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Drug-target interaction (DTI) is the basis of drug discovery. However, it is
time-consuming and costly to determine DTIs experimentally. Over the past decade,
various computational methods were proposed to predict potential DTIs with high
efficiency and low costs. These methods can be roughly divided into several categories,
such as molecular docking-based, pharmacophore-based, similarity-based, machine
learning-based, and network-based methods. Among them, network-based methods,
which do not rely on three-dimensional structures of targets and negative samples, have
shown great advantages over the others. In this article, we focused on network-based
methods for DTI prediction, in particular our network-based inference (NBI) methods that
were derived from recommendation algorithms. We first introduced the methodologies
and evaluation of network-based methods, and then the emphasis was put on their
applications in a wide range of fields, including target prediction and elucidation of
molecular mechanisms of therapeutic effects or safety problems. Finally, limitations and
perspectives of network-based methods were discussed. In a word, network-based
methods provide alternative tools for studies in drug repurposing, new drug discovery,
systems pharmacology and systems toxicology.

Keywords: drug-target interaction, network-based method, target prediction, systems pharmacology, systems
toxicology, drug repurposing

INTRODUCTION

As the rapid development of systems biology and network pharmacology, the drug discovery
paradigm has changed from the linear mode “one drug → one target → one disease” to the
network mode “multi-drugs→ multi-targets→ multi-diseases” (Hopkins, 2008; Medina-Franco
et al., 2013; Anighoro et al., 2014). The new paradigm means that a single drug might act on
multiple targets in vivo, rather than selectively bind to one target, which is more consistent with
those observed in reality (Roth et al., 2004; Paolini et al., 2006; Yildirim et al., 2007). For a drug,
its polypharmacological profile (i.e., on-target and off-target effects) could lead to both desired
therapeutic effects and undesired safety problems (Roth et al., 2004; Keiser et al., 2009; Besnard
et al., 2012; Lounkine et al., 2012; Anighoro et al., 2014; Zhang et al., 2015). Hence, systematic
identification of drug-target interactions (DTIs) is essential in drug discovery, which could help
maximize therapeutic effects while minimizing safety problems.

The traditional way to identify DTIs is via biological experiments, for example, to determine
the inhibition constant (Ki), dissociation constant (Kd), half-maximal inhibitory concentration
(IC50) or half-maximal effective concentration (EC50) values between drugs (e.g., approved drugs,
drug candidates in clinical trials, drugs withdrawn from the market and drug-like new chemical

Frontiers in Pharmacology | www.frontiersin.org 1 October 2018 | Volume 9 | Article 1134

https://www.frontiersin.org/journals/pharmacology/
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://doi.org/10.3389/fphar.2018.01134
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fphar.2018.01134
http://crossmark.crossref.org/dialog/?doi=10.3389/fphar.2018.01134&domain=pdf&date_stamp=2018-10-09
https://www.frontiersin.org/articles/10.3389/fphar.2018.01134/full
http://loop.frontiersin.org/people/511352/overview
http://loop.frontiersin.org/people/511807/overview
http://loop.frontiersin.org/people/527596/overview
http://loop.frontiersin.org/people/112602/overview
https://www.frontiersin.org/journals/pharmacology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


fphar-09-01134 October 5, 2018 Time: 14:5 # 2

Wu et al. Network-Based Methods for DTI Prediction

entities) and target proteins by in vitro or in vivo assays. However,
it is time-consuming and costly to determine all possible DTIs
experimentally and systematically. Over the past decade, the
development of various computational methods has provided
valuable strategies for the systematic prediction of potential DTIs
due to their high efficiency and low costs (Zheng et al., 2013;
Chen et al., 2016; Lavecchia and Cerchia, 2016). On one hand,
according to the type of prediction results, these methods can be
divided into two categories, namely qualitative (i.e., classification)
and quantitative (i.e., regression) methods. On the other hand,
these methods can be roughly divided into several categories,
including molecular docking-based, pharmacophore-based,
similarity-based, machine learning-based, and network-based
methods, although their concepts could overlap each other.

Molecular docking-based methods are traditional approaches
based on the three-dimensional (3D) structures of targets,
which have been widely used in DTI prediction (Rognan, 2010;
Waszkowycz et al., 2011; Ma et al., 2013). These methods
use scoring functions to evaluate DTIs, which can provide
quantitative docking scores correlated with binding affinities (Li
et al., 2014; Liu et al., 2017). For one or a few given targets such
as estrogen receptors (Shen et al., 2010) or HIV-1 integrase (Hu
et al., 2012b), potential active compounds can be prioritized by
molecular docking. Reversely, for a given drug or new chemical
entity, reverse docking (also known as inverse docking) can be
used to predict potential targets for it (Chen and Zhi, 2001; Tang
et al., 2006; Rognan, 2010). Several web applications, such as
TarFisDock (Li et al., 2006) and DRAR-CPI (Luo et al., 2011),
were built for docking-based target fishing.

Pharmacophore-based methods can be further divided
into two subtypes, namely structure-based and ligand-based
pharmacophore mapping. Both of them can be used in
DTI prediction (Rognan, 2010; Yang, 2010). For example,
PharmMapper is a web server which can predict potential targets
for a submitted compound via structure-based pharmacophore
mapping (Liu et al., 2010). In practical application, to improve
the predictive accuracy, a strategy combining pharmacophore
mapping and molecular docking is often used to predict potential
DTIs, such as to find new ligands for a given receptor (Chen et al.,
2014).

Similarity searching is also a traditional approach for DTI
prediction (Willett et al., 1998), based on a hypothesis that
similar drugs share similar targets and vice versa. Various types
of similarity such as two-dimensional (2D) fingerprint-based
similarity (Willett, 2006), 3D shape similarity (Hu et al., 2012a),
and phenotypic similarity (Campillos et al., 2008) can be
employed in similarity-based methods. For example, two web
applications named similarity ensemble approach (SEA) (Keiser
et al., 2007) and ChemMapper (Gong et al., 2013) use 2D and 3D
similarity, respectively, to predict potential DTIs.

Machine learning is a general approach used in DTI
prediction, which has been developing rapidly in these years
(Ding et al., 2014; Chen et al., 2016). For example, we proposed
two machine learning-based methods, namely multitarget-QSAR
(mt-QSAR) and computational chemogenomic methods (Cheng
et al., 2012c). Based on mt-QSAR, a web application named
CPI-Predictor was developed for free use (Cheng et al., 2012c).

Besides traditional machine learning techniques, deep learning
techniques have been applied in DTI prediction recently (Tian
et al., 2016; Wen et al., 2017). Currently, although 3D structure
data of targets can be used in building machine learning models
(Hwang et al., 2017), molecular descriptors and protein sequence
descriptors are much more commonly used (Cheng et al., 2012c;
Yu et al., 2012; Ding et al., 2014).

The above-mentioned methods have shown high accuracies
and robustness in DTI prediction (Zheng et al., 2013; Chen
et al., 2016; Lavecchia and Cerchia, 2016). However, there are
still several pitfalls among them. Structure-based methods such as
molecular docking and structure-based pharmacophore mapping
rely on 3D structures of targets (Tang et al., 2006; Rognan,
2010). Hence, they are often limited by lack of high-quality 3D
structures. For example, G protein-coupled receptors (GPCRs)
are the largest protein family consisting of more than 800
members (Stevens et al., 2013), but only approximately 30 of
them have resolved crystal structures yet (Xiang et al., 2016).
Ligand-based pharmacophore mapping relies on the proper
selection of training set compounds for building pharmacophore
models, a problem often confused by users, even experienced
ones (Yang, 2010). Similarity-based methods rely on similarity
and also limited by the similarity. For instance, the methods
based on chemical structure similarity could be difficult to find
active compounds with novel scaffolds. The methods based
on phenotypic similarity could be limited by lack of enough
phenotypic data. In general, building machine learning models
(especially supervised learning models) for DTI prediction
requires both positive samples and negative samples (i.e., active
and inactive DTIs validated by experiments) (Cheng et al., 2012c;
Yu et al., 2012; Ding et al., 2014; Chen et al., 2016). However,
it is always difficult to find enough number of experimentally
validated negative samples with gold standard from publicly
available database and literature (Cheng et al., 2012c; Yu et al.,
2012). Although strategies such as “one versus the rest” (Cheng
et al., 2012c) can be used to generate enough negative samples,
the model performance is often influenced by the low-quality
negative samples.

Compared to these methods, network-based methods have
demonstrated great advantages. At first, network-based methods
do not rely on 3D structures of targets or negative samples. These
methods are derived from recommendation algorithms used
in recommender systems (Lu et al., 2012) and link prediction
algorithms in complex networks (Lu and Zhou, 2011). For
example, more than ten years ago, Zhou et al. (2007) proposed
a recommendation algorithm named network-based inference
(NBI), also known as probabilistic spreading (ProbS) (Zhou et al.,
2010), to recommend possible future likes (called objects) for
users based on the known preference data of the users. By treating
drugs and targets as users and objects, respectively, this algorithm
was grafted into the research area of DTI prediction (Cheng et al.,
2012b). As one of the simplest network-based methods, NBI can
predict potential DTIs only using the known DTI network (i.e.,
positive samples), without any additional information such as
chemical structures, protein structures or sequences. In the next
few years, several new network-based methods were developed
based on NBI (Cheng et al., 2012d; Wu et al., 2016, 2017) and
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other recommendation algorithms or link prediction algorithms
(Cheng et al., 2013c; Duran et al., 2017). These methods all have
the advantages that are independence on 3D structures of targets
and negative samples, which enable them to cover much larger
target space. Secondly, network-based methods are simple and
fast. These methods predict potential DTIs only by performing
simple physical processes such as resource diffusion (Cheng
et al., 2012b,d; Wu et al., 2016, 2017), collaborative filtering
(Cheng et al., 2012b, 2013c), and random walk (Chen et al.,
2012) on networks. Considering networks can be represented
by matrices, these processes can be described by simple matrix
operations such as matrix multiplication mathematically (Chen
et al., 2012; Cheng et al., 2012b; Wu et al., 2017). Compared
with some complex structure-based and machine learning-based
methods, the calculation procedures are simple and can be
parallelized easily. Hence, network-based methods often run fast
on computers.

In this article, we focused on network-based methods
for DTI prediction. We first introduced the data sources
for network construction and the methodologies of several
representative network-based methods, especially a series of
methods developed on the basis of NBI (we called them
“NBI series methods”) (Cheng et al., 2012b,d; Wu et al.,
2016, 2017). Subsequently, the evaluation approaches and
indicators were introduced briefly. Then, the emphasis was
put on their applications in a wide range of fields, including
target prediction and elucidation of molecular mechanisms of
therapeutic effects or safety problems. These applications suggest
that network-based methods provide alternative tools for studies
in drug repurposing, new drug discovery, systems pharmacology
and systems toxicology.

DATA SOURCES FOR NETWORK
CONSTRUCTION

Networks, especially DTI networks, are one of the most
important bases of network-based models. To construct reliable
networks, it is necessary to have sufficient amount of high-quality

data. Fortunately, we are living in an era of big data (Schadt,
2012; Ma’ayan et al., 2014). There are a large number
of data available freely online, from small molecules to
biomacromolecules, from structures to properties, from raw data
to organized data in different topics (Chen et al., 2016). Herein,
we introduced several well-known data sources for network
construction.

There are different ways to construct DTI networks. For
example, we can download prepared DTI data from public
databases such as DrugBank (Wishart et al., 2018) and
Therapeutic Target Database (Li et al., 2018). The downloaded
DTI pairs can be used to construct DTI networks directly.
However, DTI data from these databases are not quantitative,
because the experimentally determined activity values of the
DTIs are not provided. It may cause problems in merging DTI
data from different sources. By contrast, as shown in Table 1,
there are many databases can provide experimentally determined
DTI data with quantitative activity values such as Ki, Kd, IC50,
and EC50 values, including BindingDB (Gilson et al., 2016),
Binding MOAD (Ahmed et al., 2015), ChEMBL (Gaulton et al.,
2017), DrugCentral (Ursu et al., 2017), IUPHAR/BPS Guide
to PHARMACOLOGY (Harding et al., 2018), PDBbind-CN
(Liu et al., 2015), PDSP Ki Database (Roth et al., 2000),
PubChem BioAssay (Wang et al., 2017), RCSB Protein Data Bank
(Rose et al., 2017), SuperTarget (Hecker et al., 2012), STITCH
(Szklarczyk et al., 2016), TDR Targets (Magarinos et al., 2012),
Thomson Reuters Integrity, etc. After collecting quantitative DTI
data from these databases, we can use the same criteria for data
filtering and merging. Then, one or more DTI networks can
be constructed based on the prepared DTI pairs as below. If a
drug and a target are validated to interact with each other by
experiments (e.g., Ki, Kd, IC50 or EC50 ≤ 10 µM), the node
representing the drug and the node representing the target are
linked by an edge.

In addition to known DTIs, we can also use other types of data
to aid the DTI prediction. For example, chemical substructures
can be generated for drugs using chemoinformatics software such
as Open Babel (O’Boyle et al., 2011) and PaDEL-Descriptor (Yap,
2011). Anatomical Therapeutic Chemical classification (ATC)

TABLE 1 | Several representative databases containing experimentally determined DTI data with quantitative activity values.

Name Free use Website Reference

BindingDB
√

http://www.bindingdb.org/ Gilson et al., 2016

Binding MOAD
√

http://www.bindingmoad.org/ Ahmed et al., 2015

ChEMBL
√

http://www.ebi.ac.uk/chembl/ Gaulton et al., 2017

DrugCentral
√

http://drugcentral.org/ Ursu et al., 2017

IUPHAR/BPS Guide to PHARMACOLOGY
√

http://www.guidetopharmacology.org/ Harding et al., 2018

PDBbind-CN
√

http://www.pdbbind-cn.org/ Liu et al., 2015

PDSP Ki Database
√

http://pdsp.unc.edu/databases/kidb.php Roth et al., 2000

PubChem BioAssay
√

http://www.ncbi.nlm.nih.gov/pcassay/ Wang et al., 2017

RCSB Protein Data Bank
√

http://www.rcsb.org/ Rose et al., 2017

SuperTarget
√

http://insilico.charite.de/supertarget/ Hecker et al., 2012

STITCH
√

http://stitch.embl.de/ Szklarczyk et al., 2016

TDR Targets
√

http://tdrtargets.org/ Magarinos et al., 2012

Thomson Reuters Integrity × http://integrity.thomson-pharma.com/
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codes of drugs can be obtained from databases such as DrugBank
(Wishart et al., 2018), DrugCentral (Ursu et al., 2017), and
KEGG DRUG (Kanehisa et al., 2017). Side effects of drugs
can be collected from Comparative Toxicogenomics Database
(CTD) (Davis et al., 2017), SIDER (Kuhn et al., 2016), and
OFFSIDES (Tatonetti et al., 2012). Sequences of target proteins
can be downloaded from UniProt knowledgebase (Bateman et al.,
2017). Using these data, we can generate more types of data. For
example, chemical similarity of drug-drug pairs can be calculated
using their substructures (Chen et al., 2012; Cheng et al., 2012b).
Therapeutic and side-effect similarity networks of drug-drug
pairs can be calculated using their ATC codes and side effects,
respectively (Cheng et al., 2013c). Protein sequence similarity of
target-target pairs can be calculated using their sequences (Chen
et al., 2012; Cheng et al., 2012b). Using these different similarity
data, various similarity networks can be constructed, which may
be used in network-based methods together with DTI networks.

METHODOLOGIES OF
NETWORK-BASED METHODS

As described in the INTRODUCTION section, network-based
methods are derived from recommendation algorithms (Lu et al.,
2012) and link prediction algorithms (Lu and Zhou, 2011).
Previous reviews have suggested that these methods are different
from machine learning-based methods and similarity-based
methods (Ding et al., 2014; Chen et al., 2016). Although many
recommendation algorithms and link prediction algorithms have
been proposed up to date (Clauset et al., 2008; Guimera and
Sales-Pardo, 2009; Lu and Zhou, 2011; Lu et al., 2012; Pan
et al., 2016), few of them were applied in DTI prediction.
In this section, we introduced the methodologies of several
representative network-based methods, as listed in Table 2.

NBI Series Methods
NBI
NBI performs resource-diffusion processes on the known DTI
network to prioritize potential DTIs (Cheng et al., 2012b). As
shown in Figure 1A, if we want to predict potential targets
for an example drug in the known DTI network (symbolized
as Di), the following steps can be performed. Initially, one
unit of resource is allocated to each of the neighbor nodes of
Di (i.e., the target nodes linked with Di). Then, in the first
resource-diffusion process, each target node equally spreads its
resource to its neighbor nodes (i.e., the drug nodes linked with
the target node). In the second resource-diffusion process, each
drug node equally spreads its resource to its neighbor nodes
(i.e., the target nodes linked with the drug node). After the
two resource-diffusion processes, for each target in the known
DTI network (symbolized as Tj), the amount of the resource
located in Tj can be recognized as the predictive score of the
interaction between Di and Tj. Higher score means higher
probability that Di can interact with Tj. Using the same way,
we can systematically predict potential DTIs for all drugs in the
known DTI network. Although the resource-diffusion processes
can be repeated continuously, we usually perform only two
resource-diffusion processes.

As one of the simplest network-based methods, NBI only
uses a known DTI network as input. Although this characteristic
makes NBI run fast, it limits the application domain of NBI
enormously. NBI can only predict DTIs for the drugs and
targets within the known DTI network. It cannot predict
potential targets for new chemical entities without known targets
(e.g., newly extracted natural products and newly synthesized
compounds) and targets without known ligands (e.g., orphan
receptors), owing to the fact that they cannot be interlinked
with the known DTI network. Moreover, in the design of NBI,
DTIs do not have any attributes, such as interaction types or

TABLE 2 | Several representative types of network-based methods for DTI prediction.

Type Name Website Reference

NBI series methods NBI http://lmmd.ecust.edu.cn/database/dti/ Cheng et al., 2012b

EWNBI Cheng et al., 2012d

NWNBI Cheng et al., 2012d

SDTNBI http://lmmd.ecust.edu.cn/methods/sdtnbi/ Wu et al., 2017

bSDTNBI http://lmmd.ecust.edu.cn/methods/bsdtnbi/ Wu et al., 2016

Similarity inference methods DBSI Cheng et al., 2012b

TBSI Cheng et al., 2012b

DSESI Cheng et al., 2013c

DTSI Cheng et al., 2013c

Random walk-based methods NRWRH Chen et al., 2012

Local-community-paradigm methods CAR http://sites.google.com/site/
carlovittoriocannistraci/5-datasets-and-matlab-
code/bipartite-link-predictors/

Duran et al., 2017

CJC Duran et al., 2017

CPA Duran et al., 2017

CAA Duran et al., 2017

CRA Duran et al., 2017

Simple path-based method DASPfind http://www.cbrc.kaust.edu.sa/daspfind/ Ba-Alawi et al., 2016
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FIGURE 1 | Examples of predicting potential targets for an example drug highlighted with yellow shadow via three network-based methods: (A) network-based
inference (NBI), (B) substructure-drug-target network-based inference (SDTNBI), (C) balanced substructure-drug-target network-based inference (bSDTNBI). Drugs,
targets and substructures were represented as capsules, ribbons and structural fragments, respectively.

binding affinities. Hence, it is necessary to further improve the
NBI method.

EWNBI and NWNBI
To investigate whether introduction of edge or node weights
would improve the performance of the original NBI method,
we further developed two weighted NBI methods, namely
edge-weighted network-based inference (EWNBI) and
node-weighted network-based inference (NWNBI) (Cheng
et al., 2012d). The two methods use different strategies to
improve the predictive accuracy. EWNBI assigns weighted values
to all edges (i.e., DTIs) in the known DTI network according to
their Ki or IC50 values, whereas NWNBI introduces a tunable
parameter to adjust the influence of hub nodes. The designs

are reasonable. However, the performance of EWNBI was
marginally worse than NBI. The performance of NWNBI was
only marginally better than NBI after parameter optimization.
These results suggested that adding node or edge weights directly
into the original NBI method is not an appropriate strategy for
performance improvement. Basically, EWNBI and NWNBI did
not make a breakthrough in the old framework of NBI. All the
defects of NBI were not repaired.

SDTNBI
In order to overcome one of the aforementioned pitfalls that
NBI cannot predict targets for new chemical entities, we
proposed a new network-based method entitled substructure-
drug-target network-based inference (SDTNBI) (Wu et al., 2017).
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SDTNBI employs chemical substructures to bridge the gap
between known DTI network and the new chemical entities.
Specifically, after generating chemical substructures for both
drugs in the known DTI network and new chemical entities,
the known DTI network and the new chemical entities can be
integrated in a structure-drug-target network via linking drugs
and new chemical entities by their substructures. As shown in
Figure 1B, resource-diffusion processes can be performed on the
substructure-drug-target network to prioritize possible targets for
known drugs and new chemical entities. The prediction steps for
an example drug (symbolized as Di) can be described as below,
which are similar to those of NBI. Because new chemical entities
can be seen as special drugs without known targets, both drugs
in the known DTI network and new chemical entities are called
“drugs” to facilitate the description.

Initially, the number of resource-diffusion processes
(symbolized as k, as shown in Figure 1) = 0, one unit of
resource is located in each of the neighbor nodes of Di. Then,
in the first resource-diffusion process (k = 1), each substructure
equally spreads its resource to its neighbor nodes, meanwhile
each target node also equally spreads its resource to its neighbor
nodes. In the second resource-diffusion process (k = 2), each
drug node equally spreads its resources to its neighbor nodes.
The resource-diffusion processes can be repeated continuously.
When the k value is an even number, for each target Tj, the
amount of the resource located in Tj can be recognized as the
predictive score of the interaction between Di and Tj. Using the
same way, we can predict potential DTIs for all drugs and new
chemical entities systematically and efficiently.

The development of SDTNBI overcame one of the pitfalls
of NBI successfully. However, its performance is often
worse than NBI (Wu et al., 2017). Considering that the
substructure-drug-target network contains different types of
nodes and different types of edges, the possible reason for this
underperformance is that potential unbalance exists in the
resource-diffusion processes of SDTNBI.

bSDTNBI
Recently, we made an improvement on SDTNBI by introducing
three tunable parameters, namely α, β, and γ, into it, which led to
the balanced substructure-drug-target network-based inference
(bSDTNBI) (Wu et al., 2016). As shown in Figure 1C, the first
parameter α ∈ [0, 1] is used to adjust which type of nodes will
obtain more amount of resource in the initial resource allocation.
The second parameter β ∈ [0, 1] is used to adjust which type of
edges will have larger weighted values in the resource-diffusion
processes. The third parameter γ ∈ (−∞,+∞) is used to adjust
the influence of hub nodes in the resource-diffusion processes,
where γ > 0 and γ < 0 mean strengthen and weaken the influence
of hub nodes, respectively. A detailed mathematical description
of NBI, SDTNBI, and bSDTNBI was put in the Supplementary
data of our previous study (Wu et al., 2018). To compare the
performance of bSDTNBI with those of aforementioned NBI and
SDTNBI, we performed systematic evaluation and then found
that bSDTNBI outperformed SDTNBI and was comparable to
NBI when the three parameters were optimized (Wu et al.,
2016).

Although aforementioned SDTNBI and bSDTNBI have
the ability to prioritize possible targets for various types of
compounds, they still cannot predict potential ligands for those
targets without known ligands. Moreover, the interaction type
and binding affinity of DTIs are not considered yet. Hence, it
is still necessary to make further improvements on NBI series
methods.

Similarity Inference Methods
Similarity inference methods are derived from collaborative-
filtering algorithms in recommender systems (Huang et al.,
2007). These methods have characteristics of both network-based
methods and similarity-based methods, which use both
topology information of the known DTI network and similarity
information to predict potential DTIs (Cheng et al., 2012b,
2013c).

For example, in the previous study of the NBI method (Cheng
et al., 2012b), we also proposed two similarity inference methods
named drug-based similarity inference (DBSI) and target-based
similarity inference (TBSI). DBSI is based on the hypothesis that
drugs with similar 2D chemical structures tend to act on similar
targets. TBSI is based on the hypothesis that proteins with similar
sequences tend to be targeted by similar drugs. However, both
DBSI and TBSI underperformed NBI in a systematic evaluation.
This underperformance may be caused by the redundancy in the
drug similarity and target similarity.

Subsequently, we developed two network-based methods
named drug side-effect similarity inference (DSESI) and drug
therapeutic similarity inference (DTSI) (Cheng et al., 2013c).
DSESI and DTSI are based on the hypothesis that drugs with
similar side effects and ATC codes tend to act on similar
targets, respectively. We compared DSESI and DTSI with
aforementioned DBSI and found that the performance of the
three methods is DTSI > DBSI > DSESI.

Currently, similarity inference methods also have several
pitfalls. Their application domains are often limited by lack of
similarity data. For example, DSESI and DTSI cannot be used to
predict potential DTIs for new chemical entities due to lack of
side-effect data or ATC codes. Moreover, all these type of methods
did not consider the interaction types and binding affinities.

Random Walk-Based Methods
Random walk is a classical concept which has been employed in
various research areas, such as recommender systems (Liu and
Lu, 2010) and prediction of gene-disease associations (Kohler
et al., 2008). They can also be used for DTI prediction (Chen et al.,
2012).

The most representative example of random walk-based
method is Network-based Random Walk with Restart on the
Heterogeneous network (NRWRH) (Chen et al., 2012). NRWRH
predicts potential DTIs by performing random walk with
restart on the heterogeneous network, which is constructed by
integrating the known DTI network with chemical similarity
of drugs and protein sequence similarity of targets. Based on
systematic evaluation, NRWRH outperforms several machine
learning-based methods (Chen et al., 2012). After that, NRWRH
was improved by employing new types of similarity calculated
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by extended connectivity fingerprints, 2D pharmacophore
fingerprints and ROCS program (Seal et al., 2015).

Mathematically, the descriptions of random walk-based
methods are similar to those of the aforementioned NBI
series methods. They use matrix multiplication to describe
the random-walk and resource-diffusion processes, respectively.
Owing to the similarity between these two types of methods,
random walk-based methods have similar defects that NBI series
methods have, such as cannot predict interaction types and
binding affinities.

Local-Community-Paradigm Methods
The local-community-paradigm (LCP) theory was developed
for link prediction in monopartite networks such as brain
connectomes and protein interactomes (Cannistraci et al., 2013).
Then, this theory was extended to bipartite networks (Daminelli
et al., 2015). Recently, five LCP methods, including Cannistraci-
Alanis-Ravasi (CAR), Cannistraci-Jaccard (CJC), Cannistraci
preferential attachment (CPA), Cannistraci-Adamic-Adar
(CAA), and Cannistraci resource allocation (CRA), were applied
in prediction of potential DTIs and showed high performance
(Duran et al., 2017). Currently, these LCP-based methods only
rely on the known DTI network. Hence, they would meet the
challenges that NBI has met, namely predicting potential DTIs
for new chemical entities and targets outside of the known DTI
network, as well as considering interaction types and binding
affinities.

Other Network-Based Methods
In addition, there are some other types of network-based
methods. For instance, DASPfind uses simple paths of particular
lengths on the heterogeneous network for DTI prediction (Ba-
Alawi et al., 2016). Similar to the aforementioned NRWRH
(Chen et al., 2012), the heterogeneous network is also constructed
by integrating DTI network with drug similarity and target
similarity. In performance evaluation, DASPfind outperformed
several previously published network-based methods such as
NRWRH (Chen et al., 2012) and DT-Hybrid (Alaimo et al.,
2013).

EVALUATION OF NETWORK-BASED
METHODS

Cross Validation
The 10-fold cross validation is an approach commonly used to
evaluate the robustness of the models built via network-based
methods (Cheng et al., 2012b,d; Wu et al., 2016, 2017, 2018;
Fang et al., 2017b). In a 10-fold cross validation process,
10% of the DTIs are randomly extracted from the known
DTI network as the test set in turn, while the remnant are
used as the training set. Hence, 10 pairs of training set and
test set are generated. Using these pairs, several evaluation
indicators can be calculated. Generally, for a network-based
model, the 10-fold cross validation process will be repeated
several (e.g., 10) times to reduce the randomness. Finally, based

on the results from all 10-fold cross validation processes, the
evaluation indicators can be expressed as mean ± standard
deviation (SD) or mean ± standard error of the mean
(SEM).

External Validation
The external validation is an approach commonly used to
evaluate the generalization ability of the models built via
network-based methods (Cheng et al., 2012d; Wu et al., 2016,
2017; Fang et al., 2017b). Before validation, we need to collect
a lot of extra experimentally validated DTIs which do not
existed in the known DTI network. Then, the whole known DTI
network are used as the training set, while the collected extra
DTIs are used as the test set. In external validation, the test
set is commonly known as external validation set. Using this
pair of training set and test set, evaluation indicators can be
calculated.

Evaluation Indicators
Currently, to our knowledge, there are several types of evaluation
indicators. For network-based methods, a popular type of
evaluation indicators is from recommender systems (Zhou et al.,
2010; Lu et al., 2012), such as precision (P), recall (R), precision
enhancement (eP), and recall enhancement (eR). Compared with
those widely used in evaluating machine learning models for
prediction of ADMET properties (Cheng et al., 2012a, 2013a)
and DTIs (Cheng et al., 2012c), such as sensitivity and specificity,
the evaluation indicators from recommender systems are more
personalized and thus suitable for the network-based models
that were derived from recommendation algorithms (Cheng
et al., 2012b,d; Wu et al., 2016, 2017, 2018; Fang et al., 2017b).
Although several evaluation indicators (e.g., P and R) have the
same name as those used in evaluating machine learning models,
their definitions are different. Herein, we would briefly described
how to calculate the personalized evaluation indicators using a
pair of training set and test set, referred as to our previous studies
(Cheng et al., 2012b,d; Wu et al., 2016, 2017, 2018; Fang et al.,
2017b).

At first, for the pair of training set and test set, nodes which
lost all its edges in the training set are removed from both
the training set and the test set. After predicting all potential
DTIs using the training set and required additional information
[e.g., drug-substructure associations for SDTNBI (Wu et al.,
2017) and bSDTNBI (Wu et al., 2016)], evaluation indicators
can be calculated by comparing the predicted DTIs with the
known DTIs in the test set. In general, drugs without known
DTIs in the test set do not participate in calculation to avoid
invalid values such as infinite. For each drug Di participated in
calculation, the newly predicted DTIs of Di are sorted by their
predictive scores. Then, under a user-given threshold such as
L = 20, the DTIs ranked in the top-L places are considered
as positive, whereas the others were considered as negative. By
comparing those newly predicted DTIs of Di that are considered
as positive or negative with the known DTIs of Di in the test
set, the numbers of true positives TPi(L), false positives FPi(L),
true negatives TNi(L), and false negatives FNi(L) were counted.
After counting the four numbers for each drug participated in
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calculation, four evaluation indicators P, R, eP, and eR can be
calculated as:

P(L) =
1
M
·

M∑
i=1

TPi(L)
TPi(L)+ FPi(L)

=
1
M
·

M∑
i=1

TPi(L)
L

(1)

R(L) =
1
M
·

M∑
i=1

TPi(L)
TPi(L)+ FNi(L)

=
1
M
·

M∑
i=1

TPi(L)
Xi

(2)

eP(L) = P(L) ·
M · N∑M

i=1 Xi
(3)

eR(L) = R(L) ·
N
L

(4)

In these formulas, M and N are the number of drugs and
targets participated in calculation, respectively, and Xi is the
number of known DTIs of Di in the test set.

However, all the four evaluation indicators depend on the
threshold L, whose value may be hard to choose by users. Hence,
an evaluation indicator independent of the L value, namely area
under receiver operating characteristic curve (AUC), is usually
employed (Wu et al., 2016, 2017, 2018; Fang et al., 2017b). The
calculation of the AUC value can also be described using the
aforementioned TPi(L), FPi(L), TNi(L), FNi(L). For a given L
value, a true positive rate (TPR) and a false positive rate (FPR)
can be calculated as:

TPR(L) =
∑M

i=1 TPi(L)∑M
i=1 TPi(L)+

∑M
i=1 FNi(L)

(5)

FPR(L) =
∑M

i=1 FPi(L)∑M
i=1 FPi(L)+

∑M
i=1 TNi(L)

(6)

By setting different L values, for example, varying L from
0 to N, a series of TPRs and FPRs can be obtained. Then, a
receiver operating characteristic (ROC) curve can be generated
by plotting the TPRs against the FPRs. The AUC is the area under
the ROC curve.

For a model, higher P, R, eP, eR, and AUC values obtained
in cross validation or external validation indicate higher
performance, generally.

APPLICATIONS IN TARGET PREDICTION

A major application area of the network-based methods for DTI
prediction is target prediction. By combining target prediction
and experimental validation, we may exploit new uses for
approved drugs (Cheng et al., 2012b) and new chemical entities
(Wu et al., 2016, 2018), and hence facilitate drug repurposing
(also known as drug repositioning) and new drug discovery.

Target Prediction for Approved Drugs
Drug repurposing usually has lower costs and higher successful
rate in contrast to new drug discovery (Ashburn and Thor,
2004; Chong and Sullivan, 2007). Over the past decade, various
computational methods were developed for drug repurposing
(Vanhaelen et al., 2017). A classical strategy is to predict new
indications for old drugs directly. For example, a method named
MANTRA predicts therapeutic effects for drugs by indentifying
network communities in a drug-drug network constructed by
calculating the gene expression profile similarity (Iorio et al.,
2010). Another method named PREDICT employs multiple drug
similarity and disease similarity for large-scale prediction of
drug indications (Gottlieb et al., 2011). Recently, bi-directional
random walk was also employed to predict drug-disease
associations (Luo et al., 2016).

However, targets were not included in the framework of these
methods. It may be difficult to understand molecular mechanisms
of the new indications. Network-based methods can solve this
pitfall and be fruitfully applied in this area. Via an indirect
strategy, we may predict potential targets for approved drugs,
and hence discover potential new indications of the drugs.
For instance, in a previous study (Cheng et al., 2012b), we
performed the NBI method on a global DTI network. Nine and
31 approved drugs predicted to target dipeptidyl peptidase IV
(DPP4) and estrogen receptors (ERs) with high predictive scores
were purchased for experimental assays, respectively. Among
the 40 purchased approved drugs, montelukast on DPP4 as
well as diclofenac, simvastatin, ketoconazole, and itraconazole
on ERs, were validated by in vitro bioassays with IC50 or EC50
values less than 10 µM (Table 3). Furthermore, simvastatin
and ketoconazole showed anti-proliferative activities on human
MDA-MB-231 breast cancer cell line in MTT assays with IC50
values less than 10 µM, suggesting that these antifungal agents
may have therapeutic effects on breast cancer.

Target Prediction for New Chemical
Entities
For new chemical entities, we would briefly describe two
examples of finding new active compounds on nuclear receptors
(Wu et al., 2016) and GPCRs (Wu et al., 2018), respectively.

In a previous study (Wu et al., 2016), we screened potential
ligands for a nuclear receptor named ERα, which served as a
potential target for ERα-positive breast cancer (Nilsson et al.,
2011), from the Enamine database1 via a strategy combining 2D
chemical similarity searching and the bSDTNBI method. From
the prediction results, 56 commercially available compounds
predicted to target ERα were purchased for in vitro assays. 27 of
them showed potential activities on ERα with IC50 or EC50 less
than 10 µM, suggesting the high performance of our bSDTNBI
method (Wu et al., 2016). These new ERα ligands may provide
lead compounds for the targeted therapy of ERα-positive breast
cancer.

Recently, to investigate polypharmacology of GPCR ligands,
we constructed global network-based models for human GPCRs

1http://www.enamine.net/
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TABLE 3 | Application examples of network-based methods in target prediction.

Compound name Compound type Original primary targets Newly discovered targets Reference

Montelukast Approved drug CYSLTR1 DPP4 (IC50 = 9.79 µM) Cheng et al., 2012b

Diclofenac Approved drug PTGS1, PTGS2 ERα (IC50 = 7.59 ± 0.10 µM)
ERβ (IC50 = 2.32 ± 0.06 µM)

Cheng et al., 2012b

Simvastatin Approved drug HMGCR ERβ (IC50 = 3.12 ± 0.01 µM) Cheng et al., 2012b

Ketoconazole Approved drug ERG11 ERβ (IC50 = 0.79 ± 0.15 µM) Cheng et al., 2012b

Itraconazole Approved drug ERG11 ERα (EC50 = 0.20 ± 0.41 µM)
ERβ (IC50 = 0.28 ± 0.73 µM)

Cheng et al., 2012b

AM966 Experimental drug LPARs PTGER4 (IC50 = 2.67 µM in calcium flux assay,
IC50 = 2.31 µM in cAMP assay)

Wu et al., 2018

Ki16425 Experimental drug LPARs PTGER4 (IC50 = 6.34 µM in calcium flux assay,
IC50 = 5.72 µM in cAMP assay)

Wu et al., 2018

The original primary targets of these compounds were collected from DrugBank (Wishart et al., 2018) and IUPHAR/BPS Guide to PHARMACOLOGY (Harding et al.,
2018). CYSLTR1, cysteinyl leukotriene receptor 1; PTGS1, prostaglandin G/H synthase 1; PTGS2, prostaglandin G/H synthase 2; HMGCR, 3-hydroxy-3-methylglutaryl-
coenzyme A reductase; ERG11, lanosterol 14-alpha demethylase; LPARs, lysophosphatidic acid receptors; DPP4, dipeptidyl peptidase 4; ERα, estrogen receptor α; ERβ,
estrogen receptor β; PTGER4, prostaglandin E2 receptor EP4 subtype.

via the bSDTNBI method and three types of molecular
fingerprints (Wu et al., 2018). The global network-based model
with the best performance in cross validation was employed to
predict potential new GPCR targets for known GPCR ligands.
20 compounds predicted to target a GPCR named prostaglandin
E2 receptor EP4 subtype were purchased for in vitro assays.
Among these purchased compounds, AM966 and Ki16425, two
known antagonists for lysophosphatidic acid receptors, showed
potential antagonistic activities on EP4 in both calcium flux assay
and cAMP assay with IC50 values less than 10 µM (Table 3),
providing potential lead compounds for the therapy of colon
cancer, lung cancer, osteoporosis and rheumatoid arthritis (Wu
et al., 2018).

APPLICATIONS IN ELUCIDATION OF
MOLECULAR MECHANISMS

Another major application area of the network-based methods
for DTI prediction is to elucidate potential molecular
mechanisms of therapeutic effects or safety problems (e.g.,
toxicity and side effects), which may facilitate systems
pharmacology or systems toxicology.

A commonly used approach of deciphering molecular
mechanisms is to construct and analyze drug-gene-disease
networks (Cheng et al., 2013c,d; Wu et al., 2016, 2017, 2018;
Fang et al., 2017b). Specifically, for a class of drugs or a
type of disease of interests, a drug-gene-disease network can
be constructed by integrating the known and predicted DTIs
with gene-disease associations. The gene-disease associations are
usually collected from databases such as CTD (Davis et al., 2017),
HuGE Navigator (Yu et al., 2008), Online Mendelian Inheritance
in Man (Amberger et al., 2015), and PharmGKB (Hewett et al.,
2002). After construction of the drug-gene-disease network,
network visualization tools such as Cytoscape (Smoot et al., 2011)
can be used to show the network visually. In addition to network
visualization, various bioinformatics enrichment tools (Huang
et al., 2009), such as gene set enrichment analysis (Subramanian
et al., 2005), can be employed to analyze the functions of the

genes in the network. Based on the systematic analysis results
from different angles as well as previously published data and
literature in pharmacology and clinics, we may understand
molecular mechanisms of the drugs in the drug-gene-disease
network.

In this section, we provided several examples of elucidating
molecular mechanisms of therapeutic effects or safety problems
for approved drugs (Cheng et al., 2013c; Wu et al., 2016, 2017,
2018), natural products (Fang et al., 2017b) and xenobiotics
(Cheng et al., 2013d) via network-based methods.

Elucidation of Molecular Mechanisms of
Therapeutic Effects
Recent studies have shown that the use of NSAIDs is associated
with lower risk of cancer (Nan et al., 2015). However, molecular
mechanisms of the chemoprevention by NSAIDs are still not well
understood. In a previous case study of the SDTNBI method (Wu
et al., 2017), we used the SDTNBI method to predict potential
DTIs for NSAIDs. A drug-gene-disease network containing 21
NSAIDs and 29 cancer types or subtypes were constructed by
integrating the known and predicted DTIs with gene-disease
associations. Several newly predicted DTIs were validated by
previously reported literature, suggesting the high performance
of our SDTNBI method. After performing systematic analysis
on the drug-gene-disease network using previously published
pharmacological experiments and co-crystal structure data, we
found that NSAIDs may exert anticancer effect by inhibiting
their targets associated with cancer, such as prostaglandin G/H
synthase 2 (PTGS2, also known as cyclooxygenase-2), aldo-keto
reductase family 1 member C3 (AKR1C3), carbonic anhydrase
9 (CA9), carbonic anhydrase 12 (CA12) and cyclin-dependent
kinase 2 (CDK2).

Subsequently, in a case study of the bSDTNBI method
(Wu et al., 2016), we investigated molecular mechanism of
anticancer effects of approved drugs in a larger scale. After
predicting potential DTIs for approved drugs via the bSDTNBI
method, a global drug-gene-disease network containing 666
approved drugs and 15 cancer types or subtypes were built by
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integrating the known and predicted DTIs with the gene-disease
associations. Based on systematic analysis, we demonstrated that
tricyclic anti-depressant drugs and anti-diabetic drugs may exert
anticancer effects by targeting serotonin receptors and cancer
cell metabolism, respectively. These two case studies showed the
practical application of network-based methods in elucidating
therapeutic effects of approved drugs.

Besides approved drugs, network-based methods can also be
used to elucidate the therapeutic effects of natural products.
For example, in a recent study (Fang et al., 2017b), we utilized
the bSDTNBI method to build global network-based models for
natural compounds from traditional chinese medicine (TCM)
databases. The best bSDTNBI model in cross validation was used
to predict potential DTIs for natural products. Then, potential
anticancer indications of the natural products were further
predicted via gene-disease associations for cancer collected
from public available databases and a statistical approach
based on permutation test (Fang et al., 2017b). Taking three
natural products, namely kaempferol, resveratrol, and genistein,
as examples, drug-gene-disease networks were constructed.
After performing systematic analysis using the networks and
previously published evidence, we found that the three natural
products may exert anticancer effects by inhibiting different
cancer-associated proteins and pathways. Moreover, the similar
workflow was also used to investigate molecular mechanism of
anti-aging effects of natural products (Fang et al., 2017a).

Elucidation of Molecular Mechanisms of
Safety Problems
In addition to therapeutic effects, network-based models can
also be applied in elucidating molecular mechanisms of safety
problems, such as side effects (Cheng et al., 2013c) and toxicity
(Cheng et al., 2013d).

For side effects, in a recent study (Wu et al., 2018), the
bSDTNBI method was used to predict potential targets for GPCR
drugs. Then, drug-gene-disease networks were constructed for
two example GPCR drugs named clemastine and dobutamine, by
integrating the known and predicted DTIs as well as side-effect
data from MetaADEDB (Cheng et al., 2013b) and Lounkine’s
study (Lounkine et al., 2012). Via systematic analysis on the
networks, we identified that the cardiovascular complications
of GPCR drugs were associated with their off-target effects on
α-adrenergic receptor and muscarinic acetylcholine receptors.

For toxicity, in a previous study (Cheng et al., 2013d), we
proposed a computational systems toxicology framework based
on the NBI method, named predictive toxicogenomics-derived
models (PTDMs), to help understand how the xenobiotics (e.g.,
drugs, industrial chemicals and pesticides) influence human
health and the environment. At first, three networks were
constructed for chemical-gene interactions (CGIs), chemical-
disease associations (CDAs) and gene-disease associations
(GDAs). Herein, different from the above studies, the CGIs
included both direct chemical-protein interactions and indirect
chemical-gene associations. Then, new potential CGIs, CDAs,
and GDAs were prioritized via performing the NBI method
on the three networks, respectively. Based on the known
and predicted chemical-gene-disease association data, we

systematically investigate the toxicological mechanisms of
an endocrine disrupter named bisphenol A (BPA). Some
predicted associations for BPA were in agreement with
previously published data, suggesting the potential application
of network-based methods in elucidating the toxicological
mechanisms of xenobiotics.

All these examples of elucidating molecular mechanism of
therapeutic effects or safety problems illustrate the potential
applications of network-based methods in systems pharmacology
and systems toxicology. However, to date, most of the studies
are just pure computational studies. Further biological assays and
clinical studies are needed to validate the predictive results in the
future.

SUMMARY AND PERSPECTIVES

Since the new century, as the rapid development of systems
biology and network pharmacology, various computational
methods were proposed for DTI prediction with high efficiency
and low costs (Zheng et al., 2013; Chen et al., 2016; Lavecchia and
Cerchia, 2016). Among these methods, network-based methods
have shown obvious advantages (Cheng et al., 2012b,d; Wu
et al., 2016, 2017). As mentioned above, this category of methods
relies on neither 3D structures of targets nor negative samples,
which can cover much larger target space. Although network-
based methods only perform simple mathematical operations
such as matrix multiplication in prediction, high performance
has shown not only in theory but also in potential applications,
including target prediction (Cheng et al., 2012b; Wu et al.,
2016, 2018) as well as elucidation of molecular mechanisms
of both therapeutic effects (Wu et al., 2016, 2017; Fang et al.,
2017b) and safety problems (Cheng et al., 2013c,d; Wu et al.,
2018).

Despite the success of currently available network-based
methods, there are still several pitfalls. First, the application
domain of these methods still needs to be extended. Although
several recently proposed network-based methods can be used
to predict potential DTIs for both approved drugs and new
chemical entities (Wu et al., 2016, 2017), they cannot predict
potential DTIs for those targets without known ligands. Second,
network-based methods are still non-quantitative. They only
provide a predictive score for each potential DTI, where
a higher score means a higher probability of occurrence
(Cheng et al., 2012b,d; Wu et al., 2016, 2017). The binding
affinities of the predicted DTIs are unknown. Moreover, the
interaction type is not considered yet. In the real world,
there are different types of DTIs. For example, receptors have
agonists, antagonists and inverse antagonists, while enzymes
have activators and inhibitors. However, to our knowledge,
no network-based methods have considered the interaction
type yet—DTIs were simply seen as indirect edges without
any additional attributes. By contrast, efforts have been made
in other types of computational methods in these years. In
the aspect of quantitative prediction, as described in the
INTRODUCTION section, many structure-based methods have
the ability to predict binding affinities of DTIs (Aldeghi
et al., 2017; Liu et al., 2017). In the aspect of prediction of
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interaction types, Wang and Zeng (2013) have proposed the first
machine learning-based method to predict the interaction type.
To avoid losing competitiveness, it is urgently needed to develop
novel network-based methods.

In our views, there are several possible strategies to further
improve the network-based methods for DTI prediction. At
first, we can try to introduce new link prediction algorithms
into our research area, such as hierarchical structure (Clauset
et al., 2008), stochastic block (Guimera and Sales-Pardo,
2009), and likelihood analysis (Pan et al., 2016). Secondly,
we can integrate multi-scale biomedical data, including
drug-side effect associations (Tatonetti et al., 2012; Kuhn
et al., 2016), drug-indication associations (Brown and Patel,
2017), drug-induced gene expression profiles (Lamb et al.,
2006; Subramanian et al., 2017), protein-protein interactions
(Li et al., 2017), ADMET properties (Cheng et al., 2012a),
clinical data (Zarin et al., 2011), etc. In addition, we can learn
something from structure-based methods and make full use
of 3D structures of targets. Although many targets do not
have 3D structures yet, the already resolved 3D structures
are valuable information. For example, as a simplest way, we
can use docking scores to improve the predictive scores of
network-based methods via a consensus approach. These may

help us move toward structural systems pharmacology (Xie et al.,
2014).

In summary, although the network-based for DTI prediction
still have limitations, they provide alternative tools for studies
in drug repurposing, new drug discovery, systems pharmacology
and systems toxicology. We hope they would play a greater role
in the future.
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