
subgroups.

Chromosome Genes Variation
Enriched in
Subgroups

Reduced in
Subgroups P value

22q11.23 LRP5L Deletion 3 1, 7 0.037

CRYBB2

CRYBB2P1

LOC91353

1p31.3 LEPR Amplification 4 1, 7 0.0004

2p25.3–p22.2 229 genes including: Amplification 1, 2, 5 3, 7 0.012

ADAM17

E2F6

LPIN1

NT5C1B

RHOB

APOB

ALK

PPP1CB

SOCS5

MSH2

BCL11A

REL

XPO1

An evaluation of copy number variations in CLL lymphocytes revealed two regions of amplification and one region of deletion that are significantly associated with
certain subgroups. The regions were identified based on Affymetrix annotation, and was verified with the University of California Santa Cruz genomic browser, NCBI135/
hg17 genome assembly. A full list of the genes contained in amplification region on chromosome two is found in Table S1. P values were calculated using the Pearson’s
Chi-squared test.
doi:10.1371/journal.pone.0057356.t003

Table 4. High-risk molecular prognostic markers found in each genomically-defined CLL subgroup.

Group % (n) 17pdel or 11qdel (FISH) % (n) CD38 Positive % (n) ZAP70 Positive % (n) IgVH Unmutated

1 19% (6/31) 49% (18/37) 58% (21/36) 60% (33/55)

2 100% (3/3) 75% (3/4) 67% (2/3) 80% (4/5)

3 37% (38/101) 61% (46/76) 83% (77/93) 82% (96/117)

4 29% (9/41) 18% (6/34) 64% (21/33) 64% (24/39)

5 37% (15/41) 26% (14/54) 36% (20/56) 25% (17/68)

6 7% (1/14) 38% (6/16) 0% (0/16) 44% (8/18)

7 17% (10/58) 38% (26/69) 35% (30/85) 43% (46/107)

An evaluation of molecular prognostic markers found in the genomically-defined CLL subgroups identifies significantly different levels of these markers between the
subgroups (p,0.0001, Pearson’s Chi-squared test for each prognostic marker). Results are reported as percentage of samples within a group with each high-risk
prognostic marker, calculated as number with the prognostic marker divided by the total within the subgroup with data available.
doi:10.1371/journal.pone.0057356.t004

CLL Genomic Heterogeneity

PLOS ONE | www.plosone.org 7 February 2013 | Volume 8 | Issue 2 | e57356



so, we used the Consensus Clustering algorithm to evaluate the

CDF of two to eight subgroups on increasing numbers of

randomly selecting samples from within the entire dataset. This

process was repeated 25 times. CDF plots of sub-datasets were

compared to the CDF plot of the entire dataset. The CDF plots for

sub-datasets of 50 to 550 samples were different than the CDF plot

for the entire dataset (p,0.0001, Fisher’s Exact Test), whereas 600

to 850 samples were not statistically different than the CDF plot

for the entire dataset (p.0.05, Fisher’s Exact Test). Representative

plots are displayed in Figure 3. Thus, approximately 600 or more

CLL samples are required to evaluate genomic complexity in CLL

as a whole.

Genomically-defined CLL Subgroups and their Biological
Relevance

As described above, we identified seven CLL subgroups by

performing unsupervised hierarchical clustering on the entire

combined dataset. We sought to determine if these genomically-

defined CLL subgroups have biological relevance, using gene and

genomic pathway annotation tools such as Gene Set Enrichment

Analysis (GSEA) and genomic signatures of oncogenic pathway

activation. As seen in Table 2, the seven subgroups differed in

terms of pathways identified using GSEA. Biological processes

known to be important in CLL were identified (such as B-cell

receptor signaling and the NF-kB pathway). However, we noted

other pathways not traditionally focused on in the study of CLL

biology. For example, RNA processing and interferon pathways

were identified as associated with certain CLL subgroups.

The annotations revealed by GSEA were consistent with our

analysis using gene expression signatures that measure oncogenic

and cell signaling pathways. These signatures were developed from

experimental perturbations of pathways and provide a quantitative

estimate of the state of the cellular pathway in a given sample

[36,39]. As displayed in Figure 4, the predictions of pathway

activity using these signatures revealed distinctions between the

CLL subgroups. For example, subgroups one and two were found

to have high TNFa/NF-kB pathway activity and subgroup four

was found to have low activity, consistent with the analysis from

GSEA. Further, subgroups two and six exhibited elevated

interferon alpha and gamma pathway activity, again consistent

with the annotations obtained by GSEA. These analyses

underscore that subgroups defined by raw gene expression data

have differences in underlying biology and pathway activation.

Since copy number variations (CNV) in the CLL leukemia cells

could contribute to alterations in gene expression, we assessed the

extent to which amplifications and deletions were associated with

specific genomically-defined CLL subgroups. We could assess this

using one dataset (GSE16746) in which sixty CLL samples were

simultaneously evaluated using gene expression profiling and

single nucleotide polymorphism (SNP) arrays. The sixty samples

were subdivided based on their genomic subgroup, and CNVs

were evaluated for statistically significant enrichment within

subgroups. CNVs that represented commonly tested cytogenetic

aberrations from fluorescent in situ hybridization (FISH) were not

compared in this analysis since this information was captured by

otherwise obtained FISH data. Table 3 outlines the four genetic

regions significantly enriched within particular subgroups. Within

these regions of amplification or deletion, genes related to

processes known to have biological or clinical relevance were

identified, including those involved in lipid and lipid-related

hormone signaling (LRP5L, LEPR, LPIN1, APOB) and tumor

necrosis factor and NF-kB pathways (ADAM17, REL). Thus, an

unsupervised method of grouping CLL samples identifies and

enriches for CNVs. These CNVs would be overlooked when

considering CLL as one entity. These results reinforce the concept

that these CLL subgroups have genetic and biologic significance.

Figure 5. Kaplan-Meier analysis of time from diagnosis to treatment in sixty-eight CLL patient samples, grouped by genomically-
defined subgroup. A) A significant difference in overall survival was observed between CLL subgroups (p = 0.004). B) CLL patients in ‘‘Interferon
Pathway’’ subgroups had inferior overall survival compared to CLL patients in the ‘‘Receptor Signaling’’ subgroup (p = 0.03). Significance was
assessed using the log-rank test.
doi:10.1371/journal.pone.0057356.g005

CLL Genomic Heterogeneity
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Genomically-defined CLL Subgroups and their Clinical
Relevance

Molecular prognostic markers, including IgVH mutation status,

ZAP70 and CD38 expression, and interphase cytogenetic aberra-

tions, identify subgroups of CLL patients with varying clinical

outcomes. We hypothesized that genomically-defined CLL sub-

groups would be significantly associated with these prognostic

markers and would have different clinical outcomes. We assessed

the extent to which high-risk CLL prognostic markers are

associated with CLL subgroups, and found a significantly different

distribution of these markers in different subgroups (Table 4). Each

prognostic marker differed significantly between the subgroups

(p,0.0001 for CD38 status, ZAP70 status, IgVH mutation status,

and interphase cytogenetics, Pearson Chi-squared test). Compar-

ing the different subgroups, the percent of samples that were IgVH

unmutated ranged between 25% and 82%, the percentage of

ZAP70 positive samples ranged between 0% and 83%, the

percentage of CD38 positive samples ranged between 18% and

75%, and the percentage of 17p or 11q deletion samples ranged

between 7% and 100%. It is notable that CLL samples with

particular prognostic markers are not exclusively found within

specific genomically-defined CLL subgroups. This likely reflects a

level of heterogeneity not fully captured by these commonly used

markers. Since the molecular prognostic markers are associated

with clinical outcome endpoints, differences in frequency of these

markers within genomically-defined CLL subgroups could indicate

that the differences between these subgroups underlie an

important part of the observed clinical variation observed in CLL.

To assess the relationship between the CLL subgroups and

clinical outcomes further, we evaluated overall survival in 68 CLL

samples from our institution evaluated previously (GSE10138)

[12]. When we updated our clinical outcomes data, we found that

patients grouped based on the genomically-defined subgroups had

significantly different overall survival (Figure 5A, p = 0.004, log-

rank test). Of the molecular prognostic markers, CD38 and FISH

results were significantly associated with overall survival in this

cohort (p = 0.047 and 0.01 respectively, log-rank test), whereas

IgVH and ZAP70 status were not. We then assessed the extent to

which subgroups with particular gene and pathway annotations

had disparate clinical outcomes. As seen in Figure 5B, we found

that CLL patients that fell into subgroups with interferon pathway

annotations (subgroups two and six) had significantly worse

outcomes than patients with samples that fell into the subgroup

with B-cell receptor signaling annotations (subgroup five). These

pathway annotations were evaluated because B-cell receptor

signaling is a known important cellular pathway in CLL, while

the interferon pathway and inflammation has not been tradition-

ally studied with regards to CLL biology.

We assessed the extent to which the genomically-defined

subgroups could be used not only as prognostic markers, but as

predictive markers of therapy response. When we evaluated two

datasets that included response to treatment data (GSE10137 and

GSE15490), we found no significant correlation between CLL

subgroup and response to chemo-immunotherapy regimens

(p.0.05, Pearson’s Chi-squared test). In sum, these results indicate

that CLL subgroups, defined in an unsupervised manner with raw

gene expression data, are based on biological processes and have

prognostic relevance in terms of overall survival.

Discussion

Clinical variability in CLL is widely appreciated but poorly

understood. By pooling and evaluating publicly available gene

expression profiling data using unsupervised methods, we defined

subgroups of CLL that have unique biological and clinical

differences. This evaluation of genomic subgroups is not meant

to replace currently used clinical prognostic markers. However, it

is meant to demonstrate that CLL is much more heterogeneous

(genetically, biologically, and clinically) than can be accounted for

using current prognostic markers.

Our results could have been affected by potential confounders

such as bias in publicly available datasets and the lack of associated

prognostic and clinical outcome data for all samples. The

agreement in our evaluation of the data using two methods of

assessing biological significance suggests that our approach and

methods are valid. Additionally, the concordant results in two

datasets with regards to response to therapy stratified by genomic

subgroup also suggests that these confounders are likely not

influencing our analysis. At the most, including additional data

might increase the identified genomic heterogeneity in CLL as a

whole.

Our evaluation of the extent of genomic heterogeneity in CLL

demonstrates that approximately 600 or more unique samples are

required to divide CLL into subgroups with the identified clinical

and biological relevance. Because this number of total samples

may be too great for typical clinical or translational research, a

focus on specific subgroups would enrich for genetic or biologic

backgrounds that could have particular relevance.

Genomic research in CLL is moving towards next-generation

whole exome and whole genome sequencing approaches. Several

studies using next-generation sequencing approaches identified

SNPs in CLL cells with clinical relevance in independent large

cohorts of CLL patients. For example, NOTCH1 mutation was

found in 4–12% of CLL patients [43,44,45]. NOTCH1 mutations,

which cause constitutively active NOTCH signaling, are associ-

ated with poor prognosis and are more prevalent in advanced

CLL [45]. We found that activation of the NOTCH pathway was

significantly associated with subgroup six, which constitutes

approximately 4% of the combined dataset, but was not associated

with a significantly reduced overall survival compared to other

subgroups. Regarding the XPO1 mutation, which was found in

2.4% of CLL patients in one study [44], we noted that

amplification of XPO1 was enriched in subgroups one, two, and

five. Lastly, mutations in SF3B1, a component of the mRNA

splicing complex were found in 15% of CLL patients from one

recent study, and was associated with the 11q deletion and poor

clinical outcome [43]. We found that subgroup one was defined by

activity of mRNA processing and splicing (including enrichment of

other splicing factor 3B subunit genes). While our evaluation of

clinical impact of these particular genes in the combined dataset is

limited by incomplete clinical data, our validation of these recently

identified polymorphisms using gene expression data suggests that

the different genomic approaches can complement each other. In

addition, this work also implies that future efforts to focus next-

generation sequencing on more homogeneous CLL populations

(defined by gene expression profiling) could enrich for particular

genomic aberrations and could reduce the total number of patients

needed for such studies.

Research using gene expression profiling has informed labora-

tory-based and clinical investigations and clinical practice in CLL.

In part because of the resulting improved understanding of CLL

biology, therapies targeting important pathways in CLL, such as

B-cell receptor signaling and downstream second messenger

systems, are being developed and clinically evaluated. Within the

context of our results, these targeted therapies may have selective

efficacy in certain genomically-defined subgroups. The assessment

of patient responses to such targeted therapies, stratified by gene
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expression data, would validate the notion of using targeted

therapies for subsets of CLL patients defined by leukemia biology.

Our work also identified CLL subgroups that are associated

with biological processes that have not been extensively studied in

the context of CLL biology, for example RNA processing and

interferon pathways/inflammation. Importantly, we found that

CLL samples, grouped by biological annotation, are associated

with differences in overall survival in CLL patients. These results

may lead to laboratory-based investigation to understand the

functions of these pathways in CLL, validation within other

patient cohorts, and potentially the development of additional

novel targeted therapies.

In conclusion, we have found that the evaluation of genomic

data from a large number of CLL patients allows us to identify

heterogeneity within CLL and to learn more about the genomic,

biologic, and clinical differences that span this malignancy.

Dividing patients into distinct genomic groups could have

implications for future research, for CLL prognosis, and for

developing targeted therapeutics and associated biomarkers.
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