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ABSTRACT 
Tinctoporellus epimiltinus is widely known as a wood-decaying fungus. In the present study, we identi-
fied the complete mitochondrial genome of this species using next-generation sequencing technology. 
Our findings revealed that the genomic structure is a circular molecule with a size of 51,878 bp. 
Consistent with most Basidiomycota species, it consists of 14 core protein-coding genes, one ribosomal 
protein gene (rps3), 26 transfer RNA genes, and small and large ribosomal RNA (rns and rnl) genes. 
Seven additional open reading frames were identified. These included two sequences similar to DNA 
polymerases, an endonuclease-like sequence, and four hypothetical proteins. The mitochondrial gen-
ome exhibited a nucleotide composition of A (36.24%), C (12.04%), G (13.18%), and T (38.55%), result-
ing in a 25.21% GC content. A phylogenetic tree constructed using the combined mitochondrial gene 
dataset provided insight into the phylogenetic relationships of this species within the context of 
Basidiomycota and its members.
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Introduction 

Tinctoporellus epimiltinus, a species primarily distributed across 
the pantropical regions (Yuan and Wan 2012), was initially 
identified as Polyporus epimiltinus by Berkeley and Broome in 
1873. In 1979, Ryvarden proposed the monospecific genus 
Tinctoporellus, designating T. epimiltinus as the type species. 
Since then, this nomenclature has been widely used. T. epimil-
tinus is a well-known wood-decaying fungus characterized by 
white rot and a reddish zone-line appearance (Kubayashi et al. 
2001). Alongside T. epimiltinus, the introduction of additional 
species has expanded the genus Tinctoporellus. In addition, a 
recent phylogenetic analysis revealed that the type species of 
Tinctoporellus is nested within the same clade as Porogramme, 
and Tinctoporellus is considered a synonym for Porogramme 
(Mao et al. 2023). In terms of biotechnological applications, 
T. epimiltinus has shown potential for decolorizing industrial 
textile effluents (Sanchez-Lopez et al. 2008). Despite these 
advancements, molecular research on Tinctoporellus remains in 
the early stages of development. Although the draft genome 
of T. epimiltinus has been reported (Subramaniam et al. 2019), 
the complete mitochondrial genome of this genus has not 
been sequenced. Mitochondria play a pivotal role in the 
growth and development of fungi (Basse 2010) and serve as 
valuable genetic markers (Dong et al. 2021). This study 
presents the first report of the mitochondrial genome of T. epi-
miltinus and contributes to a deeper understanding of the 
genetics of this species.

Materials

The fungal specimen designated T. epimiltinus strain RS1 
(Figure 1) was isolated using fungal colony purification techni-
ques. It grew alongside colonies of Trichoderma spp. in a mixed 
culture plate. Originally sourced from soil samples from an oil 
palm plantation in Lahad Datu, Sabah, Malaysian Borneo 

Figure 1. The sample of T. epimiltinus strain RS1 which was grown on potato 
dextrose agar (PDA) plate. The photograph, taken by Ranjita Subramaniam, 
depicts the stage where the mat is predominantly white, transitioning to light 
orange and vinaceous at the margins in an irregular pattern.
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(N5.0608, E118.9198), the specimen was cultured in pure form. 
The isolate was deposited in the Biotechnology Research 
Institute collection repository, Universiti Malaysia Sabah (www. 
ums.edu.my/ipbv2; Vijay Kumar is the contact person: vijay@ 
ums.edu.my) under the voucher number UMS/BRI/TE-RS1/ 
2019.

Methods

Genomic DNA extracted using a modified cetyltrimethylam-
monium bromide (CTAB) method was converted into a 
sequencing-ready library and subsequently sequenced on an 
Illumina MiSeq platform with 150-bp paired-end reads 
(Subramaniam et al. 2019). To ensure robust mitogenome 
validation, two independent approaches were employed for 
mitochondrial DNA assembly. In the first method, raw reads 
were subjected to adapter removal via Trimmomatic-0.33 
(Bolger et al. 2014). NOVOPlasty version 4.3.3 (Dierckxsens 

et al. 2017) was then used to assemble the mitochondrial 
genome of T. epimiltinus using Trametes cingulata (NCBI 
accession no. NC_013933.1) as the seed sequence. To assess 
the depth coverage, Python scripts outlined by Ni et al. 
(2023) were employed. In the second approach, the CLC 
Genomic Workbench version 6.5.1 (CLC, Inc., Aarhus, 
Denmark) was used for assembly, producing a nuclear gen-
ome (previously reported by Subramaniam et al. 2019) along 
with a single mitogenome contig. The circularity of the mito-
genome was confirmed by Sanger sequencing of the region 
connecting both ends of the contig. The supplementary 
material includes a list of primers (Supplementary Table S1) 
used for PCR amplification and Sanger sequencing, the gen-
erated Sanger sequences (Supplementary Figure S1), and the 
alignment of the Sanger sequences to the mitochondrial con-
tig (Supplementary Figure S2). Finally, contigs from both 
approaches with different start and end points were com-
pared using a BLASTn pairwise alignment, which revealed 

Figure 2. The circular map of the mitogenome of T. epimiltinus strain RS1, prepared using OGDRAW program version 1.3.1 (Greiner et al. 2019) (https://chlorobox. 
mpimp-golm.mpg.de/OGDraw.html). Genes located on the clockwise strand are depicted outside the circle, while genes on the anti-clockwise strand are shown 
inside. GC and AT contents across the genome are shown with dark and light shading, respectively.
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identical lengths and sequences. Gene annotation was per-
formed on the NOVOPlasty-derived contig using Mfannot 
(https://megasun.bch.umontreal.ca/apps/mfannot/). The pres-
ence of introns has been verified by Rnaweasel (https://meg-
asun.bch.umontreal.ca/apps/rnaweasel/). The exon–intron 
boundaries of protein-coding genes (PCGs) were manually 
refined using annotated reference sequences of Trametes cin-
gulata and compared with species from NCBI BlastP searches. 

Transfer RNA (tRNA) genes were annotated using tRNAscan- 
SE 2.0 (Lowe and Chan 2016) (http://lowelab.ucsc.edu/ 
tRNAscan-SE/). Gene structures containing introns were 
visualized using PMGmap (http://www.1kmpg.cn/pmgmap) 
(Zhang et al. 2024). Based on 14 PCGs from T. epimiltinus and 
other members of Basidiomycota, a maximum likelihood 
phylogeny was inferred using MegaX version 10.2.6 (Kumar 

Figure 3. Phylogenetic tree of T. epimiltinus strain RS1 and related taxa based on maximum likelihood method using concatenated amino acid sequences of 14 
core protein-coding genes, including atp6, atp8, atp9, cob, cox1, cox2, cox3, nad1, nad2, nad3, nad4, nad4l, nad5, and nad6. Neurospora crassa was used as an out-
group. The bootstrap values are indicated at each node. GenBank accession numbers are displayed in brackets. The following species are included: Tinctoporellus 
epimiltinus (this study), Ganoderma lucidum (Li et al. 2013), Ganoderma sinense (unpublished), Trametes cingulata (Haridas and Gantt 2010), Trametes coccinea (Chen 
et al. 2021), Taiwanofungus camphoratus (Wang et al. 2020), Fomitopsis palustris (Tanaka et al. 2017), Phanerochaete carnosa (Wang et al. 2020), Phlebia radiata 
(Salavirta et al. 2014), Thelephora aurantiotincta (Chen et al. 2021), Polyozellus multiplex (Liu et al. 2022), Lactarius deliciosus (Li et al. 2019), Lactifluus hygrophoroides 
(Li et al. 2019), Russula abietina (Li et al. 2018), Moniliophthora roreri (Costa et al. 2012), Moniliophthora perniciosa (Formighieri et al. 2008), Lentinula edodes (Song 
et al. 2019), Cyathus jiayuguanensis 765 (Li et al. 2023), Cyathus striatus 87405 (Li et al. 2023), Cyathus striatus AH44044 (Li et al. 2023), Cyathus stercoreus NPCB004 
(Li et al. 2023), Cyathus pallidus QL1 (Li et al. 2023), Neurospora crassa (Monteiro et al. 2021).
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et al. 2018), with the substitution model LGþG þ F and 
1000 bootstrap replications.

Results

The complete mitochondrial genome sequence of T. epimilti-
nus strain RS1 has a total length of 51,878 bp with an aver-
age coverage of 3895.54 � (Supplementary Figure S3). The 
nucleotide composition was 36.24% A, 12.04% C, 13.18% G, 
and 38.55% T, with a GC content of 25.21%. The genome has 
been validated to be circular in structure and consists of 14 
core PCGs associated with respiratory chain complexes (atp6, 
atp8, atp9, cob, cox1, cox2, cox3, nad1, nad2, nad3, nad4, 
nad4l, nad5, and nad6), one ribosomal protein gene (rps3), 26 
tRNA genes, and two rRNA genes (rns and rnl). The gene 
map is shown in Figure 2. Notably, LAGLIDADG endonuclease 
sequences were detected in the intronic regions of cox1 
(orf299 and orf268) and rnl (orf233). The structures of the cis- 
spliced introns are shown in Supplementary Figure S4. An 
overlapping region (one base pair) was detected between 
nad4l and nad5 (1 bp). Additionally, seven open reading 
frames (ORFs) were identified, including two similar to DNA 
polymerase genes (orf916 and orf522), one free-standing 
LAGLIDADG endonuclease sequence (orf168), and four others 
that encode hypothetical proteins (orf102, orf113, orf150, and 
orf114). All mitogenomic genes were positioned on the plus 
strand, except for orf522 and tRNA-Trp. Fourteen PCGs and 
rps3 were initiated with the start codon ATG, whereas the 
stop codons were either TAA (8 out of 15 genes) or TAG 
(7 out of 15 genes). Furthermore, phylogenetic analysis 
placed T. epimiltinus within the order Polyporales, exhibiting 
close relationships with members such as Ganoderma and 
Trametes (Figure 3), thus providing valuable insights into its 
evolutionary context.

Discussion and conclusion

In this study, we successfully sequenced and assembled the 
complete mitochondrial genome of T. epimiltinus strain RS1. 
The consistent lengths and sequences of the mitogenome 
obtained from the two different assembly approaches vali-
dated the accuracy of the genome. The identification of 14 
core PCGs, along with the rps3 protein gene, aligned 
with the typical genetic composition of members of 
Basidiomycota. Intriguingly, we also discovered intronic 
regions among the genes cox1 and rnl that housed endo-
nuclease-like sequences, whereas others remained intronless. 
Endonuclease-like sequences within introns imply a mechan-
ism for the variable mitochondrial genome sizes (Haridas and 
Gantt 2010). The mitogenome of T. epimiltinus also exhibits 
an overlapping region between two genes (nad4l and nad5); 
this phenomenon is not unique to Tinctoporellus, as it has 
been observed in several fungal mitochondrial genomes 
(Cai and Scofield 2020; Li et al. 2020). Overlap between genes 
has been proposed to potentially extend genetic information 
within a restricted genome size (Sun et al. 2020). The phyl-
ogeny also highlighted T. epimiltinus’ relationship with other 
members of Basidiomycota, particularly its clustering among 

Polyporales. Notably, T. epimiltinus shares a close relationship 
with Ganoderma and Trametes. The insights gained from this 
study offer initial perspectives on the mitochondrial genetics 
of Tinctoporellus, and provide valuable information for future 
research on this genus.
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