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Abstract

Objectives

We aimed to characterise the staphylococcal cassette chromosomemec (SCCmec) type,
genetic relatedness, biofilm formation and composition, icaADBC genes detection, icaD
expression, and antibiotic susceptibility of planktonic and biofilm cells of Staphylococcus
hominis isolates from blood.

Methods

The study included 67 S. hominis blood isolates. Methicillin resistance was evaluated with

the cefoxitin disk test.mecA gene and SCCmec were detected by multiplex PCR. Genetic

relatedness was determined by pulsed-field gel electrophoresis. Biofilm formation and com-

position were evaluated by staining with crystal violet and by detachment assay, respec-

tively; and the biofilm index (BI) was determined. Detection and expression of icaADBC
genes were performed by multiplex PCR and real-time PCR, respectively. Antibiotic sus-

ceptibilities of planktonic cells (minimum inhibitory concentration, MIC) and biofilm cells

(minimum biofilm eradication concentration, MBEC) were determined by the broth dilution

method.

Results

Eighty-five percent (57/67) of isolates were methicillin resistant andmecA positive. Of the

mecA-positive isolates, 66.7% (38/57) carried a new putative SCCmec type. Four clones
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were detected, with two to five isolates each. Among all isolates, 91% (61/67) were catego-

rised as strong biofilm producers. Biofilm biomass composition was heterogeneous (poly-

saccharides, proteins and DNA). All isolates presented the icaD gene, and 6.66% (1/15)

isolates expressed icaD. This isolate presented the five genes of ica operon. Higher BI and
MBEC values than the MIC values were observed for amikacin, vancomycin, linezolid, oxa-

cillin, ciprofloxacin, and chloramphenicol.

Conclusions

S. hominis isolates were highly resistant to methicillin and other antimicrobials. Most of the

detected SCCmec types were different than those described for S. aureus. Isolates indi-
cated low clonality. The results indicate that S. hominis is a strong biofilm producer with an

extracellular matrix with similar composition of proteins, DNA and N-acetylglucosamine;

and presents high frequency and low expression of icaD gene. Biofilm production is associ-

ated with increased antibiotic resistance.

Introduction
Staphylococcus hominis, a coagulase-negative staphylococcus (CoNS) species, is an opportunis-
tic pathogen that is one of the three most common isolates found in the blood of neonates and
immunosuppressed patients.[1–3] In recent years, reports of S. hominis infection-induced bac-
teraemia, septicaemia, endophthalmitis, and endocarditis have increased in frequency.[2–7] S.
hominis infections are often highly resistant to antibiotics and thus, are difficult to treat. Resis-
tance to linezolid and vancomycin has been reported in several isolates [8–10]. Furthermore,
methicillin resistance, which is associated with themecA gene, has been found in up to 80% S.
hominis isolates [11–13]. ThemecA gene resides within a mobile genetic element called the
staphylococcal cassette chromosomemec (SCCmec)[14] that was first described in Staphylococ-
cus aureus. This element is related tomec gene complex classes A–E and ccr gene complex clas-
ses 1–8. Eleven types of SCCmec have been described (http://www.sccmec.org/Pages/SCC_
TypesEN.html); however, S. hominis is prone to carry novel SCCmec types because of the pres-
ence of high-frequency non-typeable and new combinations ofmec and ccr gene complexes.
[11, 13, 15]

Nosocomial infections by CoNS are primarily associated with the use of medical devices,
likely because of biofilm formation [16–18]. A biofilm is a community of bacteria living in an
organised structure as cellular clusters or microcolonies. The biofilm is encapsulated in a
matrix composed of an extracellular polymeric substance that is separated by open water chan-
nels. The water channels act as a primitive circulatory system to deliver nutrients and remove
metabolic waste products. The biofilm allows bacteria to adhere to inert materials and to expe-
rience increased antibiotic resistance.[19, 20] Several CoNS species are more resistant to antibi-
otics when in a biofilm than when they exist as free-swimming planktonic cells. Therefore,
because they were designed for planktonic cells, antibiotic treatments based on the protocols
provided by the Clinical and Laboratory Standards Institute (CLSI) may fail to clear biofilm-
related CoNS infections.[21]

A recent study described S. hominis biofilm production, their architecture and icaADBC fre-
quency. [22] However, compared to other CoNS species, S. hominis is not categorised as a
strong biofilm producer. Moreover, little information is available regarding the antibiotic
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susceptibility of S. hominis cells in a biofilm. Therefore, we aimed to characterise the SCCmec
type, genetic relatedness, and ability to form biofilms for 67 clinical isolates of S. hominis
obtained from blood cultures. The antibiotic susceptibilities of planktonic and biofilm cells of
these strains were also compared.

Materials and Methods

Ethics statement
This study was performed with approval from the Ethics Committee of the School of Medicine
of the Universidad Autónoma de Nuevo León (approval no. GA14-009). Because patient infor-
mation was anonymized, only microbiological data were analysed. Therefore, the local ethics
committee did not require informed consent.

Clinical isolates
From January 2006 to December 2014, a total of 67 S. hominis clinical isolates from blood cul-
tures were collected from two hospitals in Mexico: Hospital Civil Fray Antonio Alcalde (Gua-
dalajara, Jalisco) and Hospital Universitario Dr José Eleuterio González (Monterrey, Nuevo
León). All isolates were causative agents of laboratory-confirmed bloodstream infection
according to criteria of the US Centers for Disease Control (http://www.cdc.gov/nhsn/pdfs/
pscmanual/17pscnosinfdef_current.pdf). Isolates were kept at -70°C in Brucella broth contain-
ing 15% glycerol. Only one isolate per patient was used in the study.

Isolate identification
Isolates were identified at the species level by API Staph Galleries (bioMérieux, Inc., Durham,
NC, USA), according to the manufacturer’s instructions. Species identification was confirmed
by partial sequencing of the 16S rRNA, as previously described.[23] Sequencing was performed
at the Instituto de Biotecnología, Universidad Nacional Autónoma de México. DNA sequences
were compared to genes in the US National Center for Biotechnology Information (NCBI)
GenBank by using the BLAST algorithm (http://www.ncbi.nlm.nih.gov/BLAST).

Methicillin resistance, SCCmec typing, and genetic relatedness
Methicillin resistance was evaluated by the cefoxitin disk test. ThemecA gene was detected by
polymerase chain reaction (PCR).[24] In the cefoxitin disk assay, results under 24 mm indi-
cated resistant isolates, and results of 25 mm or greater indicated susceptible isolates.[25]

Identification of the SCCmec element type, according to the ccr class (AB1, AB2, AB3, or C)
andmec class (A, B, or C), was performed as previously described.[24, 26] The ccrAB4 type was
determined by the method used by Oliveira et al.[27] with the modifications proposed by
Zhang et al.[12] All SCCmec typing experiments were performed in duplicate. SCCmec was
considered ‘non-typeable’ when the ccr and/or themec complex did not amplify by PCR with
any of the primer pairs. SCCmec was classified as ‘new’ when isolates contained a different
combination of ccr andmec complexes as those previously reported for S. aureus by the Inter-
national Working Group on the Classification of Staphylococcal Cassette Chromosome Ele-
ments (http://www.sccmec.org/).

Pulsed-field gel electrophoresis was performed as described for S. aureus [28], including
modifications in the restriction enzyme and running conditions as described by Bouchami
et al.[11] Specifically, isolate samples were digested with XhoI, and bands were separated by a
CHEF-DRIII instrument (Bio-Rad Laboratories). Banding patterns were analysed visually by
counting the bands using Labworks 4.5 software with 1% tolerance and 0.5 optimization
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settings. Similarity coefficients were generated from a similarity matrix, which was calculated
with the Jaccard coefficient in the SPSS 22.0 software package. To define a clone two criterion
previously described were used: a similarity cut-off of 80% [29] and a difference of� six bands
[30].

Phenotypic biofilm assay
Semi-quantitative determination of biofilm formation was performed in duplicate by crystal
violet staining as previously described [18, 31], with modifications to the normalisation
approaches that compensate for growth rate differences [32, 33]. All isolates were tested in qua-
druplicate in two independent experiments. Polystyrene, 96-well, flat-bottom, non-treated
plates with a low-evaporation lid were used for this assay.

The cut-offs proposed by Christensen et al. were used to classify the level of biofilm produc-
tion [18]. Isolates with an OD of 0.25 or greater were considered to be strong biofilm produc-
ers, whereas isolates with ODs between 0.12 and 0.24 were considered to be weak biofilm
producers. For quantitative analysis, the biofilm index (BI) was determined. For each experi-
ment, the OD600 measurement for all cells (biofilm + planktonic cells OD600) was divided by
the mean biofilm OD570 measurement of three wells per isolate: BI = total cells OD600 / biofilm
density OD570. Staphylococcus saprophyticus ATCC 15305 (biofilm producer and ica operon-
negative), Staphylococcus epidermidis ATCC 35984 (biofilm producer and ica operon-positive
and S. hominis ATCC 27844 (biofilm non-producer and ica operon-negative) were used as
control organisms.

Biofilm detachment assays
Detachment assays were performed using sodiummeta-periodate (NaIO4) to degrade β-
1,6-linked polysaccharides, proteinase K to degrade proteins and DNase I to degrade DNA as
described previously. [16] Briefly, each mature biofilms cultivated in tryptic soy broth with glu-
cose 1% (TSBglu1%) were washed three times with PBS and were treated with (a) 40 mM NaIO4

in double-distilled H2O, (b) 0.1 mg/mL proteinase K (BIO-37037; Bioline) in 20 mM Tris-HCl
(pH 7.5) with 100 mMNaCl or (c) 0.5 mg/ml DNase I (DN25; Sigma) in 5 mMMgCl2 for 24 h
at 37°C. After, the biofilms were stained with crystal violet as described above. [18] Three
wells containing uninoculated TSBglu1% served as sterility control son each plate; the OD of
these wells was used as spectrophotometric blanks. For each parallel run, the highest and the
lowest OD values were removed to exclude outliers, and the remaining values were averaged.
Percent detachment was calculated by the average difference between the treated wells and the
untreated wells. The detachment results were classified as no detachment (<10%), intermedi-
ate detachment (10 to 50%), moderately strong (51–75%), and strong detachment (>75%) All
isolates were tested in three parallel runs Staphylococcus epidermidis ATCC 35984 was included
as a control (PIA as most abundant component).

icaADBC operon detection and expression of the icaD
The icaA, icaD, icaB, icaC and icaR genes were detected by multiplex PCR.[34]. The icaD gene
expression was detected in 15 selected isolates. Staphylococcus hominis cells were cultured in
the same conditions used for biofilm formation (TSB1% at 37°C) and harvested at mid-log
phase (16 h). RNA was extracted using the High Pure RNA Isolation Kit (Roche, CA, USA) fol-
lowing the manufacturer’s instructions. The cDNA synthesis was performed using Transcrip-
tor First Strand cDNA Synthesis Kit (Roche, CA, USA). Real-time PCR was performed using
iQ SYBR Green Supermix with the primers previously reported [34] and the PCR conditions
reported by Ciu et al [35]. tuf gene was used as internal control for normalization gene for
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expression of icaD. Amplification of icaD and tuf genes was detected by the presence of prod-
ucts of Tm of 81.12 and 72.14 in the melting curve, respectively. Amplification was confirmed
by the presence of the corresponding PCR products on 2% agarose gel. icaD gene was consid-
ered as up-regulated if there was a relative change in expression higher than two (21) than the
tuf gene.

Minimal inhibitory concentration (MIC)
Susceptibility testing was performed by using the broth microdilution method, as recom-
mended by the CLSI.[25] The tested antibiotics included erythromycin, trimethoprim, amika-
cin, vancomycin, linezolid, oxacillin, ciprofloxacin, and chloramphenicol (Sigma Aldrich,
Toluca, Mexico).

Minimum biofilm eradication concentration (MBEC)
The assay reported by Ceri, H et al.[36] was used to determine the antibiotic susceptibility of
biofilm cells. Bacterial biofilms were grown on polystyrene pegs in the Calgary Biofilm Device
by utilising a microtitre plate (the MBEC™-Physiology and Genetics assay, Innovotech, Edmon-
ton, AB, Canada), and following the manufacturer’s instructions. To begin, a bacterial inoculum
of 1.0 McFarland and diluted 1:50 (~ 108 CFU/mL) into TSBglu1%. To establish biofilm, 100 μL
of the inoculum was added to each well of a 96-well microtiter plate. The peg lid was then fitted
inside of this and the assembled device was placed on a gyrorotary shaker at ~150 revolutions
per minute (rpm) in a humidified incubator for 18–24 h at 35°C. After incubation, pegs lid were
rinsed twice with 100 μL PBS per peg to remove non-adherent cells and transfer the peg lid a
new microtiter plate with 100 μL of twofold serial dilutions of antibiotics ranging from 1024 μg/
mL to 0.06 μg/mL, in Müeller-Hinton broth (MHB) andMHB 1% NaCl (for oxacillin). Microti-
ter plates were then incubated at 35°C for 18 or 24 h, depending on the antibiotics tested. After
antibiotic exposure, the peg lid was removed and rinsed twice with PBS and the biofilm dis-
rupted by sonication for 8 s at 10% of the maximum amplitude (Branson 5800 Ultrasonic
Cleaner) into MHB (recovery plate). The recovery plate was incubated for 24 h at 35°C. It was
visually checked for turbidity in the wells and the MBEC was defined as minimum concentra-
tion of antimicrobial that eradicates the biofilm. Clear wells are evidence of eradication.

For the data analysis, it was considered as a difference significant when the isolates showed
an increase> 2 fold for amikacin, ciprofloxacin, erythromycin, linezolid, oxacillin and trimeth-
oprim, and an increase of> 3 fold for chloramphenicol in MBEC compared to MIC. This was
established according at acceptable range of MIC for antibiotic quality control for Staphylococ-
cus aureus ATCC 25913.

The MIC and MBEC were measured on three different occasions. In the case of non-con-
cordance of the results, a fourth test was performed

Statistical analysis
Analysis of variance (ANOVA) tests with the post-hoc Sidak correction were used to compare
differences between MBEC, MIC, and BI values and averages (SPSS 20.0 software). A p-value
of 0.05 or less was considered statistically significant.

Results

Methicillin resistance, SCCmec typing, and genetic relatedness
The cefoxitin disk test revealed that 85% (57/67) of isolates were resistant to methicillin and
that all of these isolates tested positive for themecA gene. Of the 57mecA-positive isolates,
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66.7% (38/57) had a new SCCmec complex. Of these isolates carrying new SSCmec complexes,
32 amplifiedmec complex A and ccrAB1 (New1), four isolates carriedmec complex A, ccrAB1,
and ccrC (New2), one isolate hadmec complex A and ccrC (New3), and one isolate hadmec
complex A, ccrAB4, and ccrC (New4). Isolates with non-typeable SCCmec complexes repre-
sented 24.6% of the total (14/57). Of these, ten isolates had onlymec class A (NT1) and four
isolates did not have ccr ormec (NT2). Only 8.8% (5/57) of isolates carried a typeable SCCmec
complex: three had type I, one had type III, and one had type VI SCCmec complexes.

Pulsed-field gel electrophoresis of S. hominis isolates revealed 62 different restriction pat-
terns that had at least three band differences between each pattern. Four clones were detected
(Fig 1). Clone A was represented by five isolates that were all recovered in November 2013
from the paediatric intensive care unit of Hospital Civil in Guadalajara, Mexico. Two isolates
represented clones B, C, and D; each clone was isolated in the same month and from the same
area and hospital.

Biofilm formation and icaADBC operon
Of the 67 S. hominis isolates, 91% were categorised as strong biofilm producers as defined by
the cut-off values proposed by Christensen et al.[18] Five isolates (7.5%) were identified as
weak biofilm producers and three isolates (1.5%) as non-producers. The average BI values were
0.181, 0.360, and 2.542 for non-weak, and strong biofilm production, respectively. NaIO4, pro-
teinase K and DNase showed a similar effect on reduction biofilm biomass (Figs 1 and 2). The
icaD gene was detected in all isolates (100%) and four (7.5%) isolates harboured all five ica
genes. Expression of icaD gene was performed in 15 strong biofilm producers icaD positive iso-
lates, from which, only 1/15 (6.66%) isolate (NL14-639) expressed icaD. This isolate expressed
icaDmore than two times than tuf gene that was used as internal control for normalization
and presented the five genes of ica operon. We did not find an association between clone type
and biofilm production, as all clones were strong biofilm producers (Fig 1).

MIC and MBEC
For almost all antibiotics tested, the resistance rate was significantly higher for biofilm cells
than for planktonic cells (Table 1). The minimum concentrations that eradicated the biofilms
of 50% and 90% of isolates (MBEC50 and MBEC90, respectively) were more than two-fold
higher than the minimal concentrations that inhibited 50% and 90% of isolates in planktonic
form (MIC50 and MIC90, respectively) for erythromycin, trimethoprim, amikacin, and vanco-
mycin. This difference was also observed for oxacillin and ciprofloxacin, but only for MBEC50

compared to MIC50. For linezolid, the MBEC90 value was two-fold higher than the MIC90

value. We did not observe a significant difference between the MBEC and MIC values for
chloramphenicol; however, the chloramphenicol resistance rate of biofilm cells was still two-
fold higher than the resistance rate of planktonic cells. None of the 67 isolates tested in this
study were resistant to vancomycin or linezolid as planktonic cells. However, 4.5% of isolates
showed intermediate MIC values for vancomycin as biofilm cells, and 6% of the isolates were
resistant to linezolid as biofilm cells.

Antibiotic susceptibility and biofilm index
We observed higher BI and MBEC values compared to the MIC values for the following antibi-
otics: amikacin (p< 0.0001), vancomycin (p< 0.0001), linezolid (p< 0.0001), oxacillin
(p< 0.0001), ciprofloxacin (p = 0.0005), and chloramphenicol (p< 0.0001) (Fig 3). This analy-
sis was not determined for erythromycin and trimethoprim because several isolates had values
above the upper limit of detection (>1024 mg/L) in both planktonic and biofilm cells.
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Fig 1. Pulsed-field gel electrophoresis dendrogram and biofilm production of S. hominis isolates.
1Biofilm production level: OD <0.12 negative, 0.12–0.24 weak and >0.25 strong. Neg: negative. 2All: positive
for icaR, icaA, icaD, icaB, and icaC. 3ND non-determinate. 4Similarity coefficients were generated from a
similarity matrix calculated with the Jaccard coefficient using SPSS 22.0 software.

doi:10.1371/journal.pone.0144684.g001
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Fig 2. Biofilm detachment with NaIO4, proteinase K and DNase. Biofilm detachment level of 64 biofilm producers S. hominis isolates after treatment with
NaIO4, proteinase K and DNase.

doi:10.1371/journal.pone.0144684.g002

Table 1. Antibiotic resistance of biofilm and planktonic cells of the isolates.

(mg/L)b

Antibiotic a Cells MIC50 MBEC50 MIC90 MBEC90 %R (n)c %S (n)c

ERY Planktonic 256 512 77.6 (52) 23.4 (15)

Biofilm > 1024 > 1024 88.1 (59) 11.9 (8)

TMP Planktonic 64 256 79.1 (53) 20.9 (14)

Biofilm 512 > 1024 82.1 (55) 17.9 (12)

AMK Planktonic 1 2 3 (2) 97 (65)

Biofilm 4 16 9 (6) 91 (61)

VAN Planktonic 0.5 1 0 (0) 100 (67)

Biofilm 2 4 4.5 (3)* 95.5 (64)

LZD Planktonic 1 1 0 (0) 100 (67)

Biofilm 2 4 6 (4) 94 (63)

OXA Planktonic 2 256 85 (57) 15 (10)

Biofilm 8 512 92.5 (62) 7.5 (5)

CIP Planktonic 8 64 58.2 (39) 41.8 (28)

Biofilm 32 128 62.7 (42) 37.3 (25)

CHL Planktonic 8 64 22.4 (15) 77.6 (52)

Biofilm 8 128 44.8 (30) 55.2 (37)

aERY: erythromycin; TMP: trimethoprim; AMK: amikacin; VAN: vancomycin; LZD: linezolid; OXA: oxacillin; CIP: ciprofloxacin; CHL: chloramphenicol.
bMIC50 and MIC90: minimal concentrations that inhibit 50% and 90% of isolates, respectively (planktonic cells). MBEC50 and MBEC90: minimum

concentrations that eradicate the biofilm of 50% and 90% of isolates, respectively. Values in bold indicate a significant difference in MICs and MBECs

between planktonic and biofilm cells;
c %R and %S: percentage of isolates resistant and susceptible, respectively. This classification was according to cut-offs of proposed by the CLSI.

*Value intermediate.

doi:10.1371/journal.pone.0144684.t001
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Determinations at higher concentrations could not be performed because the antibiotic
does not dilute at such concentration; therefore, we could not analyse the difference between
MBEC and MIC values for these antibiotics.

Discussion
Understanding the relative pathogenicity and virulence of S. hominis is crucial, in light of the
recent increase antibiotic-resistant S. hominis infections, particularly those resistant to vanco-
mycin and linezolid and those carrying the SCCmec gene.[10, 37] Recent phenotypic and
molecular characterisations of S. hominis clinical isolates have found that S. hominis has low
clonality, high methicillin resistance, and variable biofilm production. These studies have
shown that S. hominis isolates frequently carry themecA gene (likely as new SCCmec complex
types), with a high prevalence of the icaADBC gene.[11–13, 22, 38] Herein, we have demon-
strated that clinical isolates of S. hominis are less susceptible to antibiotics as biofilm cells.

Some studies have shown that production of biofilm in S. hominis is likely ica-independent,
such as has been reported for S. epidermidis, S. haemolyticus, S. aureus and S. lugdunensis. [16,
22, 39–41]. The S. hominis isolates included in this study were strong biofilm producers, had a
high frequency of the icaD gene and a low expression of this gene (6.66%). Has been proposed
that icaD has co-expression with the icaA gene, which is responsible for polysaccharide synthe-
sis by the production of N-acetylglucosamine oligomers and complete transferring the growing
sugar chain to the cell surface. [35, 42] In this study, the icaD expression was demonstrated
only in one isolate and NaIO4, proteinase K and DNase showed similar effect on reduction

Fig 3. Increase BI mean and correlation with the differences in values observed betweenMIC and MBEC for all 67 isolates: no difference, one-fold
increase, two-fold increase, three-fold increase. *Indicates a correlation between increases in antibiotic resistance (between MBEC and MIC) and BI
mean. p < 0.05 by both ANOVA and Chi-square tests.

doi:10.1371/journal.pone.0144684.g003
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biofilm biomass (Fig 2). Therefore, the N-acetylglucosamine is not the major component, but
one of the components of biofilm in S. hominis.

Biofilm production is an important virulence factor because biofilms facilitate bacterial
adherence to biomedical surfaces (e.g. catheters, prosthetics, and cardiac valves) and entrance
into the bloodstream.[19] Notably, this species has not previously been categorised as a major
biofilm producer. Two previous studies reported that less than half of the S. hominis isolates
were biofilm producers, or that the isolates were weak biofilm producers. However, these
studies were performed on isolates obtained from surgical wounds, blood, catheters, or cere-
brospinal fluid.[17, 22, 43] The discrepancy in the ability of these isolates to produce biofilm
compared to the isolates we examined may be explained by the origin of the specimens used.
Our strains were causative agents of laboratory-confirmed bloodstream infections and exclu-
sively isolated from blood; therefore, these strains likely produced biofilm as a way to get into
the bloodstream.

We observed differences in susceptibility between planktonic and biofilm cells for all antibi-
otics tested. Overall, isolates were more resistant to antibiotics as biofilms (Table 1). Cells may
be more resistant to antibiotics as biofilms because they have reduced metabolic and growth
rates (particularly cells deep within the biofilm), or because the biofilm matrix may adsorb or
react with the antibiotics, thereby reducing the amount of antibiotics available to interact with
cells in the biofilm. Another possibility is that the biofilm cells may have antibiotic tolerance.
As a result of these factors, cells in the biofilm may be physiologically distinct from planktonic
cells and, thus, express specific protective factors.[19, 20]

Antibiotic treatment protocols based on standard in vitro susceptibility tests designed for
planktonic bacteria may fail to eradicate biofilm-producing S. hominis infections. This possibil-
ity is particularly concerning for monotherapies with vancomycin or linezolid, antibiotics to
which S. hominis biofilms were remarkably resistant. Given these data, it may be more useful to
base S. hominis treatment protocols on in vitro antibiotic susceptibility tests on biofilm cells.
Our results are in agreement with reports on other CoNS species.[21] Caution should be
taken before extrapolating these results to all CoNS species because of the high phenotypic and
genetic variability in this species.

The BI value was associated with differences between the MBEC and MIC values. For exam-
ple, with increasing BI values, we saw increasing differences between the MBEC and MIC val-
ues (Fig 3). This result suggests that the level of biofilm production may be proportional to the
increase in antibiotic resistance. However, this possibility should be verified with more assays
evaluating the biofilm structure and composition.

Planktonic cells were highly resistant to erythromycin, trimethoprim, oxacillin, and cipro-
floxacin. Methicillin resistance andmecA gene frequency were also high (85%). Most isolates
carried a non-typeable SCCmec complex, with a high percentage containing bothmec complex
A and ccrAB1. These results have been previously reported; however, it is important to con-
tinue monitoring the SCCmec complex in S. hominis, which often carries novel SCCmec types.
[11–13] In this study, we detected a clone of 5 isolates that was strong biofilm producer, and
isolates were collected from the paediatric intensive care unit. Several outbreaks of bloodstream
infections among neonates and adults have been attributed to S. hominis subsp. novobiosepti-
cus, which may account for the dissemination of these clones in the hospital environment.
Additionally, S. hominis colonisation is frequently detected on the hands of nurses with skin
lesions.[3, 44]

In conclusion, the S. hominis isolates analysed in this study were highly resistant to methicil-
lin and other antimicrobials. Most of the SCCmec types detected were different from those
described for S. aureus. We detected four clones, but in general, the isolates showed low
clonality. The results of this study indicate that S. hominis is strong biofilm producer with an
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extracellular matrix with similar composition of proteins, DNA and N-acetylglucosamine. In
addition, this species presents a high frequency of icaD gene and low expression of icaD. The
biofilm production level is associated with antibiotic resistance.
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