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Human Protein Subcellular 
Localization with Integrated Source 
and Multi-label Ensemble Classifier
Xiaotong Guo1, Fulin Liu1, Ying Ju2, Zhen Wang2 & Chunyu Wang3

Predicting protein subcellular location is necessary for understanding cell function. Several machine 
learning methods have been developed for computational prediction of primary protein sequences 
because wet experiments are costly and time consuming. However, two problems still exist in state-
of-the-art methods. First, several proteins appear in different subcellular structures simultaneously, 
whereas current methods only predict one protein sequence in one subcellular structure. Second, most 
software tools are trained with obsolete data and the latest new databases are missed. We proposed 
a novel multi-label classification algorithm to solve the first problem and integrated several latest 
databases to improve prediction performance. Experiments proved the effectiveness of the proposed 
method. The present study would facilitate research on cellular proteomics.

Cells are highly ordered structure and contain various subcellular compartments that ensure the normal opera-
tion of the entire cell. These subcellular structures include nuclei, mitochondria, endoplasmic reticulum, Golgi 
apparatus, cell membrane, and extracellular matrix. The biological function of cells is executed by its unique pro-
teins. Protein synthesized on the ribosome must be transported to its corresponding subcellular structures to play 
a normal biological function. If protein subcellular localization does not correspond to its position, serious loss of 
function or disorder occurs in organisms. Researchers found the aberrant protein subcellular localization in some 
cell lesions (such as cancer cells)1. The subcellular location of proteins is an important attribute of proteins, which 
is useful in determining protein function, revealing the mechanism of molecular interaction, and understanding 
the complex physiological processes2. The subcellular location of proteins is of great significance to cell biology, 
proteomics, and drug design research3.

Using conventional biochemical research methods, such as cell separation method, electronic microscopy, and 
fluorescence microscopy, to predict protein subcellular localization is expensive, time consuming, and laborious4. 
In today’s post-genome era, large amounts of protein sequence provide raw materials for the development of bio-
logical information and a stage for machine learning methods’ application in the field of life scienc5.

The typical protein subcellular location system based on machine learning methods includes the follow-
ing four basic steps: (1) establishment of protein data set, (2) protein sequence feature extraction, (3) design of 
multi-label classification algorithm, and (4) construction of Web server6.

Databases for protein subcellular location, include LOCATE7, PSORTdb8, Arabidopsis Subcellular DB9, Yeast 
Subcellular DB10, Plant-PLoc11, LOCtarget12, LOC3D13, DBSubloc14, and PA-GOSUB15. However, none of the 
current works on computational protein subcellular localization have integrated these sources. Only part of the 
protein sequences were employed for training in previous works. In this paper, we collected existing related data 
sets and integrated a complete data set.

Feature extraction is a key process in various protein classification problems. Feature vectors are sometimes 
called as fingerprints of proteins. The common features include Chou’s PseACC representation16, K-mer and 
K-ship frequencies17, Chen’s 188D composition and physicochemical characteristics18, Wei’s secondary structure 
features19,20, and PSSM matrix features21. Several web servers were also developed for feature extraction of protein 
primary sequence, including Pse-in-one22, Protrweb23, and PseAAC24.

Proper classifier can help to improve the prediction performance. Support vector machine (SVM), k-nearest 
neighbor (kNN), artificial neural network, random forest (RF)25, and ensemble learning26,27 are often employed 
for special peptide identification. However, subcellular localization of a protein in essence is a multi-label 
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classification problem, which is different from methods for identifying cellular factors (multi classification 
learning). Recently, several multi-label classification methods have been employed for subcellular localization 
in different species, including human28,29, plant30, virus31,32, eukaryote33,34, animal35. Features were also extracted 
according to n-gram36, Chou’s PseAAC representation37, and gene ontology38. They all focused on the features 
construction. Only the basic multi-label strategies were employed. Most of their researches have transferred SVM 
to multi labels. We found that advanced ensemble multi-label learning techniques would further improve the 
performance.

Material and Methods
Integration of multiple protein subcellular localization sources.  In this section, we reconstruct the 
training set for human protein subcellular localization study. The new data set has a richer source and we further 
reduce the redundancy with CD-HIT39. Meanwhile, we expand the size of data sets, which render the training set 
data more comprehensive and provide a more convincing database for the multi-label classification learning step. 
The training set reconstruction will be introduced from two aspects, namely, data sources and data processing. 
The new dataset contains mainly two sources, which are LOCATE7 and Hum-mPLoc 2.040.

About 526 (480+​43+​3 =​ 526) protein sequences are recorded as multi-label sequences (no repeat), which 
have two or more types of subcellular sites (the number of sites P1 is greater than or equals to 1) DM1. The protein 
sequence distribution on each subcellular site is shown in Table 1.

The subcellular sites contained in the proteins in Hum-mPLoc 2.0 are scarce, but parts of the protein data 
contain three or four subcellular sites. Proteins are rich and varied. Therefore, certain superiority is shown in 
terms of protein function.

From the LOCATE database, we directly obtained the document human.xml of the original XML format 
about subcellular localization of human. The document accommodates abundant information about human pro-
teins. Our goal is to obtain 64,637 human protein amino acid FASTA sequences and the subcellular sites (site 
number P2 is more than or equals to 1) of these sequences. After a rigorous data processing, we obtain the refer-
ence data set containing 6776 different protein sequences (no repeat) D2. The 6776 protein sequences are distrib-
uted in 37 subcellular structures and possess two subcellular locations at most. Among these sequences, 4066 have 
only one type of subcellular location, which belongs to the single marker sequence data set DS2. Approximately 
2710 protein sequences have two subcellular locations (site number P2 equals to 1), which belong to the multiple 
marker sequence data set DM2. A total of 9486 (4066+​2710*​2 =​ 9486) protein sequences (proteins locative, a 
repetitive protein sequence) correspond to 37 subcellular locations. The protein sequence distribution on each 
subcellular site is shown in Table 2.

Results of data processing indicate an extremely rich types of proteins and subcellular sites in the LOCATE 
database. However, the number of protein sequences, which have multiple subcellular sites, is relatively small, 
especially those belonging to three or more types of subcellular sites. This finding indicates that the protein data 
in the LOCATE have problems in functional diversity. To compensate for the limitations in the LOCATE database 
and Shen’s basic data set, we combine two types of data and reconstruct basic data sets. By combining Tables 1 
and 2, we conclude that the 14 types of subcellular sites in Hum-mPLoc 2.0 are contained entirely in 37 types of 
subcellular sites in the LOCATE database, which is conducive to our data set reconstruction.

In order to prove the necessary of multi-label classification in the protein subcellular localization, it is required 
to compare the performances of multi-label and single-label classifiers. However, multi-label dataset cannot be 

Ordinal Subcellular location
The number of 

proteins

1 centrosome 77

2 cytoplasm 817

3 cytoskeleton 79

4 endoplasmic reticulum 229

5 endosome 24

6 extracellular matrix 385

7 Golgi apparatus 161

8 lysosome 77

9 microsome 24

10 mitochondria 364

11 nucleus 1021

12 peroxisome 47

13 cell membrane 354

14 synaptic vesicle 22

Total number of non repeating protein sequences: 3106

Total number of protein Locative sequences: 3681

Multiple marker protein sequence data set DM1 526

Single marker protein sequence data set DS1 2580

Table 1.   The protein sequences distribution on 14 subcellular sites.
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used for single-label classifiers. Therefore, the data sets of multi-label protein sequences and single-label protein 
sequences were reconstructed separately, but they both come from the sources mentioned in the above section. 
The reconstructed data set was DRM, and the single labeled data set was DRS. Therefore,

= +‐D CD HIT[D D ] (1)RM M1 M2

= +‐D CD HIT[D D ] (2)RS S1 S2

= +D D D (3)R RM RS

CD-HIT39 is a software for reducing the similarity of the protein sequences. It can delete the similar sequences 
from the data set. Here we made the similarity of each pair sequences is less than 40%. Table 3 shows the protein 
sequences of the reconstructed data set DR and the subcellular sites.

Ordinal Subcellular location
The number 
of proteins

1 Apical Plasma Membrane 44

2 Plasma Tube Basement Membrane 101

3 Cellular Component Unknown 6

4 Centrosome 27

5 Cytoplasm 1044

6 Cytoplasmic Vesicle 176

7 Cell Scaffold 72

8 Early Endosome 147

9 Endoplasmic Reticulum 343

10 Nuclear Body 454

11 ERGIC 7

12 Extracellular Matrix 394

13 Golgi Apparatus 387

14 Golgi Cis Cisterna 27

15 Golgi Trans Cisterna 11

16 Golgi Trans Face 27

17 Mitochondrial Inner Membrane 8

18 Late Endosomes 34

19 Lipid Lowering Granule 1

20 Lysosome 222

21 Medial-Golgi 17

22 Black Body 20

23 Microtubule Organizing Center 8

24 Micro Tube 4

25 Mitochondrion 279

26 Nuclear Membrane 155

27 Nucleolus 810

28 Nucleus 2721

29 Mitochondrial Outer Membrane 2

30 Peroxisome 128

31 Cell Membrane 1711

32 Muscle Fiber Membrane 5

33 Secretory Granules 25

34 Secretory Vesicle 8

35 Synaptic Vesicle 29

36 Tight Junction 26

37 Transport Vesicle 6

Total number of non repeating protein sequences: 6776

Total number of protein Locative sequences: 9486

Multiple marker protein sequence data set DM2 2710

Single marker protein sequence data set DS2 4066

Table 2.  The protein sequences distribution on 37 subcellular sites in LOCATE.
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Features for subcellular localization.  The above section mainly discusses a series of preprocessing with 
the data set. The reconstructed data set provides a reliable database for the study on the positioning method. This 
section focuses on specific features of protein subcellular localization based on machine learning.

In this section, three types of feature extraction methods are introduced based on the position-specific scoring 
matrix (PSSM)41, pseudo-amino acid composition42. In the long process of evolution, some characteristic genes 
are not eliminated but are selectively retained. These characteristics can effectively characterize the correspond-
ing protein. Feature extraction methods based on PSSM are conducted to compare the protein sequence and 
rationally analyze with the invariance. PSSM matrix represents the comparison results between the input protein 
sequence and its homologous protein sequence in Swiss-Prot database. The multiple sequence alignment tools are 
HAlign43 and PSI-BLAST44 (position-specific initiated BLAST). Each input protein sequence generates a PSSM 
matrix after multiple sequence alignment. The elements in PSSM matrix characterize homology level between 
amino acids in some positions in the input protein sequence and the amino acid in the corresponding position 
in its homologous sequence. A smaller element value indicates higher conservation; lower conservation means 

The multiple labeled set DRM The single labeled set DRS

Ordinal Subcellular location
The number 
of proteins Ordinal Subcellular location

The number 
of proteins

1 Apical Plasma Membrane 16 1 centrosome 44

2 Plasma Tube Basement 
Membrane 29 2 cytoplasm 508

3 Cellular Component Unknown 4 3 cytoskeleton 46

4 Centrosome 37 4 endoplasmic reticulum 77

5 Cytoplasm 542 5 endosome 163

6 Cytoplasmic Vesicle 29 6 extracellular matrix 419

7 Cell Scaffold 43 7 Golgi apparatus 125

8 Early Endosome 52 8 lysosome 86

9 Endoplasmic Reticulum 43 9 Micro Tube 11

10 Nuclear Body 179 10 mitochondria 355

11 ERGIC 4 11 nucleus 952

12 Extracellular Matrix 68 12 peroxisome 56

13 Golgi Apparatus 147 13 cell membrane 565

14 Golgi Cis Cisterna 7 14 synaptic vesicle 16

15 Golgi Trans Cisterna 3 15 Cytoplasmic Vesicle 17

16 Golgi Trans Face 11 16 Black Body 4

17 Mitochondrial Inner Membrane 4 17 Nuclear Membrane 1

18 Late Endosomes 16 18 Secretory Granules 1

19 Lipid Lowering Granule 1 19 Secretory Vesicle 2

20 Lysosome 39 \ \ \

21 Medial-Golgi 7 \ \ \

22 Black Body 2 \ \ \

23 Microtubule Organizing Center 1 \ \ \

24 Micro Tube 15 \ \ \

25 Mitochondrion 52 \ \ \

26 Nuclear Membrane 46 \ \ \

27 Nucleolus 268 \ \ \

28 Nucleus 768 \ \ \

29 Mitochondrial Outer Membrane 1 \ \ \

30 Peroxisome 11 \ \ \

31 Cell Membrane 271 \ \ \

32 Muscle Fiber Membrane 1 \ \ \

33 Secretory Granules 9 \ \ \

34 Secretory Vesicle 3 \ \ \

35 Synaptic Vesicle 12 \ \ \

36 Tight Junction 9 \ \ \

37 Transport Vesicle 4 \ \ \

The reconstructed multiple labeled set DRM 1354

The reconstructed single labeled set DRS 3448

The reconstructed protein subcellular localization data set DR 4802

Table 3.  Subcellular sites and protein sequences distribution in DR.
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that the amino acid in the position is prone to mutation. We extracted 20D and 420D features from the PSSM 
according to different parameters, which are described in detail in the supplementary materials.

The purpose of PseAAC is also to improve the accuracy of protein subcellular localization and the prediction 
of membrane protein. We extracted 188D features from PseACC, including 20D features of amino acid compo-
sitions, 24D features based on the contents of amino acids with certain physicochemical properties, 24D features 
of bivalent frequency and 120D features from eight physicochemical properties. It is described in detail in the 
supplementary materials, too.

Multi-label classification ensemble learning method.  We employed the ensemble multi-label classifi-
cation method for improving the prediction performance. There have been no ensemble methods for multi-label 
classification in bioinformatics so far. Next we described the ensemble voting strategies of our method.

Basic classifiers are denoted as = = ...C c i p{ : 1, 2, , }i , and the labels are denoted as λ= = ...Y j q{ : 1, 2, , }j .

MeanEnsemble algorithm.  The prediction result is the probability that the sample is predicted to be λ j by ci. We 
calculate the average value of each column. Each training sample generates a set of q-dimensional vector:

= ≤ ≤V v j q{ : 1 }ME j

vj is the probability that the sample belongs to the corresponding class label. If 0.5 ≤​ vj ≤​ 1, the sequence belongs 
to λj. If 0 ≤​ vj ≤​ 0.5, the sequence does not belong to λ j.

MajorityVoteEnsemble algorithm.  Every basic classifier separately predicted a sample. The prediction result is 
S, S ∈​ (−​1, +​1). If S =​ −​1, the sample is recognized as the counterexample by the base classifier; otherwise, it is 
identified as a positive example. We calculate the average value of each column, and each training sample gener-
ates a set of q-dimensional vector:

= ≤ ≤V v j q{ : 1 }MV j

If vj ≥​ 0, the sample belongs to λj; otherwise, it does not.

TopKEnsemble algorithm.  In each column in the result matrix, P accuracy values are sorted in descending order 
and the average of the first K (K is determined by p) accuracy values is calculated to obtain a set of q-dimensional 
vector:

= ≤ ≤V v j q{ : 1 }TK j

If 0.5 ≤​ vj <​1, the sequence belongs to λ j. If 0 ≤​ vj <​0.5, the sequence does not belong to λ j.
The work flow of our protein subcellular localization prediction method can be shown in Fig. 1. In the data 

part, two sources of protein subcellular localization information were integrated. Then we tried three kinds of 
common features for representing the protein sequences. Multi-label classifier was employed for the prediction. 
The implementation was done with Mulan45, which is an open source machine learning software tool.

Figure 1.  Working flow chart for our method. 
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Evaluation criteria and measurement.  Average precision (AP)46: AP refers to the average accuracy 
of multi-label classification. This index is positively related to multi-label classification system performance. If 
AP = 1, the classification effect is the best. The calculation formula of AP is as follows:

∑ ∑ λ
=

λ= ∈
AP f

N y
L

rank x
( ) 1 1

( , ) (4)i

N

i y

i

f i1 i

λ λ λ λ= | ≤ ∈′ ′ ′L rank X rank X y{ ( , ) ( , ), } (5)f i f i i

Here N is the number of all samples; |yi| is the number of the samples with label yi; rank(xi, λ) means the predic-
tion value (sometimes viewed as probability) of sample xi with label λ. We use AP as a primary measure of our 
comparative experiment.

Results and Discussion
Contrast experiments based on 188-dimensional classical features.  Experiment (1): Seven types 
of multi-labeled base classifiers are used to provide a fivefold cross validation for 188-dimensional feature18,47 
training set. Classification performance is shown in Fig. 2. Detail value is shown in the Table S1 in supplementary 
materials. We take AP as the main reference indicator, and the AP values of the seven basic classifiers are shown in 
Fig. 2. The seven types of commonly used base classifiers in the experiment are random forest (RF), decision tree 
(J48), k nearest neighbor (IBK), logistic regression for multi-label classification (IBLR_ML)48, k nearest neighbor 
for multi-label classification (MLkNN)49, lazy multi-label classification (BRkNN)50, and Hierarchy of multi-la-
bel learners (HOMER)51. The former three classifiers are single-label ones, while the latter four are multi-label 
classifiers.

IBLR_ML achieves the highest AP value of the cross validation (59.37%), whereas HOMER has the lowest 
value (34.88%). The AP values of RF and IBK are less than 50%. We abandon the above three base classifiers with 
lower AP values. The four basic classifiers with higher AP values, namely, J48, IBLR_ML, MLkNN, and BRkNN, 
are integrated to the classification algorithm in Experiment (2).

Experiment (2): The four basic classifiers retained in Experiment (1) are integrated using our multi-label 
ensemble classification algorithms. We provide a fivefold cross validation for training sets. The AP values are 
shown in Fig. 3. Figure 3 demonstrates that the integration effect of MeanEnsemble multi-label ensemble classifi-
cation algorithm for four types of base classifiers in Experiment (1) is optimal. The AP value is 61.70%.

The results of Experiments (1) and (2) show that the ensemble classification algorithm has a significant role in 
improving the accuracy of protein subcellular localization. We should notice that this is a serious imbalanced clas-
sification problem. The classifiers would prefer to the dominating labels. In the Table S4, we showed the detailed 
performances of individual subcellular locations. In the previous works, all the small classes were combined into 
a big class. We firstly tried to categorize 37 subcellular structures for prediction. Comparing with previous works, 
we have applied more subcellular structures and gotten more average accuracy.

Contrast experiments based on PSSM-20-dimensional feature.  Experiment (3): Seven types of 
multi-labeled base classifiers are used to provide a fivefold cross validation for PSSM-20-dimensional feature 
training set. Classification performance is shown in Table S2 in the supplementary materials. Based on Table S2, 
we conclude that the AP value of fivefold cross validation that corresponds with PSSM-20d is better with better 
classification results. We still take AP as the main reference indicator, and the AP values of the seven base classi-
fiers are shown in Fig. 4.

The chart shows that the IBLR_ML classifier obtains the highest AP value (62.01%). It has improved appropri-
ately compared with the validation result of 188-dimensional feature training set. The rest of the base classifiers’ 
training effects have different degrees of improvement compared with Experiment (1). The four base classifiers 
with higher AP values, namely, J48, IBLR_ML, MLkNN, and BRkNN, are integrated to the classification algo-
rithm in Experiment (4).

Figure 2.  AP value comparison of 7 different basic classifiers in 188D features. 
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Experiment (4): We provide a fivefold cross validation for the training set with the same method as that in 
Experiment (2). The AP values are shown in Fig. 5.

The MeanEnsemble multi-label ensemble classification algorithm is still the best and better than the cross 
validation results of Experiment (2). The AP value reached 64.27%. TopKEnsemble and MajorityVoteEnsemble 
algorithms exhibit a larger increase compared with the training results in Experiment (2), but still less than the 
integrated effect of MeanEnsemble.

The results of Experiments (3) and (4) show that the ensemble classification algorithm has a significant role in 
improving the accuracy of protein subcellular localization again.

Contrast experiments based on PseAAC-420-dimensional feature.  Experiment (5): Seven types of 
multi-labeled base classifiers are used to provide a fivefold cross validation for PseAAC-420-dimensional feature42 
training set. Classification performance is shown in Table S3 in the supplementary materials. From Table S3 we 

Figure 3.  AP value comparison on 3 different ensemble classifier in 188D features. 

Figure 4.  AP value comparison on 7 different basic multi-label classifiers in 20D features. 

Figure 5.  AP value comparison on 3 different ensemble multi-label classifiers in 20D features. 
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can see that the AP values of fivefold cross validation that correspond with PseAAC-420d decline compared with 
188d. The AP value of IBLR_ML is 56.36%, which is still the highest. It declines 3.01% and 5.65% compared with 
Experiments (1) and (3), respectively. The cross validation results are shown in Fig. 6.

The chart shows that the cross validation results of PseAAC-420-dimensional feature training set are the 
worst. The training results of the seven types of base classifiers decline compared with Experiments (1) and (3).

Experiment (4): We provide a fivefold cross validation for the training set with the same method as that in 
Experiment (4). The AP values are shown in Fig. 7.

Comparison with state-of-the-art methods.  In order to prove the performance of our method, we 
compared with the latest protein subcellular localization web servers, including IMMMLGP28, Hum-mPLoc 
2.040, mGOF-Loc52. The first one is a multi-label classifier, while the other two can only predict as single 
class. So we employ DRM for the multi-label classification and DRS for single-label classification. Since there 
are both multi-label and single-label classifiers, we cannot compare in the multi-label measurements, includ-
ing Macro-averaged Precision, Micro-averaged Precision, Macro-averaged F-Measure, and Micro-averaged 
F-Measure. We just compare the average accuracy in the testing dataset. Table 4 showed the performance com-
parison in accuracy. From Table 4 we can see that our method outperformed the other latest methods. All of the 
accuracy rates come from 10-fold cross validation.

Besides that, we also tested our methods on other species, including plant, virus, eukaryote, and animal. 
Related datasets and performance were show in Table S5 and S6 in the supplementary materials. We concluded 

Figure 6.  AP value comparison on 7 different basic multi-label classifiers in 420D features. 

Figure 7.  AP value comparison on 3 different ensemble multi-label classifiers in 420D features. 

Methods Average Precision

IMMMLGP 0.5725

Hum-mPLoc 2.0 0.5644

mGOF-loc 0.582

Our method(188D features) 0.5937

Our method(20D features) 0.6201

Table 4.   Accuracy comparison with state-of-the-art methods.
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that our methods can also work on other species. But the performances were all poorer than human dataset. It is 
due to our integrated human protein subcellular localization dataset is more complete than other species. We will 
continue to collect the other species protein subcellular localization data in the future.

Experiments analysis and discussion.  We compare and analyze the training results of Experiments (1), 
(3), and (5) and Experiments (2), (4), and (6).

First, the seven cross validation results that correspond to PSSM-20-dimensional feature training set are better 
than the other two feature extraction algorithms. The IBLR_ML-based classifier shows the best performance, with 
the highest AP value of 62.01%. The contrast experimental results show that cross validation effects of PSSM-20 
dimensional feature training set is the best for the base classifier.

Second, the cross validation results of MeanEnsemble, TopKEnsemble, and MajorityVoteEnsemble on PSSM-
20-dimensional feature training set are higher than those of 188d and PseAAC-420d. The advantages of PSSM-
20d in multi-label ensemble classification are shown.

By comparing the experimental results of the two groups, we conclude that the 20-dimensional feature extrac-
tion algorithm based on the PSSM is the most effective for protein subcellular localization.

Then we compare and analyze the training results of Experiments (3) and (4). Based on the integrated effect, 
the algorithm MeanEnsemble effect is the best, with an AP value of 64.27%, which is higher than predicting 
AP of any type of base classifier. The algorithm performance of MajorityVoteEnsemble is the worst, with an AP 
value fivefold cross training of only 60.23%. This value is lower than the multi-label classification results of the 
base classifiers IBLR_ML, BRkNN, and MLkNN with the same background data set, not embodying out the 
superiority of the integrated thought. It will be time consuming. By comparing the experimental results, we 
conclude that the multi-label classifier ensemble algorithm MeanEnsemble achieves the best effect for PSSM-
20-dimensional feature training set. In the integrated four base classifiers, IBLR_ML shows the best multi-label 
learning performance.

Conclusion
Protein subcellular localization with computational methods is a multi-label classification problem. 
State-of-the-art prediction methods employ traditional single label machine learning. We proposed novel 
multi-label ensemble classification techniques with novel hybrid protein features. Experiments proved the effec-
tiveness of our features and the ensemble strategy. Several recent works have proved that ensemble learning53 
and feature reduction54 can improve the performance of weak learning problems. However, the present work 
employed the simplest voting strategy and did not conduct any feature reduction techniques. Moreover, class 
imbalance occurred in protein subcellular localization problems. Imbalance learning for binary classification has 
been developed and applied in bioinformatics research55,56. However, no imbalance learning techniques exist for 
multi-class and multi-label classification. All these problems and application on large data57 would be investigated 
in future work.

References
1.	 LaQuaglia, M. J. et al. YAP protein expression and subcellular localization in pediatric liver tumors. CANCER RES 75, 2107–2107 

(2015).
2.	 Huh, W.-K. et al. Global analysis of protein localization in budding yeast. NATURE 425, 686–691 (2003).
3.	 Maliepaard, M. et al. Subcellular localization and distribution of the breast cancer resistance protein transporter in normal human 

tissues. CANCER RES 61, 3458–3464 (2001).
4.	 Camp, R. L., Chung, G. G. & Rimm, D. L. Automated subcellular localization and quantification of protein expression in tissue 

microarrays. NAT MED 8, 1323–1328 (2002).
5.	 Gardy, J. L. & Brinkman, F. S. Methods for predicting bacterial protein subcellular localization. NAT REV MICROBIOL 4, 741–751 

(2006).
6.	 Wang, Z., Zou, Q., Jiang, Y., Ju, Y. & Zeng, X. Review of protein subcellular localization prediction. CURR BIOINFORM 9, 331–342 

(2014).
7.	 Sprenger, J. et al. LOCATE: a mammalian protein subcellular localization database. NUCLEIC ACIDS RES 36, D230–D233 (2008).
8.	 Rey, S. et al. PSORTdb: a protein subcellular localization database for bacteria. NUCLEIC ACIDS RES 33, D164–D168 (2005).
9.	 Li, S., Ehrhardt, D. W. & Rhee, S. Y. Systematic analysis of Arabidopsis organelles and a protein localization database for facilitating 

fluorescent tagging of full-length Arabidopsis proteins. PLANT PHYSIOL 141, 527–539 (2006).
10.	 Kumar, A. et al. Subcellular localization of the yeast proteome. GENE DEV 16, 707–719 (2002).
11.	 Chou, K. C. & Shen, H. B. Large‐scale plant protein subcellular location prediction. J CELL BIOCHEM 100, 665–678 (2007).
12.	 Nair, R. & Rost, B. LOCnet and LOCtarget: sub-cellular localization for structural genomics targets. NUCLEIC ACIDS RES 32, 

W517–W521 (2004).
13.	 Nair, R. & Rost, B. LOC3D: annotate sub-cellular localization for protein structures. NUCLEIC ACIDS RES 31, 3337–3340 (2003).
14.	 Guo, T., Hua, S., Ji, X. & Sun, Z. DBSubLoc: database of protein subcellular localization. NUCLEIC ACIDS RES 32, D122–D124 

(2004).
15.	 Lu, P. et al. PA-GOSUB: a searchable database of model organism protein sequences with their predicted Gene Ontology molecular 

function and subcellular localization. NUCLEIC ACIDS RES 33, D147–D153 (2005).
16.	 Du, P., Wang, X., Xu, C. & Gao, Y. PseAAC-Builder: A cross-platform stand-alone program for generating various special Chou’s 

pseudo-amino acid compositions. ANAL BIOCHEM 425, 117–119 (2012).
17.	 Liu, B. et al. Identification of microRNA precursor with the degenerate K-tuple or Kmer strategy. J THEOR BIOL 385, 153–159 

(2015).
18.	 Cai, C., Han, L., Ji, Z. L., Chen, X. & Chen, Y. Z. SVM-Prot: web-based support vector machine software for functional classification 

of a protein from its primary sequence. NUCLEIC ACIDS RES 31, 3692–3697 (2003).
19.	 Wei, L., Liao, M., Gao, X. & Zou, Q. An Improved Protein Structural Prediction Method by Incorporating Both Sequence and 

Structure Information. IEEE T NANOBIOSCI 14, 339–349 (2015).
20.	 Wei, L., Liao, M., Gao, X. & Zou, Q. Enhanced Protein Fold Prediction Method through a Novel Feature Extraction Technique. IEEE 

T NANOBIOSCI 14, 649–659 (2015).
21.	 Xu, R. et al. Identifying DNA-binding proteins by combining support vector machine and PSSM distance transformation. BMC 

SYST BIOL 9, S10 (2015).



www.nature.com/scientificreports/

1 0Scientific Reports | 6:28087 | DOI: 10.1038/srep28087

22.	 Liu, B. et al. Pse-in-One: a web server for generating various modes of pseudo components of DNA, RNA, and protein sequences. 
NUCLEIC ACIDS RES 43, W65–W71 (2015).

23.	 Xiao, N., Cao, D. S., Zhu, M. F. & Xu, Q. S. protr/ProtrWeb: R package and web server for generating various numerical 
representation schemes of protein sequences. BIOINFORM 31, 1857–1859 (2015).

24.	 Shen, H.-B. & Chou, K.-C. PseAAC: a flexible web server for generating various kinds of protein pseudo amino acid composition. 
ANAL BIOCHEM 373, 386–388 (2008).

25.	 Zhao, X., Zou, Q., Liu, B. & Liu., X. Exploratory predicting protein folding model with random forest and hybrid features. CURR 
PROTEOMICS 11, 289–299 (2014).

26.	 Zou, Q. et al. Improving tRNAscan-SE annotation results via ensemble classifiers. MOL INFORM 34, 761–770 (2015).
27.	 Wang, C., Hu, L., Guo, M., Liu, X. & Zou, Q. imDC: an ensemble learning method for imbalanced classification with miRNA data. 

GENET MOL RES 14, 123–133 (2015).
28.	 He, J., Gu, H. & Liu, W. Imbalanced multi-modal multi-label learning for subcellular localization prediction of human proteins with 

both single and multiple sites. Plos one 7, e37155 (2012).
29.	 Mei, S. Multi-label multi-kernel transfer learning for human protein subcellular localization. Plos one 7, e37716 (2012).
30.	 Wu, Z.-C., Xiao, X. & Chou, K.-C. iLoc-Plant: a multi-label classifier for predicting the subcellular localization of plant proteins with 

both single and multiple sites. MOL BIOSYST 7, 3287–3297 (2011).
31.	 Xiao, X., Wu, Z.-C. & Chou, K.-C. iLoc-Virus: A multi-label learning classifier for identifying the subcellular localization of virus 

proteins with both single and multiple sites. J THEOR BIOL 284, 42–51 (2011).
32.	 Wang, X., Li, G.-Z. & Lu, W.-C. Virus-ECC-mPLoc: a multi-label predictor for predicting the subcellular localization of virus 

proteins with both single and multiple sites based on a general form of Chou’s pseudo amino acid composition. PROTEIN PEPTIDE 
LETT 20, 309–317 (2013).

33.	 Chou, K.-C., Wu, Z.-C. & Xiao, X. iLoc-Euk: a multi-label classifier for predicting the subcellular localization of singleplex and 
multiplex eukaryotic proteins. Plos one 6, e18258 (2011).

34.	 Wang, X. & Li, G.-Z. A multi-label predictor for identifying the subcellular locations of singleplex and multiplex eukaryotic proteins. 
Plos one 7, e36317 (2012).

35.	 Lin, W.-Z., Fang, J.-A., Xiao, X. & Chou, K.-C. iLoc-Animal: a multi-label learning classifier for predicting subcellular localization 
of animal proteins. MOL BIOSYST 9, 634–644 (2013).

36.	 Xiao, X., Wu, Z.-C. & Chou, K.-C. A multi-label classifier for predicting the subcellular localization of gram-negative bacterial 
proteins with both single and multiple sites. Plos one 6, e20592 (2011).

37.	 Mei, S. Predicting plant protein subcellular multi-localization by Chou’s PseAAC formulation based multi-label homolog knowledge 
transfer learning. J THEOR BIOL 310, 80–87 (2012).

38.	 Wan, S., Mak, M.-W. & Kung, S.-Y. mGOASVM: Multi-label protein subcellular localization based on gene ontology and support 
vector machines. BMC BIOINFORM 13, 1 (2012).

39.	 Fu, L., Niu, B., Zhu, Z., Wu, S. & Li, W. CD-HIT: accelerated for clustering the next-generation sequencing data. BIOINFORM 28, 
3150–3152 (2012).

40.	 Shen, H.-B. & Chou, K.-C. A top-down approach to enhance the power of predicting human protein subcellular localization: Hum-
mPLoc 2.0. ANAL BIOCHEM 394, 269–274 (2009).

41.	 Chou, K.-C. & Shen, H.-B. MemType-2L: a web server for predicting membrane proteins and their types by incorporating evolution 
information through Pse-PSSM. BIOCHEM BIOPH RES CO 360, 339–345 (2007).

42.	 Chou, K. C. Prediction of protein cellular attributes using pseudo‐amino acid composition. PROTEIN: STRUC, FUNC, & 
BIOINFORM 43, 246–255 (2001).

43.	 Zou, Q., Hu, Q., Guo, M. & Wang, G. HAlign: Fast multiple similar DNA/RNA sequence alignment based on the centre star strategy. 
BIOINFORM 31, 2475–2481 (2015).

44.	 Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J MOL BIOL 215, 403–410 (1990).
45.	 Tsoumakas, G., Spyromitros-Xioufis, E., Vilcek, J. & Vlahavas, I. MULAN: A Java library for multi-label learning. J MACH LEARN 

RES 12, 2411–2414 (2011).
46.	 Zhou, Z.-H., Zhang, M.-L., Huang, S.-J. & Li, Y.-F. Multi-instance multi-label learning. ARTIF INTELL 176, 2291–2320 (2012).
47.	 Lin, C. et al. Hierarchical classification of protein folds using a novel ensemble classifier. Plos one 8, e56499 (2013).
48.	 Cheng, W. & Hüllermeier, E. Combining instance-based learning and logistic regression for multilabel classification. MACH LEARN 

76, 211–225 (2009).
49.	 Zhang, M.-L. & Zhou, Z.-H. ML-KNN: A lazy learning approach to multi-label learning. PATTERN RECOGN 40, 2038–2048 

(2007).
50.	 Spyromitros, E., Tsoumakas, G. & Vlahavas, I. An empirical study of lazy multilabel classification algorithms. In AI:THE, MOD & 

APP 401–406 (Springer, 2008).
51.	 Tsoumakas, G., Katakis, I. & Vlahavas, I. Effective and efficient multilabel classification in domains with large number of labels. In 

Proc. ECML/PKDD 2008 MMD’08. 30–44.
52.	 Wei, L., Liao, M., Gao, X., Wang, J. & Lin, W. mGOF-Loc: A Novel Ensemble Learning Method for Human Protein Subcellular 

Localization Prediction. (2016) Available at: http://server.malab.cn/mGOF-loc/Index.html (Accessed: 5th May 2016).
53.	 Lin, C. et al. LibD3C: ensemble classifiers with a clustering and dynamic selection strategy. NEUROCOMP 123, 424–435 (2014).
54.	 Zou, Q., Zeng, J., Cao, L. & Ji, R. A novel features ranking metric with application to scalable visual and bioinformatics data 

classification. NEUROCOMP 173, 346–354 (2016).
55.	 Song, L. et al. nDNA-prot: Identification of DNA-binding Proteins Based on Unbalanced Classification. BMC BIOINFORM 15, 298 

(2014).
56.	 Zou, Q., Xie, S., Lin, Z., Wu, M. & Ju, Y. Finding the best classification threshold in imbalanced classification. BIG DATA RES, doi: 

10.1016/j.bdr.2015.12.001 (2016).
57.	 Zou, Q. et al. Survey of MapReduce Frame Operation in Bioinformatics. BRIEF BIOINFORM 15, 637–647 (2014).

Acknowledgements
This work was supported by the Natural Science Foundation of China (No. 61402132).

Author Contributions
X.T.G. initially drafted the manuscript and did most of the codes work. F.L.L. helped to collect the protein 
localization data. Y.J. helped to revise the English. Z.W. participated in the design of the experiments. C.Y.W. 
guided the whole works and helped to draft the manuscript. All authors read and approved the final manuscript.

Additional Information
Supplementary information accompanies this paper at http://www.nature.com/srep
Competing financial interests: The authors declare no competing financial interests.

http://server.malab.cn/mGOF-loc/Index.html
http://www.nature.com/srep


www.nature.com/scientificreports/

1 1Scientific Reports | 6:28087 | DOI: 10.1038/srep28087

How to cite this article: Guo, X. et al. Human Protein Subcellular Localization with Integrated Source and 
Multi-label Ensemble Classifier. Sci. Rep. 6, 28087; doi: 10.1038/srep28087 (2016).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images 
or other third party material in this article are included in the article’s Creative Commons license, 

unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, 
users will need to obtain permission from the license holder to reproduce the material. To view a copy of this 
license, visit http://creativecommons.org/licenses/by/4.0/

http://creativecommons.org/licenses/by/4.0/

	Human Protein Subcellular Localization with Integrated Source and Multi-label Ensemble Classifier

	Material and Methods

	Integration of multiple protein subcellular localization sources. 
	Features for subcellular localization. 
	Multi-label classification ensemble learning method. 
	MeanEnsemble algorithm. 
	MajorityVoteEnsemble algorithm. 
	TopKEnsemble algorithm. 

	Evaluation criteria and measurement. 

	Results and Discussion

	Contrast experiments based on 188-dimensional classical features. 
	Contrast experiments based on PSSM-20-dimensional feature. 
	Contrast experiments based on PseAAC-420-dimensional feature. 
	Comparison with state-of-the-art methods. 
	Experiments analysis and discussion. 

	Conclusion

	Acknowledgements
	Author Contributions
	﻿Figure 1﻿﻿.﻿﻿ ﻿ Working flow chart for our method.
	﻿Figure 2﻿﻿.﻿﻿ ﻿ AP value comparison of 7 different basic classifiers in 188D features.
	﻿Figure 3﻿﻿.﻿﻿ ﻿ AP value comparison on 3 different ensemble classifier in 188D features.
	﻿Figure 4﻿﻿.﻿﻿ ﻿ AP value comparison on 7 different basic multi-label classifiers in 20D features.
	﻿Figure 5﻿﻿.﻿﻿ ﻿ AP value comparison on 3 different ensemble multi-label classifiers in 20D features.
	﻿Figure 6﻿﻿.﻿﻿ ﻿ AP value comparison on 7 different basic multi-label classifiers in 420D features.
	﻿Figure 7﻿﻿.﻿﻿ ﻿ AP value comparison on 3 different ensemble multi-label classifiers in 420D features.
	﻿Table 1﻿﻿. ﻿  The protein sequences distribution on 14 subcellular sites.
	﻿Table 2﻿﻿. ﻿ The protein sequences distribution on 37 subcellular sites in LOCATE.
	﻿Table 3﻿﻿. ﻿ Subcellular sites and protein sequences distribution in DR.
	﻿Table 4﻿﻿. ﻿  Accuracy comparison with state-of-the-art methods.



 
    
       
          application/pdf
          
             
                Human Protein Subcellular Localization with Integrated Source and Multi-label Ensemble Classifier
            
         
          
             
                srep ,  (2016). doi:10.1038/srep28087
            
         
          
             
                Xiaotong Guo
                Fulin Liu
                Ying Ju
                Zhen Wang
                Chunyu Wang
            
         
          doi:10.1038/srep28087
          
             
                Nature Publishing Group
            
         
          
             
                © 2016 Nature Publishing Group
            
         
      
       
          
      
       
          © 2016 Macmillan Publishers Limited
          10.1038/srep28087
          2045-2322
          
          Nature Publishing Group
          
             
                permissions@nature.com
            
         
          
             
                http://dx.doi.org/10.1038/srep28087
            
         
      
       
          
          
          
             
                doi:10.1038/srep28087
            
         
          
             
                srep ,  (2016). doi:10.1038/srep28087
            
         
          
          
      
       
       
          True
      
   




