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Background. As a multifaceted disease, atherosclerosis is often characterized by the formation and accumulation of plaque anchored
to the inner wall of the arteries and causes some cardiovascular diseases and vascular embolism. Numerous studies have reported on
the pathogenesis of atherosclerosis. However, fewer studies focused on both genes and immune cells, and the correlation of genes
and immune cells was evaluated via comprehensive bioinformatics analyses. Methods. 29 samples of atherosclerosis-related gene
expression profiling, including 16 human advanced atherosclerosis plaque (AA) and 13 human early atherosclerosis plaque (EA)
samples from the Gene Expression Omnibus (GEO) database, were analyzed to get differentially expressed genes (DEGs) and
the construction of protein and protein interaction (PPI) networks. Besides, we detected the relative fraction of 22 immune
cell types in atherosclerosis by using the deconvolution algorithm of “cell type identification by estimating relative subsets of
RNA transcripts (CIBERSORT).” Ultimately, based on the significantly changed types of immune cells, we executed the
correlation analysis between DEGs and immune cells to discover the potential genes and pathways associated with immune
cells. Results. We identified 17 module genes and 6 types of significantly changed immune cells. Correlation analysis showed
that the relative percentage of T cell CD8 has negative correlation with the C1QB expression (R = −0:63, p = 0:02), and the
relative percentage of macrophage M2 has positive correlation with the CD86 expression (R = 0:57, p = 0:041) in EA.
Meanwhile, four gene expressions (CD53, C1QC, NCF2, and ITGAM) have a high correlation with the percentages of T cell CD8
and macrophages (M0 and M2) in AA samples. Conclusions. In this study, we suggested that the progression of atherosclerosis
might be related to CD86, C1QB, CD53, C1QC, NCF2, and ITGAM and that it plays a role in regulating immune-competent
cells such as T cell CD8 and macrophages M0 and M2. These results will enable studies of the potential genes associated with
immune cells in the progression of atherosclerosis, as well as provide insight for discovering new treatments and drugs.

1. Background

Atherosclerosis is a multifaceted, progressive, and chronic
inflammatory arterial disease that is recognized to be the

leading cause of morbidity and mortality around the world
[1]). It is characterized by the formation and build-up of ath-
erosclerosis plaque inside the damaged arteries [2, 3]. Plaque
is composed of low-density lipoprotein (LDL) cholesterol,
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Figure 1: Continued.
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fat, calcium, and other substances existing in the blood,
which can harden and narrow the arteries [4–7]. Many
studies have shown that atherosclerosis can affect any arterial
blood vessels in the body and can lead to the atherosclerosis-
related diseases, including ischemic heart, carotid artery,
peripheral artery, and chronic kidney diseases [8–13]. Risk
factors include high blood pressure, abnormal cholesterol
levels, diabetes, obesity, family genetic history, smoking,
age, and an unhealthy lifestyle.

Data mining has been used in various applications,
including sequencing [14], microarray gene expression
analysis [15–17], single-nucleotide polymorphism detection
[18, 19], and genomic loss and amplification (copy number
variation) analysis [20, 21]. Using microarrays, integrated
bioinformatics enables researchers to quickly identify differen-
tially expressed target genes between atherosclerosis samples

in a single experiment [22, 23]. CIBERSORT is a deconvolu-
tion computational method for quantifying immune cell frac-
tions from bulk tissue gene expression profiles. This method
can accurately calculate the relative proportion of 22 types of
immune cell compositions in lesion samples [24, 25].

The detailed mechanism of the pathogenesis of athero-
sclerosis is unclear. Although studies have revealed that
chronic inflammation can drive atherosclerosis, which is
the leading cause of cardiovascular disease as confirmed by
molecular and cellular experiments, fewer studies have been
conducted to analyze the correlation of genes and immune
cells in atherosclerosis-related big data.

In this study, we reanalyzed the GSE28829 dataset
reported previously in Doring et al.’s team research [2] and
detected potential target genes for atherosclerosis treatment
from the perspective of big data analysis. We firstly identified
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Figure 1: (a) Workflow of the analysis. (b) Volcano plot of differentially expressed genes; red represents upregulated genes, whereas blue
represents downregulated genes. (c) Significance of GO and pathway enrichment of DEGs.
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candidate DEGs and significant immune cells. Then, we
explored the correlation between gene expressions and the
relative percentages of immune cells to identify potential
gene signatures useful for the diagnosis and therapeutic treat-
ment of atherosclerosis.

2. Materials and Methods

2.1. Data Acquisition. The robust multiarray averaging
normalized microarray expression profile GSE28829 [2]
and affiliated annotation file were downloaded from the
National Center Biotechnology Information Gene Expres-
sion Omnibus (https://www.ncbi.nlm.nih.gov/geo/) website
[26], which was tested on the GPL570 platform based on
the Affymetrix Human Genome U133 Plus 2.0 array.
GSE28829 contains 13 early atherosclerotic plaque samples
(EA group) and 16 advanced atherosclerotic plaque samples
(AA group) from the human carotid artery. Figure 1(a)
provides an overview of the analysis workflow.

2.2. Data Preprocessing. After the GSE28829 expression
matrix was downloaded, probe identification was matched to
the corresponding gene symbol. For multiprobes to one gene,
we retained the probe showing a significant gene expression
value after deleting the non-mRNA probe. Based on this gene
expression matrix information, we identified the significant
differentially expressed genes and immune cells.

2.3. Identification of DEGs. The limma package was utilized
to identify differentially expressed genes (DEGs) between
advanced atherosclerotic plaques and early atherosclerotic
plaque samples in RStudio [27–29]. The criteria were as
follows: (1) the adjusted p < 0:01, a moderate t-test corrected
by Benjamini and Hochberg’s method [30]; (2) log fold
change (FC) of upregulated genes ≥ 1:5 or log fold change
(FC) of downregulated genes ≤ −1.

2.4. Gene Ontology and Pathway Analysis. Gene Ontology
(GO) is used to describe the roles of genes and gene products
in any organism based on existing biological knowledge and
is divided into three independent branches: biological pro-
cess (BP), cellular component (CC), and molecular function
(MF) (Harris et al., 2004; Harris et al., 2006). Metabolic
pathways and gene signaling networks based on available
databases such as KEGG [31] and Reactome [32] were used
to describe the pathway enrichment analyses. We used the
DAVID website (https://david. http://ncifcrf.gov/) for gene

annotation and visualization to perform the GO and pathway
analysis. p < 0:05, calculated via Fisher’s exact test [33], was
used as the threshold for statistical significance [32, 34].

2.5. PPI Network Construction and Module Analysis. First,
the identified DEGs were uploaded to the STRING [35] (ver-
sion 11.0) website which includes 2 billion interactions
associated with 24.6 million proteins referred to 5090 organs.
STRING was used to determine the PPIs between DEG-
encoded proteins. Second, the minimum interaction score
was set to 0.4. The PPI networks were constructed using
Cytoscape software [36]. The built-in Molecular Complex
Detection (MCODE), a well-known automated method for
detecting highly interconnected subgraphs as molecular
complexes or clusters in large PPI networks was utilized to
screen the modules in the PPI network. The correlated
parameter criteria were set by default, except K‐core = 7.
Moreover, functional enrichment analysis was performed
for DEGs in the significant module with p < 0:05, calculated
via Fisher’s exact test [34], as the cutoff criterion.

2.6. Immune Cell Infiltration Analysis. Normalized gene
expression data were utilized to evaluate the relative propor-
tions of 22 types of infiltrating immune cells via using the
CIBERSORT algorithm [25]. The gene expression matrix
was uploaded to the CIBERSORT online website (https://
cibersort.stanford.edu) by setting the default signature matrix
at 1000 permutations. CIBERSORT is a deconvolution algo-
rithm that depends on a set of reference gene expression values
(a “signature matrix” of 547 genes in 22 types of immune
cells). Next, significant immune cells between EA and AA
samples were identified with the threshold Wilcoxon test
at p < 0:05.

2.7. Correlation Analysis of Genes and Immune Cells. Pearson
correlation test analysis was carried out to illustrate the rela-
tionship between gene expressions and the relative percent-
ages of immune cells in EA and AA samples, respectively
[37]. The value of the correlation coefficient between gene
expressions and the relative proportion of immune cells could
indicate the strong, weak, or no correlation. Based on the
paired t-test, p < 0:05 was considered statistically significant.

2.8. Statistical Analysis. The moderate t-test was used to iden-
tify differentially expressed genes. Fisher’s exact test was
applied to performGO and KEGG analysis. TheWilcoxon test
was applied to immune cell analysis. Paired t-test was applied

Table 1: The 91 differentially expressed genes were identified in AA samples compared to EA samples. (The differentially expressed genes
were ranked from the smallest to the largest of adjusted p value).

DEGs Gene name

Upregulated genes
(logFC ≥ 1:5)

SLAMF8, SERPINA1, VAMP8, C3AR1, CD52, CD84, CCR1, FCGBP, CD14, FCGR1B, ITGB2, LAPTM5,
PIK3AP1, C1QB, APOE, KYNU, CTSS, RAC2, CD37, TYROBP, IGLC1, ACP5, TNFSF13B, CD53, CCL19,
LY86, NPL, CCL18, IGLV1-44, BCAT1, SPP1, FCGR2B, C1QC, FABP5, PTPRC, MS4A7, CHI3L1, PLXNC1,

GIMAP2, IER3, ADAMDEC1, CSF2RB, ITGAM, NCF2, CEMIP, CLEC5A, IGKC, CD86, IGLL3P, IGJ,
CXCR4, CXCL2, RNASE6, FPR3, MSR1, KCNT2, EVI2B, IGHM, MMP9

Downregulated genes
(logFC ≤ −1)

ANGPTL1, TMEM35, BTC, BAG2, SLMAP, MBNL1-AS1, ATP1A2, PIP5K1B, C3orf70, SH3BGR, CNTN4,
SBSPON, CAB39L, ACADL, ACTN2, NEXN, PDZRN3, PLD5, SLC22A3, KCNMA1, TTLL7, BAMBI,

PPP1R1A, NTN1, AMIGO2, APCDD1, MYBL1, CNN1, RBP4, TOX2, CNTN1, LGR6
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to correlation analysis between genes and cells. All statistical
analyses were carried out in R version 3.5.2 software.

3. Results

3.1. Identification of DEGs. In the study, we identified 91
differentially expressed genes (DEGs) in the AA group com-

pared to the EA group (Figure 1(b) and Table 1). Among
them, 59 DEGs were upregulated (adjusted p < 0:01 and log
FC ≥ 1:5), and the remaining 32 DEGs were downregulated
(adjusted p < 0:01 and log FC ≤ −1).

3.2. GO and Pathway Analysis. DEGs were uploaded to the
DAVID website to identify the GO and pathway terms. As

Table 2: The significant Gene Ontology enrichments of differentially expressed genes (DEGs).

Category Term Count p value

Upregulated genes

GOTERM_BP_FAT GO:0006952~defense response 34 1.78E-22

GOTERM_BP_FAT GO:0006955~immune response 32 9.60E-20

GOTERM_BP_FAT GO:0050776~regulation of immune response 23 4.74E-15

GOTERM_BP_FAT GO:0045087~innate immune response 21 1.47E-13

GOTERM_BP_FAT GO:0002684~positive regulation of immune system process 22 1.68E-13

GOTERM_BP_FAT GO:0002682~regulation of immune system process 25 2.27E-13

GOTERM_BP_FAT GO:0050778~positive regulation of immune response 18 8.88E-12

GOTERM_BP_FAT GO:0048584~positive regulation of response to stimulus 26 1.26E-10

GOTERM_BP_FAT GO:0009605~response to external stimulus 26 1.99E-10

GOTERM_BP_FAT GO:0002250~adaptive immune response 14 2.78E-10

GOTERM_BP_FAT GO:0006954~inflammatory response 16 4.15E-10

GOTERM_BP_FAT GO:0002253~activation of immune response 15 6.56E-10

GOTERM_BP_FAT GO:0002764~immune response-regulating signaling pathway 14 4.79E-09

GOTERM_BP_FAT GO:0007166~cell surface receptor signaling pathway 27 7.57E-09

GOTERM_BP_FAT GO:0050900~leukocyte migration 12 1.43E-08

GOTERM_BP_FAT GO:0002757~immune response-activating signal transduction 13 2.47E-08

GOTERM_BP_FAT GO:0032101~regulation of response to external stimulus 14 1.75E-07

GOTERM_BP_FAT GO:0002252~immune effector process 14 2.44E-07

GOTERM_CC_FAT GO:0044421~extracellular region part 33 4.63E-07

GOTERM_CC_FAT GO:0005615~extracellular space 20 4.84E-07

Downregulated genes

GOTERM_BP_FAT GO:0006936~muscle contraction 5 0.00187531

GOTERM_BP_FAT GO:0003012~muscle system process 5 0.003885779

GOTERM_BP_FAT GO:0006928~movement of cell or subcellular component 9 0.006091447

GOTERM_BP_FAT GO:0015672~monovalent inorganic cation transport 5 0.007385488

GOTERM_BP_FAT GO:0002028~regulation of sodium ion transport 3 0.007948344

GOTERM_BP_FAT GO:0040011~locomotion 8 0.0093652

GOTERM_BP_FAT GO:0043269~regulation of ion transport 5 0.011584817

GOTERM_BP_FAT GO:0010959~regulation of metal ion transport 4 0.014867703

GOTERM_MF_FAT GO:0003779~actin binding 4 0.017959842

GOTERM_BP_FAT GO:0006812~cation transport 6 0.018744883

GOTERM_BP_FAT GO:0030007~cellular potassium ion homeostasis 2 0.019293154

GOTERM_BP_FAT GO:0042391~regulation of membrane potential 4 0.019968055

GOTERM_BP_FAT GO:0034765~regulation of ion transmembrane transport 4 0.024929627

GOTERM_BP_FAT GO:0034762~regulation of transmembrane transport 4 0.02729303

GOTERM_BP_FAT GO:0055075~potassium ion homeostasis 2 0.028804816

GOTERM_MF_FAT GO:0008092~cytoskeletal protein binding 5 0.029503547

GOTERM_BP_FAT GO:0071805~potassium ion transmembrane transport 3 0.034876856

GOTERM_BP_FAT GO:0071804~cellular potassium ion transport 3 0.034876856

GOTERM_BP_FAT GO:0032412~regulation of ion transmembrane transporter activity 3 0.03593287

GOTERM_BP_FAT GO:0048738~cardiac muscle tissue development 3 0.036287643
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shown in Figure 1(c), significantly enriched GO and pathway
DEGs were involved in defense response (BP), extracellular
space (CC), immunoglobulin receptor binding (MF), and
Staphylococcus aureus infection (KEGG pathway). As shown
in Table 2, the significant GO terms of upregulated DEGs
were mainly enriched in defense response (BP), immune
response (BP), and regulation of immune response (BP),
while significant GO terms of downregulated DEGs mainly
were enriched in muscle contraction (BP), muscle system
process (BP), and movement of cell or subcellular compo-
nent (BP). The pathway terms of upregulated DEGs were
enriched in Staphylococcus aureus infection (KEGG), phago-
some (KEGG), and leukocyte transendothelial migration
(KEGG), while the pathways of downregulated DEGs were
unavailable (Table 3).

3.3. PPI Network Construction and Module Analysis. After
uploading the 91 DEGs into the STRING online database
and downloading the TSV format file of the interaction of
multiple genes to Cytoscape software for PPI network con-
struction, 59 DEGs (48 upregulated and 11 downregulated
genes) were filtered from the 91 DEGs to construct the PPI
networks, which contained 59 nodes/genes and 306 edges
(Figure 2(a)); 32 genes did not participate in the PPI net-
works. Among these 59 nodes/genes, 17 central nodes/genes
in module 1 were identified by the MCODE app and signifi-
cantly associated with immune system function (Figure 2(b),
Figure S1).

3.4. Immune Cell Infiltration Analysis. We first used the
CIBERSORT algorithm to investigate the relative proportion
of the 22 subpopulations of immune cells among EA and AA
samples (Figure 3(a)). The relative proportions of 6 types of
immune cells were significantly different between the EA
and AA groups (Figure 3(b)). The cell types were T cell

CD8 (p = 0:017), T cell gamma delta (p = 0:015), monocytes
(p = 0:007), macrophage M0 (p = 0:007), macrophage M2
(p = 0:002), and dendritic cells (activated) (p = 0:005). Among
these 6 types of immune cells, we found that T cell CD8,
monocytes, and dendritic cells (activated) in the EA group
were present at higher fractions than in the AA group, while
the other three types of immune cells showed the opposite
results (Figure 3(b)).

3.5. Correlation Analysis of Genes and Immune Cells. Corre-
lation analysis (Pearson test) was carried out to illustrate
and display the relationship between candidate genes and
immune cells in EA and AA samples (Figures 4 and 5). As
shown, CD86 and macrophage M2 (R = 0:57, p = 0:041)
and C1QB and T cell CD8 (R = −0:63, p = 0:02) represented
good correlation (Figures 4(a) and 4(b)) in early atheroscle-
rosis plaque samples. Moreover, most genes have a close
correlation with immune cells in advanced atherosclerosis
plaque samples. It is worth noting that four common genes
(CD53, C1QC, NCF2, and ITGAM) from module 1 have a
close correlation with T cell CD8 and macrophages M0 and
M2 (Figures 5(a) and 5(b)). However, we have discarded that
situation: although the p value was less than 0.05 and had a
high absolute value of R, the scatter plot shows that the point
distribution was aggregated to zero (supplement Figures S2-3).

4. Discussion

Atherosclerosis is a disease caused by plaque accumulation
within the arteries. Current studies have confirmed that
immune cells including dendritic cells, several T cells, mono-
cyte/macrophage subsets, and neutrophils are associated
with atherosclerosis [2, 38–40]. It has been shown that spe-
cific therapies targeting the pro/anti-inflammatory cytokines
such as CCL2, TNFα, and IL-6 have suggested slowing in the

Table 3: The significant signal pathways of differentially expressed genes (DEGs).

Pathway Term Count P value

Upregulated genes

KEGG_PATHWAY hsa05150: Staphylococcus aureus infection 7 2.40E-07

KEGG_PATHWAY hsa04145: phagosome 7 9.36E-05

KEGG_PATHWAY hsa04670: leukocyte transendothelial migration 6 2.60E-04

KEGG_PATHWAY hsa05133: pertussis 5 5.28E-04

KEGG_PATHWAY hsa04060: cytokine-cytokine receptor interaction 7 0.001252687

KEGG_PATHWAY hsa04062: chemokine signaling pathway 6 0.002299717

KEGG_PATHWAY hsa05134: legionellosis 4 0.002506044

BioCarta h_blymphocytePathway: B lymphocyte cell surface molecules 3 0.003628217

KEGG_PATHWAY hsa04610: complement and coagulation cascades 4 0.005025012

KEGG_PATHWAY hsa05323: rheumatoid arthritis 4 0.009854418

KEGG_PATHWAY hsa05152: tuberculosis 5 0.011906527

KEGG_PATHWAY hsa04672: intestinal immune network for IgA production 3 0.023560079

KEGG_PATHWAY hsa04380: osteoclast differentiation 4 0.028350582

KEGG_PATHWAY hsa05416: viral myocarditis 3 0.033703679

KEGG_PATHWAY hsa04514: cell adhesion molecules (CAMs) 4 0.034833291

Downregulated genes

No significant signal pathway (P value < 0.05) available.
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Figure 2: (a) Protein-protein interaction (PPI) networks; red represents upregulated genes, blue represents downregulated genes, and yellow
represents the significant module genes. Analysis was performed with MCODE. (b) Significant module genes; red represents upregulated
module genes.
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Figure 3: (a) Relative proportions of 22 types of infiltrated immune cells in EA and AA groups. (b) Significant changes in infiltrated immune
cells in AA compared to EA group (Wilcoxon test p < 0:05).
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progression of atherosclerosis in animal models and might
improve cardiovascular outcomes in human subjects in
large-scale phase III trials. [41, 42]. Notably, the monoclonal
antibody canakinumab, targeting to IL-1β, has reduced the
risk of adverse cardiovascular events [41, 42].

In the current study, we aimed to identify the potential
molecular gene signatures associated with the immune
system during the progression of atherosclerotic disease.
We first figured out the genes in module 1 (17 genes) and
significantly changed types of immune cells (6 types of
immune cells) between advanced atherosclerosis and early
atherosclerosis. Afterward, according to the correlation anal-
ysis between genes and immune cells, we inferred that CD86
and C1QB have a good correlation with macrophage M2 and
T cell CD8 in EA, respectively. What is more, most of the
genes have associated with T cell CD8, macrophages (M0
and M2), and four common genes (CD53, C1QC, NCF2,
and ITGAM), and all have correlation with the three types
of immune cells in AA.

CD86 (cluster of differentiation 86) is a protein encoded
by CD86, which is expressed on antigen-presenting cells
(APCs) and provides costimulatory signals to T cells [43].
Meletta et al. used CD86/CD80 as a probe for atherosclerosis

imaging [43]. Transfer of native Foxp3+ T cells showed a
protective effect against experimental atherosclerosis (Ait-
Oufella et al.; [44, 45]). CD53 (leukocyte surface antigen) is
a member of the “tetraspan family” of membrane proteins
and is expressed on various immune cells [46, 47]. CD53
can contribute to improving the transduction of CD2-gener-
ated signals in T cells and natural killer cells [48]. C1QB
(complement C1q B chain) or C1QC (complement C1q C
chain) encodes the C-chain or B-chain polypeptide of serum
complement subcomponent C1q, respectively, and deficiency
of C1q is associated with glomerulonephritis and lupus
erythematosus. The Bos et al. team has suggested that
C1QBmight be associated with atherosclerosis and coronary
artery disease [49]. What is more, the Khoonsari et al. group
has revealed that the lower levels of C1QB and C1QC were
involved in cell adhesion, migration, regulation of the syn-
apse, and the immune system [50]. NCF2 (neutrophil cytosol
factor 2) encodes a subunit ofNADPH oxidase, and mutation
in this gene can result in chronic granulomatous disease
[51]. However, no research has revealed that NCF2 was
involved in atherosclerosis. ITGAM (integrin alpha M) is
known as complement receptor 3A (CR3A) or cluster of
differentiation molecule 11B (CD11B) [52] and primarily
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expressed on the surface of innate immune cells [53].
Recent reports revealed that NCF2 and ITGAM play sig-
nificant immune-regulatory roles in autoimmune disease
[54, 55]. To date, fewer studies were focused on how genes

(C1QB, C1QC, NCF2, and ITGAM) regulate immune cells
(T cell CD8 and macrophages M0 or M2) and their rela-
tionship between gene expressions and the relative per-
centages of immune cells.
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Figure 5: (a) Correlation between gene expressions and the relative percentages of immune cells in the AA group. (b) Scatterplots illustrate
the relationship between four common gene expressions (CD53, C1QC, NCF2, and ITGAM) and the relative proportions of these three types
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Based on this fact, (1) atherosclerotic diseases are related
to immune cells and (2) there are examples of researchers
using modified genes (such as IL-1β, CCL2, and IL-6) to treat
atherosclerotic diseases [41, 42]. The innovation of this study
is to screen out gene signatures associated with immune
cells in the progression of atherosclerosis. According to
the relationship between gene expressions and the relative
proportions of immune cells, these genes may interact
with immune cells through some unknown cell membrane
receptors or ligands. It may be possible to modify the
interactions of these genes with membrane receptors or
ligands to identify new therapeutic treatments for atheroscle-
rosis, as well as mechanisms of atherosclerosis regulation.

Nevertheless, there exist some inevitable difficulties in
this study that should be taken into consideration. For
instance, the atherosclerosis-related datasets were fewer and
not as easily acquired and collected from the open public
database as cancer datasets, which leads to the lack of
comprehensiveness of the study which cannot be used to
verify our results. Although the limited sample size of ath-
erosclerosis may reduce the confidence, the approaches
and ideas in this study are helpful in enlightening the
inspiration of other researchers. Of course, additional
molecular and cellular experiments should be performed
to assess their characteristics.

5. Conclusions

The identification of 6 specific gene signatures and correlated
immune cells in the progression of atherosclerosis may give
us a clue to explore the mechanism of cardiovascular disease
and its therapeutic treatments.
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