Chunling Hu Holly LaDuca

Hermela Shimelis
Eric C. Polley
Jenna Lilyquist
Steven N. Hart
Jie Na
Abigail Thomas
Kun Y. Lee
Brigette Tippin Davis
Mary Helen Black
Tina Pesaran
David E. Goldgar
Jill S. Dolinsky
Fergus J. Couch

Author affiliations and support information (if applicable) appear at the end of this article.
C.H. and H.L. are joint first authors who contributed equally to the preparation of the manuscript.
Corresponding author:
Fergus J. Couch, PhD, Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First St SW, Rochester, MN 55905; e-mail: couch. fergus@mayo.edu. Licensed under the Creative Commons Attribution 4.0 License (c) (i)


#### Abstract

Purpose The relevance of inherited pathogenic mutations in cancer predisposition genes in pancreatic cancer is not well understood. We aimed to assess the characteristics of patients with pancreatic cancer referred for hereditary cancer genetic testing and to estimate the risk of pancreatic cancer associated with mutations in panel-based cancer predisposition genes in this high-risk population.


Methods Patients with pancreatic cancer ( $\mathrm{N}=1,652$ ) were identified from a $140,000-$ patient cohort undergoing multigene panel testing of predisposition genes between March 2012 and June 2016. Gene-level mutation frequencies relative to Exome Aggregation Consortium and Genome Aggregation Database reference controls were assessed.
Results The frequency of germline cancer predisposition gene mutations among patients with pancreatic cancer was $20.73 \%$. Mutations in ATM, BRCA2, CDKN2A, MSH2, MSH6, PALB2, and TP53 were associated with high pancreatic cancer risk (odds ratio, $>5$ ), and mutations in BRCA1 were associated with moderate risk (odds ratio, >2). In a logistic regression model adjusted for age at diagnosis and family history of cancer, ATM and BRCA2 mutations were associated with personal history of breast or pancreatic cancer, whereas PALB2 mutations were associated with family history of breast or pancreatic cancer.

Conclusion These findings provide insight into the spectrum of mutations expected in patients with pancreatic cancer referred for cancer predisposition testing. Mutations in eight genes confer high or moderate risk of pancreatic cancer and may prove useful for risk assessment for pancreatic and other cancers. Family and personal histories of breast cancer are strong predictors of germline mutations.
JCO Precis Oncol. © 2018 by American Society of Clinical Oncology Licensed under the Creative Commons Attribution 4.0 License

## INTRODUCTION

Pancreatic cancer (PC) is the fourth most common cause of death resulting from cancer in the United States. ${ }^{1}$ Epidemiologic studies have suggested that $10 \%$ to $20 \%$ of PCs are associated with an inherited component, with familial PC, defined as kindreds containing at least two affected first-degree relatives, as an established entity of inherited disease. ${ }^{2} \mathrm{PC}$ is a component of hereditary breast-ovarian cancer syndrome, ${ }^{3,4}$ Lynch syndrome, ${ }^{5,6}$ familial adenomatous polyposis, ${ }^{7}$ familial atypical multiple mole melanoma syndrome, ${ }^{8}$ hereditary pancreatitis, ${ }^{9}$ Peutz-Jeghers syndrome, ${ }^{10}$ and Li-Fraumeni syndrome. ${ }^{11}$ Recent studies involving familial PC kindreds have further characterized the
role of BRCA1/2, CDKN2A, ATM, and PALB2 in PC susceptibility. ${ }^{12-14}$ Until recently, germline studies of PCs have focused on single cancer predisposition genes. ${ }^{15,16}$ The first panel-based study of 13 cancer predisposition genes among patients with PC identified 11 mutations (3.8\%) in ATM, BRCA1/2, MLH1, MSH2, MSH6, and TP53, ${ }^{17}$ whereas a 22 -gene panel-based study identified $A T M, B R C A 1 / 2, C H E K 2$, and PALB2 mutations in $13 \%$ of 96 sequentially collected PCs. ${ }^{18}$ A majority of these mutations were identified in PCs with a family history of pancreatic, breast, ovarian, or colorectal cancer, suggesting that a better understanding of PC risk will depend on evaluation of families with broad constellations of tumors. ${ }^{18}$ More recently, panel-based approaches identified germline
mutations in $4 \%$ ( 33 of 854 ) of patients with apparently sporadic $\mathrm{PC}^{19}$ and in $25 \%$ (44 of 176) of patients with advanced PC. ${ }^{20}$ Here, we report results from panel-based clinical testing of 1,652 patients with PC from a large cohort of $>140,000$ patients evaluated by a single diagnostic laboratory and calculate gene-specific risks of PC by comparison with Exome Aggregation Consortium (ExAC) and Genome Aggregation Database (gnomAD) reference controls. ${ }^{21,22}$

## METHODS

## Study Population

Patients with PC ( $\mathrm{N}=1,819$ ) were identified from a large cohort of $>140,000$ patients undergoing multigene panel testing of seven to 49 cancer predisposition genes between March 2012 and June 2016 at Ambry Genetics ${ }^{23}$ (Aliso Viejo, CA; Appendix Table A1). Demographic and personal and family cancer history information was provided by the ordering clinician using test requisition forms, clinic notes, and pedigrees. Clinical histories and molecular results were reviewed and summarized. Exclusion criteria, including the presence of neuroendocrine tumors or intraductal papillary mucinous neoplasms, reduced the number of patients for analysis ( $\mathrm{N}=1,652$; Appendix). The study was approved by the Western Institutional Review Board.

## Multigene Panel Testing

Mutation testing was performed by sequencing of targeted custom capture products from several multigene panels and targeted chromosomal microarray analysis, as previously described. ${ }^{24}$ Genomic DNA was isolated from each patient's blood or saliva specimen using a standardized methodology (Qiagen, Valencia, CA). Sequence enrichment was performed by incorporating the genomic DNA into microfluidics chip or microdroplets along with primer pairs or by a bait-capture methodology using long biotinylated oligonucleotide probes (RainDance Technologies, Billerica, MA; Integrated DNA Technologies, San Diego, CA), followed by polymerase chain reaction and then next-generation sequencing analysis (Illumina, San Diego, CA) of all coding exons plus at least five bases into the $5^{\prime}$ and $3^{\prime}$ ends of all the introns and untranslated regions. A targeted chromosomal microarray was used for the detection of gross deletions and
duplications for all genes except PMS2 (Agilent, Santa Clara, CA). Gross deletion and duplication analysis of PMS2 was performed using MLPA kit \#P008-B1 (MRC-Holland, Amsterdam, the Netherlands) and Sanger sequencing. Initial data processing and base calling were performed using RTA 1.12.4 (HiSeq Control software [version 1.4.5]; Illumina). Sequence quality filtering at Q20 was executed with CASAVA software (version 1.8.2; Illumina, Hayward, CA). Sequence fragments were aligned to the reference human genome (GRCh37), and variant calls were generated using CASAVA. Mutations were annotated with the Ambry Variant Analyzer, a proprietary alignment and variant annotation software (Ambry Genetics). All mutations identified by Ambry Genetics are submitted to the ClinVar public database.

## Statistical Methods

The observed frequency of all pathogenic mutations within each gene in white patients with PC was compared with the frequency of pathogenic mutations in the ExAC non-Finnish European (NFE) non-The Cancer Genome Atlas (TCGA) reference control after data cleaning and filtering (Appendix) as previously described. ${ }^{23}$ Copy number variants in all genes and mutations in pseudogene homology regions ( $P M S 2$ exons 9 and 11 to 15) were excluded from cases and controls for risk estimation, because these alterations were not individually validated in ExAC or gnomAD controls. Established low-penetrance mutations (eg, APC p.Ile1307Lys) were excluded. Associations between combined mutations in each gene and PC were estimated by odds ratios (ORs) and corresponding 95\% CIs based on Fisher's exact test. $P$ values < .05 were considered statistically significant. Genes were categorized as high risk $(\mathrm{OR},>5.0)$, moderate risk $(\mathrm{OR}, 2.0$ to 5.0 ), or of no clinical relevance ( $\mathrm{OR},<2.0$ ). Similar studies were conducted using a combined gnomAD NFE and gnomAD Ashkenazi Jewish reference control data set, henceforth referred to as gnomAD. Although these gnomAD controls partially overlap with ExAC NFE non-TCGA controls, the substantially increased number along with updated variant calling algorithms identified gnomAD as an independent reference control data set. Sensitivity analyses for associations were performed for associations between genes and age at diagnosis; cases of PC

Table 1. Characteristics of Study Population

|  | No. (\%) |  |
| :--- | :---: | :---: |
| Characteristic | Patients of All <br> Ethnicities <br> $(\mathbf{N}=\mathbf{1 , 6 5 2})$ | White Patients <br> $(\mathbf{n}=\mathbf{1 , 2 5 6})$ |
| Sex | $688(41.6)$ | $528(42.0)$ |
| Male | $964(58.4)$ | $728(58.0)$ |
| Female |  |  |
| Ethnicity | $1,088(65.9)$ | $1,088(86.6)$ |
| White | $168(10.2)$ | $168(13.4)$ |
| Ashkenazi Jewish | $84(5.1)$ |  |
| African American/black | $46(2.8)$ |  |
| Asian | $66(4.0)$ |  |
| Hispanic | $49(3.0)$ |  |
| Mixed ethnicity | $151(9.1)$ |  |
| Other/unknown |  |  |
| Age at diagnosis of PC, years | 60.7 | 61.5 |
| Mean | $\pm 12.1$ | $\pm 11.8$ |
| SD | $13-90$ | $13-89$ |
| Range |  |  |

Family history of cancer (first- or second-degree relative)

| Pancreatic | $630(38.1)$ | $482(38.1)$ |
| :--- | :---: | :---: |
| Breast | $792(47.9)$ | $613(48.8)$ |
| Ovarian | $219(13.3)$ | $172(13.7)$ |
| Uterine/endometrial | $131(7.9)$ | $96(7.6)$ |
| Colorectal | $450(27.2)$ | $354(28.2)$ |
| Melanoma | $174(10.5)$ | $153(12.2)$ |
| FPC* | $449(27.2)$ | $342(27.2)$ |
| No family history of PC | $913(55.3)$ | $698(55.6)$ |
| Unknown | $109(6.6)$ | $76(6.1)$ |
| Personal history of cancer |  |  |
| PC as first cancer | $1,235(74.8)$ | $915(72.9)$ |
| Breast | $261(15.8)$ | $219(17.4)$ |
| Ovarian | $35(2.1)$ | $27(2.1)$ |
| Uterine/endometrial | $36(2.2)$ | $25(2.0)$ |
| Colorectal | $49(3.0)$ | $34(2.7)$ |
| Melanoma | $55(3.3)$ | $50(4.0)$ |
| No other cancer | $1,166(70.6)$ | $855(68.1)$ |
| Abbreviations: FPC, familial pancreatic cancer; PC, pancreatic cancer; SD, standard deviation. |  |  |
| *Defined as proband and at least one first-degree relative with PC. |  |  |

tested with a targeted PC panel; all races and ethnicities combined; personal history of breast cancer or melanoma; family history of PC, breast cancer, ovarian cancer, uterine or endometrial cancer, melanoma, or colorectal cancer; and mutations meeting strict PASS criteria in ExAC. ${ }^{25}$ Associations between mutations and
age at PC diagnosis were evaluated using the Kolmogorov-Smirnov test. Associations with personal and family histories of other cancers were also evaluated by logistic regression, with adjustment for family history and age at diagnosis.

## RESULTS

## Characteristics of Study Population

The phenotypic characteristics of 1,652 patients with PC of all races and ethnicities and those of 1,256 white patients are listed in Table 1. Compared with a median age at PC diagnosis of 70 years in Surveillance, Epidemiology, and End Results registries between 2010 and 2014, ${ }^{26}$ the median age at diagnosis was 63 years among patients with PC. PC was the first or only cancer diagnosed in 915 (72.9\%) white patients with PC. Pathology was reported for $16.9 \%$ of patients, with the majority reported as adenocarcinoma ( $95.7 \%$ ). Among white patients with PC, $38.1 \%$ had a first- or second-degree relative with PC, and 48.8\% had a family history of breast cancer (Table 1). Similar frequencies were observed for patients with PC of all races and ethnicities.

## Pathogenic Mutations Among Patients With PC

The combined frequency of mutations in genes from all hereditary cancer testing panels was 20.73 \% for patients with PC of any race or ethnicity and $21.12 \%$ for white patients (Appendix Table A2). ATM (3.79\%), BRCA2 (3.72\%), CHEK2 (2.31\%), PALB2 (1.89\%), and CDKN2A (1.32\%) had the highest frequencies of pathogenic mutations among white patients with PC (Appendix Table A2). In contrast, mutations in mismatch repair genes were relatively rare (MSH6 [1.01\%], MSH2 [0.25\%], MLH1 [0.08\%], and PMS2 [0.08\%]). Eight patients had more than one mutation (Appendix Table A3), including a $C D K N 2 A$ c.71G>C (p.Arg24Pro) homozygote. BRCA2 was the most frequently mutated predisposition gene (4.64\%) among patients diagnosed at age $\leq 63$ years, and ATM was most frequently mutated (4.03\%) in patients with PC diagnosed at age $>63$ years (Appendix Table A4). Only mutations in BRCA2 (median age at diagnosis, 56 years) were associated with a younger age at diagnosis compared with all patients with $\mathrm{PC}(P=.001)$.

Table 2. Comparisons of Mutation Carriers for Pancreas Panel Genes Among White Patients With PC and ExAC Controls

| Gene | Patients With PC |  |  | ExAC Controls* |  |  | Cancer Risk |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | With <br> Mutations | Tested | Carrier Frequency (\%) | With <br> Mutations | Tested | Carrier <br> Frequency (\%) | OR | 95\% CI | $P$ |
| ATM | 41 | 1,213 | 3.38 | 102 | 26,644 | 0.38 | 8.96 | 6.12 to 12.98 | <. 001 |
| BRCA1 | 11 | 1,184 | 0.93 | 85 | 26,911 | 0.32 | 2.95 | 1.49 to 5.60 | . 002 |
| BRCA2 | 43 | 1,184 | 3.63 | 109 | 26,791 | 0.41 | 9.07 | 6.33 to 12.98 | <. 001 |
| CDKN2A | 14 | 1,057 | 1.32 | 9 | 24,312 | 0.04 | 35.97 | 14.68 to 85.93 | <.001 |
| CHEK2 | 12 | 563 | 2.13 | 260 | 25,215 | 1.03 | 2.08 | 1.15 to 3.67 | . 02 |
| MSH2 | 2 | 1,190 | 0.17 | 6 | 25,329 | 0.02 | 7.10 | 1.04 to 37.16 | . 047 |
| MSH6 | 12 | 1,190 | 1.01 | 34 | 26,151 | 0.13 | 7.79 | 3.85 to 15.16 | <. 001 |
| PALB2 | 20 | 1,217 | 1.64 | 30 | 26,869 | 0.11 | 14.82 | 8.12 to 26.22 | <.001 |
| TP53 | 6 | 1,252 | 0.48 | 18 | 26,789 | 0.07 | 7.15 | 2.78 to 18.13 | < . 001 |

Abbreviations: ExAC, Exome Aggregation Consortium; OR, odds ratio; PC, pancreatic cancer.
*ExAC controls were restricted to non-Finnish Europeans and also excluded The Cancer Genome Atlas patient cases.

Associations Between Pathogenic Mutations and PC

Mutations in ATM, BRCA2, CDKN2A, MSH2, MSH6, PALB2, and TP53 were significantly associated with high risk of $\mathrm{PC}(\mathrm{OR},>5)$, whereas deleterious mutations in CHEK2 and BRCA1 were associated with moderate risk (OR, > 2; Table 2). Results for all panel genes are listed in Appendix Table A5. Association analyses using gnomAD reference controls confirmed all significant associations, and gene-specific risk estimates were highly similar, except for slightly attenuated risk for PALB2 mutations and increased risk for TP53 (Appendix Table A6).

The same genes were associated with increased PC risk when considering patients of all races and ethnicities compared with ExAC all race and ethnicity controls (Appendix Table A7) and after excluding those who had previously tested negative for BRCA1/2 mutations before panel testing (Appendix Table A8). Risk estimates for most genes were slightly diminished when including only those patients with PC for whom PC was the first cancer diagnosis, although $M S H 2$ and TP53 mutations were no longer significantly associated with moderate risk of PC because of the decreased number of mutations in patients with PC, and the modest OR associated with CHEK2 was marginally significant (Appendix Table A9). In contrast, analyses using only ExAC NFE non-TCGA variants in the high-quality PASS category marginally increased the ORs for each gene (Appendix Table A10). Sensitivity
analyses were also performed after excluding patients with PC with a family history of breast, ovarian, endometrial, colorectal, melanoma, or pancreatic cancer (Appendix Tables A11 to A16, respectively).

## Characteristics of PCs With Mutations in PC Predisposition Genes

The frequency of mutations in the high- and moderate-risk PC predisposition genes was increased in patients with PC with a personal history of breast cancer (Table 3), with almost two-fold more mutations observed in ATM (6.80\%), BRCA2 (6.50\%), PALB2 (3.38\%), BRCA1 (2.00\%), and TP53 (0.91\%). Results from logistic regression analysis confirmed these findings for $A T M(P=.0065)$ and $B R C A 2(P=$ .0092; Table 4). In contrast, mutations in the mismatch repair genes CHEK2 and CDKN2A collectively decreased from $4.89 \%$ to $2.52 \%$ in the context of personal history of breast cancer (Table 3). Mutations in ATM, BRCA2, and $P A L B 2$ were also more frequent in patients with PC with a family history of breast cancer (firstor second-degree relative; Table 3). In contrast, only PALB2 and MSH2 displayed a substantial increase in mutation frequency among patients with a family history of PC, and only CHEK2, MSH2, and TP53 had increased frequencies of mutation among patients with PC with a family history of colorectal cancer (Table 3). Results from logistic regression analysis confirmed the association of PALB2 mutations with
family history of $\mathrm{PC}(P=.029)$ or breast cancer ( $P=.0056$ ) and the association of CHEK2 mutations with family history of colorectal cancer ( $P=.014$; Table 4).

## Performance of Genetic Testing Criteria Among Mutation Carriers

Consensus clinical genetic testing guidelines include PC as a component tumor for seven of the confirmed PC genes in this study (BRCA1/2, MSH2, MSH6, ATM, PALB2, and CDKN2A)..$^{27-29}$ Clinical histories of patients with mutations in these genes were evaluated to determine whether the respective genetic testing criteria were met (Table 5). Although a majority of $B R C A 1 / 2$ and all MSH 2 mutation carriers displayed histories consistent with testing criteria, $\leq 50.0 \%$ of ATM, CDKN2A, PALB2, and MSH6 carriers met criteria. In addition, no $C D K N 2 A$ families met diagnostic criteria for familial atypical multiple mole melanoma syndrome, ${ }^{30}$ and $38.9 \%$ (seven of 18 ) did not report any personal or family history of melanoma.

## DISCUSSION

Here we report a study of cancer predisposition gene mutations among patients with PC on the basis of a cohort of individuals undergoing hereditary cancer multigene panel testing from a single clinical laboratory. Results from casecontrol studies of the PC cases and ExAC reference controls identified six genes associated with high risk $(\mathrm{OR},>5)$ of $\mathrm{PC}(A T M, B R C A 2$, CDKN2A, MSH6, PALB2, and TP53), consistent with previous smaller studies and segregation studies from PC families. MSH2 was also associated with a high risk of PC; however, additional studies are needed to confirm these findings, because this association was based on a limited number of mutations detected among PC cases. There has been some debate regarding the contribution of BRCA1 mutations to PC risk, because early studies were enriched for founder mutations from Ashkenazi Jewish patients with PC. Here we show that BRCA1 mutations are associated with a moderate risk $(\mathrm{OR},>2)$ of PC , even in a series of sensitivity analyses accounting for potential modifying effects of other cancers. CHEK2 mutations were also associated with a moderate risk of PC; however, this association was either diminished $(\mathrm{OR},<2)$ or nonsignificant in
several sensitivity analyses. In addition, the association of CHEK2 with PC was attenuated (OR, 1.64; 95\% CI, 1.02 to $2.62 ; P=.046$ ) when including the common p.I157T variant in the analyses, consistent with the lower penetrance of this alteration. Given the instability of the risk estimates, additional studies are needed to establish the influence of CHEK 2 mutations on PC risk. Despite the association of STK11 with high risk of PC , no mutations were detected in this cohort. One likely explanation is that STK11 mutations are unlikely to occur in the absence of pathognomonic clinical characteristics associated with Peutz-Jeghers syndrome, and therefore, patients with suspected Peutz-Jeghers syndrome may be referred for single-gene testing more often than multigene testing. Pathogenic mutations in other panel genes were still sufficiently uncommon to allow assessment of associations with risk (eg, APC, MLH1).

The risk estimates for PC associated with each of these established predisposition genes will help improve clinical PC risk assessment. For some genes, these results offer more precise estimates than previously reported, whereas for others, such as $P A L B 2$ and $A T M$, we are the first to characterize the level of risk, to our knowledge. It should be noted that the interpretation of the risks reported here is specific to patients referred for hereditary cancer genetic testing based on a personal or family history of cancer (at least one diagnosis of PC in the family), and thus, these data may not be applicable to the general population or unselected PC cohorts. Despite the enrichment for cases with personal or family history of cancer, these risks are derived from a broader clinical cancer testing cohort compared with previous studies selected for classic syndromic phenotypes such as FAMMM and therefore demonstrate that PC risk from syndromic genes remains high across a range of clinical histories. Furthermore, this enrichment presented an opportunity to explore predictors of germline mutations.

In total, $13 \%$ of patients had mutations in genes significantly associated with increased risk for PC across a range of sensitivity analyses (ATM, BRCA1, BRCA2, CDKN2A, MSH6, PALB2, and TP53). Consistent with results from a previous study of 96 sequentially recruited patients from the Mayo Clinic, ${ }^{18} 90 \%$ (158 of 173) of the mutations in the risk-associated genes in this study
Table 3. Mutation Frequency by Personal and Family Cancer Histories Among White Patients With PC

| Gene | Overall Mutation Frequency |  | Personal History of Breast Cancer |  | Family History |  |  |  |  |  | No Cancer ${ }^{*}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Breast Cancer | PC |  | Colorectal Cancer |  |  |  |
|  | No. | \% |  |  | No. | \% |
| ATM | 46 of 1,213 | 3.79 | 14 of 206 | 6.80 | 28 of 593 | 4.72 | 18 of 475 | 3.79 | 17 of 341 | 4.99 | 5 of 141 | 3.55 |
| BRCA1 | 12 of 1,184 | 1.01 | 4 of 200 | 2.00 | 7 of 571 | 1.23 | 3 of 451 | 0.67 | 5 of 329 | 1.52 | 1 of 138 | 0.72 |
| BRCA2 | 44 of 1,184 | 3.72 | 13 of 200 | 6.50 | 28 of 571 | 4.90 | 12 of 451 | 2.66 | 13 of 329 | 3.95 | 7 of 138 | 5.07 |
| CDKN2A | 14 of 1,057 | 1.32 | 1 of 135 | 0.74 | 7 of 487 | 1.44 | 8 of 428 | 1.87 | 3 of 300 | 1.00 | 0 of 130 | 0.00 |
| CHEK2 | 13 of 563 | 2.31 | 2 of 167 | 1.20 | 10 of 339 | 2.95 | 5 of 177 | 2.82 | 8 of 186 | 4.30 | 0 of 47 | 0.00 |
| MSH2 | 3 of 1,190 | 0.25 | 0 of 173 | 0.00 | 0 of 568 | 0.00 | 2 of 468 | 0.43 | 3 of 344 | 0.87 | 0 of 141 | 0.00 |
| MSH6 | 12 of 1,190 | 1.01 | 1 of 173 | 0.58 | 1 of 568 | 0.18 | 4 of 468 | 0.85 | 4 of 344 | 1.16 | 1 of 141 | 0.71 |
| PALB2 | 23 of 1,217 | 1.89 | 7 of 207 | 3.38 | 19 of 596 | 3.19 | 14 of 477 | 2.94 | 3 of 341 | 0.88 | 1 of 141 | 0.71 |
| TP53 | 6 of 1,252 | 0.48 | 2 of 219 | 0.91 | 2 of 613 | 0.33 | 1 of 482 | 0.21 | 3 of 354 | 0.85 | 0 of 145 | 0.00 |
| Total | 173 | 15.79 | 44 | 22.11 | 102 | 18.93 | 67 | 16.23 | 59 | 19.52 | 15 | 10.76 |

[^0]${ }^{*}$ Defined as no family history of breast cancer, PC, ovarian cancer, endometrial cancer, or colorectal cancer; copy number variants included
Table 4. Associations Between Gene Mutations and Personal and Family Histories of Cancer Among White Patients With PC

| Gene | Personal History of BreastCancer |  |  | Family History |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Breast Cancer |  |  | PC |  |  | Colorectal Cancer |  |  |
|  | No. | Adjusted OR* | $P$ | No. | Adjusted OR | $P$ | No. | Adjusted <br> OR | $P$ | No. | Adjusted OR | $P$ |
| ATM | 14 | 2.60 | . 0065 | 28 | 1.46 | . 24 | 18 | 1.24 | . 51 | 17 | 1.60 | . 14 |
| BRCA1 | 4 | 2.98 | . 10 | 7 | 1.51 | . 52 | 3 | 0.77 | . 71 | 5 | 2.02 | . 25 |
| BRCA2 | 13 | 2.31 | . 0092 | 28 | 1.62 | . 11 | 12 | 0.73 | . 46 | 13 | 1.00 | . 92 |
| CDKN2A | 1 | 0.70 | . 85 | 7 | 1.24 | . 61 | 8 | 2.17 | . 17 | 3 | 0.68 | . 59 |
| CHEK2 | 2 | 0.66 | . 62 | 10 | 6.79 | . 071 | 5 | 2.14 | . 23 | 8 | 5.48 | . 014 |
| MSH2 | 0 | NA | NA | 0 | NA | NA | 2 | NA | NA | 3 | NA | NA |
| MSH6 | 1 | 1.00 | . 99 | 1 | 0.11 | . 036 | 4 | 0.73 | . 65 | 4 | 1.47 | . 56 |
| PALB2 | 7 | 2.34 | . 084 | 19 | 4.77 | . 0056 | 14 | 2.73 | . 029 | 3 | 0.40 | . 14 |
| TP53 | 2 | 4.56 | . 12 | 2 | 0.58 | . 56 | 1 | 0.58 | . 63 | 3 | 3.82 | . 15 |

.

Table 5. Performance of Genetic Testing Criteria Among Mutation Carriers

|  |  | Mutation Carriers |  |  |
| :--- | :---: | :---: | :---: | :---: |
| Gene | Testing Criteria <br> Assessed | Total | Meeting Testing Criteria |  |
|  | ACG FPC | 62 | 27 | 43.5 |
| ATM | No. | $\%$ |  |  |
| BRCA1 | NCCN BRCA1/2; <br> ACG FPC | 15 | 12 | 80.0 |
| BRCA2 | NCCN BRCA1/2; <br> ACG FPC | 65 | 54 | 83.1 |
| CDKN2A | ACG FPC | 18 | 7 | 38.9 |
| MSH2/ <br> EPCAM | NCCN Lynch | 5 | 5 | 100.0 |
| MSH6 | NCCN Lynch | 14 | 5 | 35.7 |
| PALB2 | ACG FPC | 26 | 13 | 50.0 |

Abbreviations: ACG, American College of Gastroenterology; FPC, familial pancreatic cancer; NCCN, National Comprehensive Cancer Network.
were from patients with a family history of pancreatic, breast, ovarian, endometrial, or colorectal cancer. Family history of breast, pancreatic, or colorectal cancer was a significant predictor of positive results, suggesting that histories of these cancers should specifically be considered as genetic testing guidelines evolve for PC. The remaining $9 \%$ ( 15 of 173 ) of mutations were found in the approximately $65 \%$ of patients with PC without a family history of these cancers, suggesting a mutation rate of only $2.1 \%$ in white patients with PC without a family history of cancer ( 15 mutations in 698) in the clinically tested cohort. Additional studies of population-based series of patients with PC are needed to determine whether clinical panel testing should be considered for patients with PC unselected for family history.

In practice, patients with PC may not benefit directly from genetic testing because of the high mortality rate for this cancer. However, knowledge of mutation status for genes such as BRCA1/2 and PALB2 with respect to clinical trial eligibility for targeted agents such as poly (ADP-ribose) polymerase inhibitors may make genetic testing more appealing. In addition, mutation-positive family members can significantly benefit from knowledge of increased risk for a variety of cancers, including PC, and mutation-negative family members can also adjust their cancer screening protocols accordingly. All genes associated with high and moderate PC risk in this study have National Comprehensive Cancer Network guidelines addressing risk
management for cancers beyond PC. In addition, the International Cancer of the Pancreas Screening Consortium and the American College of Gastroenterology ${ }^{29,31}$ recommend that PC surveillance, including annual endoscopic ultrasound and/or magnetic resonance imaging, be considered for individuals with $>5 \%$ lifetime or relative risk for PC. With the exception of TP53, all genes demonstrating significant association with increased PC risk in this study are addressed in these recommendations. Results from this study suggest that clinicians should consider PC risk when managing TP53 mutation carriers, particularly in the presence of a family history of PC. In addition, although BRCA1 mutation carriers with a first- or sec-ond-degree relative with PC are included in the list of patients for whom PC screening should be considered, the moderate PC risk categorization for $B R C A 1$ in this study suggests this may not be clinically indicated.
ExAC NFE non-TCGA controls were used in this study because of the lack of a large series of matched controls. Although the use of large reference data sets is not ideal, the large sample size allows precise estimation of the frequency of mutations in individuals without cancer and is likely reflective of the general population. In addition, we applied many data cleaning steps and used consistent criteria for selection of mutations in the clinical cohort of patients with PC and the ExAC controls to ensure that the data sets were adequately normalized for case-control association analyses. Another potential limitation of this study is the quality of the clinical history information available for patients with PC. In a recent assessment of the quality of clinical history information for patients undergoing hereditary cancer panel testing, pedigrees and/ or clinic notes were provided for $46 \%$ of randomly selected patient cases (unpublished data). When compared with pedigrees and clinic notes, a vast majority of proband cancers were reported completely ( $95 \%$ ) and accurately (> 99\%) on test requisition forms. Completeness and accuracy remained high (97\%) for PCs reported on test requisition forms. Among family members, $76 \%$ of melanomas and $>80 \%$ of breast, ovarian, colorectal, endometrial, and pancreatic cancers were reported with $\geq 98 \%$ accuracy on test requisition forms. Therefore, the variant frequencies and PC risk estimates presented in this analysis were derived from a laboratory-based
cohort with high-quality clinical cancer history information.
Overall, the findings from this large study of PC predisposition gene mutations shed light on the spectrum of mutations that can be expected for patients with PC referred for cancer predisposition testing and identify $A T M, B R C A 2, C D K N 2 A$,

## AUTHOR CONTRIBUTIONS

Conception and design: Holly LaDuca, Jill S. Dolinsky, Fergus J. Couch
Administrative support: Abigail Thomas, Brigette Tippin Davis
Financial support: Fergus J. Couch
Provision of study material or patients: Holly LaDuca, Brigette Tippin Davis, David E. Goldgar, Fergus J. Couch Collection and assembly of data: Chunling Hu, Holly LaDuca, Kun Y. Lee, Brigette Tippin Davis, Tina Pesaran, David E. Goldgar, Fergus J. Couch
Data analysis and interpretation: Chunling Hu, Holly LaDuca, Hermela Shimelis, Eric C. Polley, Jenna Lilyquist, Steven Hart, Jie Na, Abigail Thomas, Mary Helen Black
Manuscript writing: All authors
Final approval of manuscript: All authors

## AUTHORS' DISCLOSURES OF POTENTIAL CONFLICTS OF INTEREST

The following represents disclosure information provided by authors of this manuscript. All relationships are considered compensated. Relationships are self-held unless noted.
I = Immediate Family Member, Inst = My Institution. Relationships may not relate to the subject matter of this manuscript. For more information about ASCO's conflict of interest policy, please refer to www.asco.org/rwc or ascopubs.org/po/author-center.

Chunling Hu
No relationship to disclose
Holly LaDuca
Employment: Ambry Genetics
Stock and Other Ownership Interests: Ambry Genetics
Hermela Shimelis
No relationship to disclose

Eric C. Polley
Research Funding: GRAIL

MSH6, PALB2, and TP53 as high-risk PC genes that should be considered routinely as part of any comprehensive PC risk evaluation process.

DOI: https://doi.org/10.1200/PO.17.00291
Published online on ascopubs.org/journal/po on July 25, 2018.

[^1]
## Affiliations

Chunling Hu, Hermela Shimelis, Eric C. Polley, Jenna Lilyquist, Steven N. Hart, Jie Na, Abigail Thomas, Kun Y. Lee, and Fergus J. Couch, Mayo Clinic, Rochester, MN; Holly LaDuca, Brigette Tippin Davis, Mary Helen Black, Tina Pesaran, and Jill S. Dolinsky, Ambry Genetics, Aliso Viejo, CA; and David E. Goldgar, University of Utah, Salt Lake City, UT.

Support
Supported by National Institutes of Health Grant No. CA192393, Mayo Clinic Specialized Program of Research Excellence in Pancreatic Cancer Grant No. P50CA102701, Mayo Clinic Department of Laboratory Medicine and Pathology research funds, the Mayo Clinic Center for Individualized Medicine, and the Vernon F. and Mae E. Thompson Charitable Fund.

## REFERENCES

1. Rahib L, Smith BD, Aizenberg R, et al: Projecting cancer incidence and deaths to 2030: The unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res 74:2913-2921, 2014
2. Klein AP: Identifying people at a high risk of developing pancreatic cancer. Nat Rev Cancer 13:66-74, 2013
3. Moran A, O'Hara C, Khan S, et al: Risk of cancer other than breast or ovarian in individuals with BRCA1 and BRCA2 mutations. Fam Cancer 11:235-242, 2012
4. Risch HA, McLaughlin JR, Cole DE, et al: Population BRCA1 and BRCA2 mutation frequencies and cancer penetrances: A kin-cohort study in Ontario, Canada. J Natl Cancer Inst 98:16941706, 2006
5. Umar A: Lynch syndrome (HNPCC) and microsatellite instability. Dis Markers 20:179-180, 2004
6. Win AK, Lindor NM, Young JP, et al: Risks of primary extracolonic cancers following colorectal cancer in Lynch syndrome. J Natl Cancer Inst 104:1363-1372, 2012
7. Kanji ZS, Gallinger S: Diagnosis and management of pancreatic cancer. CMAJ 185:1219-1226, 2013
8. Goldstein AM, Fraser MC, Struewing JP, et al: Increased risk of pancreatic cancer in melanomaprone kindreds with p16INK4 mutations. N Engl J Med 333:970-974, 1995
9. Lowenfels AB, Maisonneuve P, Cavallini G, et al: Pancreatitis and the risk of pancreatic cancer. N Engl J Med 328:1433-1437, 1993
10. Giardiello FM, Brensinger JD, Tersmette AC, et al: Very high risk of cancer in familial PeutzJeghers syndrome. Gastroenterology 119:1447-1453, 2000
11. Ruijs MW, Verhoef S, Rookus MA, et al: TP53 germline mutation testing in 180 families suspected of Li-Fraumeni syndrome: Mutation detection rate and relative frequency of cancers in different familial phenotypes. J Med Genet 47:421-428, 2010
12. Roberts NJ, Jiao Y, Yu J, et al: ATM mutations in patients with hereditary pancreatic cancer. Cancer Discov 2:41-46, 2012
13. Roberts NJ, Norris AL, Petersen GM, et al: Whole genome sequencing defines the genetic heterogeneity of familial pancreatic cancer. Cancer Discov 6:166-175, 2016
14. Zhen DB, Rabe KG, Gallinger S, et al: BRCA1, BRCA2, PALB2, and CDKN2A mutations in familial pancreatic cancer: A PACGENE study. Genet Med 17:569-577, 2015
15. Couch FJ, Johnson MR, Rabe KG, et al: The prevalence of BRCA2 mutations in familial pancreatic cancer. Cancer Epidemiol Biomarkers Prev 16:342-346, 2007
16. Holter S, Borgida A, Dodd A, et al: Germline BRCA mutations in a large clinic-based cohort of patients with pancreatic adenocarcinoma. J Clin Oncol 33:3124-3129, 2015
17. Grant RC, Selander I, Connor AA, et al: Prevalence of germline mutations in cancer predisposition genes in patients with pancreatic cancer. Gastroenterology 148:556-564, 2015
18. Hu C, Hart SN, Bamlet WR, et al: Prevalence of pathogenic mutations in cancer predisposition genes among pancreatic cancer patients. Cancer Epidemiol Biomarkers Prev 25:207-211, 2016
19. Shindo K, Yu J, Suenaga M, et al: Deleterious germline mutations in patients with apparently sporadic pancreatic adenocarcinoma. J Clin Oncol 35:3382-3390, 2017
20. Mandelker D, Zhang L, Kemel Y, et al: Mutation detection in patients with advanced cancer by universal sequencing of cancer-related genes in tumor and normal DNA vs guideline-based germline testing. JAMA 318:825-835, 2017
21. Exome Aggregation Consortium: http://exac.broadinstitute.org
22. Pritchard CC, Mateo J, Walsh MF, et al: Inherited DNA-repair gene mutations in men with metastatic prostate cancer. N Engl J Med 375:443-453, 2016
23. Couch FJ, Shimelis H, Hu C, et al: Associations between cancer predisposition testing panel genes and breast cancer. JAMA Oncol 3:1190-1196, 2017
24. LaDuca H, Stuenkel AJ, Dolinsky JS, et al: Utilization of multigene panels in hereditary cancer predisposition testing: Analysis of more than 2,000 patients. Genet Med 16:830-837, 2014
25. Lek M, Karczewski KJ, Minikel EV, et al: Analysis of protein-coding genetic variation in 60,706 humans. Nature 536:285-291, 2016
26. National Cancer Institute: Surveillance, Epidemiology, and End Results: Research data (19732014). https://seer.cancer.gov/data/access.html
27. National Comprehensive Cancer Network: The NCCN clinical practice guidelines in oncology genetic/familial high-risk assessment: Breast and ovarian v1.2018. https://www.ncen.org/ professionals/physician_gls/default.aspx
28. National Comprehensive Cancer Network: The NCCN clinical practice guidelines in oncology genetic/familial high-risk assessment: Colorectal v3.2017. https://www.ncen.org/professionals/ physician_gls/default.aspx
29. Syngal S, Brand RE, Church JM, et al: ACG clinical guideline: Genetic testing and management of hereditary gastrointestinal cancer syndromes. Am J Gastroenterol 110:223-262, quiz 263, 2015
30. Diagnosis and treatment of early melanoma: NIH Consensus Development ConferenceJanuary 27-29, 1992. Consens Statement 10:1-25, 1992
31. Canto MI, Harinck F, Hruban RH, et al: International Cancer of the Pancreas Screening (CAPS) Consortium summit on the management of patients with increased risk for familial pancreatic cancer. Gut 62:339-347, 2013 [Errata: Gut 63:1978, 2014; Gut 63:178, 2014]

## Patient Cases of Pancreatic Cancer

A total of 1,819 patients with pancreatic cancer were identified in a cohort of 140,449 individuals undergoing clinical germline cancer panel testing between March 2012 and June 2016 at a clinical testing laboratory (Ambry Genetics, Aliso Viejo, CA). From these, patients with neuroendocrine or intraductal papillary mucinous neoplasm tumor pathology were excluded, leaving 1,652 patient cases. Mutations derived from testing with all Ambry Genetics panels were used, with PancNext, CancerNext, and CancerNext Expanded panels constituting the majority. All variants classified by Ambry were submitted to ClinVar.

## Exome Aggregation Consortium Reference Controls

The Exome Aggregation Consortium (ExAC) contains exome sequence data from 60,706 unrelated individuals sequenced as part of various disease-specific and population genetic studies. All of the raw data from these projects were reprocessed through a common pipeline. Principal component analysis was performed to identify population clusters corresponding to individuals of European, African, South Asian, East Asian, and admixed American ancestry. Europeans were separated into individuals of Finnish and non-Finnish European (NFE) ancestry. ExAC also contained patient cases of cancer from The Cancer Genome Atlas (TCGA). Exclusion of sequence data from these patient cases yielded ExAC non-NFE non-TCGA reference controls.

## Genome Aggregation Database Reference Controls

The Genome Aggregation Database (gnomAD) contains sequencing data of 123,136 exomes and 15,496 genomes from unrelated individuals sequenced as part of various disease-specific and population genetic studies. The raw sequence data were reprocessed through the same pipeline and jointly variant called to increase consistency across projects. The gnomAD data set contains individuals sequenced using multiple exome capture methods and sequencing chemistries. The resulting variation in coverage was incorporated into the variant frequency calculations for each variant. gnomAD was quality controlled and analyzed using the Hail open-source framework for scalable genetic analysis. gnomAD provides allele frequencies separately for several races and ethnic groups, including non-NFE and Ashkenazi Jewish individuals.

## ExAC Data Cleaning and Filtering

- Restricted to ExAC non-TCGA NFE exome data
- Pathogenic variant classification rules:

Include all ExAC non-TCGA NFE variants
Restricted to variants with allele frequency < 0.003, except known pathogenic founder variants (eg, CHEK2 c.1100delC)

Include loss-of-function variants (nonsense, frameshift, $\pm 1 / 2$ splice site variants) unless classified as benign or variant of unknown significance by any clinical cancer genetic testing laboratories (Ambry, Sharing Clinical Reports Project, InVitae, GeneDx, Emory, and InSiGHT) in ClinVar.

Classifications submitted by Online Mendelian Inheritance in Man, Breast Cancer Information Core, or other nonclinical groups were not considered in classification criteria. Did not rely on classification in ClinVar submitted before 2010.

Exclude missense variants and splice site variants beyond $\pm 1 / 2$ unless classified as pathogenic or likely pathogenic by clinical genetic groups in ClinVar.

Exclude pathogenic variants with known low risk: APC p.Ile1307Lys, PMS2 c.736_741del6ins11, PTEN
p.Pro354Trp, TP53 p.Arg283His, 5'UTR_EX1del, p.Arg181His, p.Arg156His, CHEK2 p.Ile157Thr.

Exclude pathogenic variants not influenced by nonsense-mediated RNA decay (thresholds: BRCA2 c.9924, BARD1 c.1947, BRIP1 c.2851, RAD50 c.3698, RAD51D c.849).

Identify variants in $P M S 2$ pseudogene region (exon 9 and exons 11 to 15); calculate variant frequency and odds ratios without these variants.

Exclude ExAC non-PASS recurrent variants with allele count in ExAC > eight and tested in $<20,000$ ExAC alleles.

Exclude ExAC non-PASS variants with multiple repetitive sequences called multiple times (eg, MSH2_c.942+2_942+ 6del5, MSH2_c.942+2_942+ 4delTAA, $M S H 2 \_$c. $942+2 \_942+$ 5delTAAA, MSH2_c.942+2_942+ 3delTA, MSH2_c. $942+2 \_942+8$ del7 MSH2_c.942+2_942+7del6).

- Allele number was calculated as average of all variants within the coding region of a gene of interest, because different numbers of individuals were tested for each variant.
- Restricted to gnomAD NFE exome data combined with gnomAD Ashkenazi Jewish exome data.
- Pathogenic variant classification rules:

Same as in ExAC rules 1 to 8 .
Review variants with allele count $\geq 15$ by Integrative

Genomics Viewer and by frequency in control data from dbSNP.

- Allele number was calculated as average of all variants within the coding region of a gene of interest. This is important for ExAC, gnomAD, and Ambry patient cases, because different numbers of individuals were tested for each variant.

Table A1. Testing of Patients by Gene Panel
Multigene Panel Test

| (No. of genes) | No. of Patients Tested ${ }^{\text {a }}$ | Genes Included |
| :---: | :---: | :---: |
| BRCAplus (6) | 25 | BRCA1, BRCA2, CDH1, PTEN, PALB2, ${ }^{\text {b }}$ STK11, ${ }^{\text {c }}$ TP53 |
| BreastNext (18) | 51 | ATM, BARD1, BRCA1, ${ }^{\text {d BRCA2, }{ }^{\mathrm{d}} \text { BRIP1, CDH1, CHEK2, MRE11A, MUTYH, }}$ <br>  |
| ColoNext (17) | 19 | APC, BMPR1A, CDH1, CHEK2, EPCAM, ${ }^{\mathrm{f}}$ GREM1, ${ }^{\mathrm{fg}}$ MLH1, MSH2, MSH6, MUTYH, PMS2, POLD1,s POLE, ${ }^{\mathrm{g}}$ PTEN, SMAD4, STK11, TP53 |
| GYNPlus (9) | 14 | BRCA1, BRCA2, EPCAM, ${ }^{\text {¢ }}$ MLH1, MSH2, MSH6, PMS2, PTEN, TP53 |
| OvaNext (24) | 54 | ATM, BARD1, BRCA1, ${ }^{\text {d } B R C A 2, ~}{ }^{\mathrm{d}}$ BRIP1, CDH1, CHEK2, EPCAM, ${ }^{\mathrm{f}}$ MLH1, MRE11A, MSH2, MSH6, MUTYH, NBN, NF1, ${ }^{\text {e PALB2, PMS2, PTEN, }}$ RAD50, RAD51C, RAD51D, ${ }^{\mathrm{e}}$ SMARCA4, ${ }^{\mathrm{g}}$ STK11, TP53 |
| PancNext (13) | 904 | APC, ATM, BRCA1, BRCA2, CDKN2A, EPCAM, ${ }^{\text {f }}$ MLH1, MSH2, MSH6, PALB2, PMS2, STK11, TP53 |
| PGLNext (12) | 5 | $F H,{ }^{\mathrm{h}}$ MAX, MEN1, ${ }^{\mathrm{h}}$ NF1, RET, SDHA, SDHAF2, SDHB, SDHC, SDHD, TMEM127, VHL |
| RenalNext (18) | 2 | EPCAM, ${ }^{\ddagger}$ FH, FLCN, MET, MITF, ${ }^{\text {i }}$ MLH1, MSH2, MSH6, PMS2, PTEN, SDHA, SDHB, SDHC, SDHD, TP53, TSC1, TSC2, VHL |
| CancerNext (32) | 448 | APC, ATM, BARD1, BRCA1, ${ }^{\mathrm{d}}$ BRCA2, ${ }^{\mathrm{d}}$ BRIP1, BMPR1A, CDH1, CDK4, e CDKN2A, ${ }^{\text {e }}$ CHEK2, EPCAM, ${ }^{\mathrm{f}}$ GREM1, ${ }^{\mathrm{fg}}$ MLH1, MRE11A, MSH2, MSH6, <br>  RAD51C, RAD51D, © SMAD4, SMARCA4, ${ }^{\mathrm{s}}$ STK11, TP53 |
| CancerNext-Expanded (49) | 136 | APC, ATM, BAP1, g BARD1, BRCA1, BRCA2, BRIP1, BMPR1A, CDH1, CDK4, CDKN2A, CHEK2, EPCAM, ${ }^{\mathrm{f}}$ FH, FLCN, GREM1, ${ }^{\text {fg }}$ MAX, MEN1, MET, MITF, ${ }^{i}$ MLH1, MRE11A, MSH2, MSH6, MUTYH, NBN, NF1, PALB2, PMS2, POLD1, ${ }^{\mathrm{g}}$ POLE, ${ }^{\mathrm{g}}$ PTEN, RAD50, RAD51C, RAD51D, RET, SDHA, SDHAF2, SDHB, SDHD, SDHC, SMAD4, SMARCA4,. STK11, TMEM127, TP53, TSC1, TSC2, VHL |

[^2]Table A2. Mutation Frequency for Individual Genes Among All Patients With PC Tested With Selected Panels

| Gene | Patients of All Races and Ethnicities$(\mathrm{n}=1,652)$ |  | White Patients$(\mathrm{n}=1,256)$ |  |
| :---: | :---: | :---: | :---: | :---: |
|  | No. | \% | No. | \% |
| APC | 1 of 1,507 | 0.07 | 1 of 1,133 | 0.09 |
| ATM | 62 of 1,592 | 3.89 | 46 of 1,213 | 3.79 |
| BARD1 | 2 of 690 | 0.29 | 2 of 552 | 0.36 |
| BRCA1 | 15 of 1,561 | 0.96 | 12 of 1,184 | 1.01 |
| BRCA2 | 65 of 1,561 | 4.16 | 44 of 1,184 | 3.72 |
| BRIP1 | 2 of 690 | 0.29 | 2 of 552 | 0.36 |
| CDH1 | 1 of 734 | 0.14 | 1 of 584 | 0.17 |
| CDKN2A | 18 of 1,407 | 1.28 | 14 of 1,057 | 1.32 |
| CHEK2 | 14 of 709 | 1.97 | 13 of 563 | 2.31 |
| EPCAM | 1 of 1,576 | 0.06 | 0 of 1,190 | 0.00 |
| MEN1 | 1 of 97 | 1.03 | 1 of 72 | 1.39 |
| MITF | 1 of 138 | 0.72 | 1 of 104 | 0.96 |
| MLH1 | 4 of 1,576 | 0.25 | 1 of 1,186 | 0.08 |
| MRE11A | 1 of 690 | 0.14 | 1 of 552 | 0.18 |
| MSH2 | 4 of 1,576 | 0.25 | 3 of 1,190 | 0.25 |
| MSH6 | 14 of 1,576 | 0.89 | 12 of 1,190 | 1.01 |
| NBN | 3 of 690 | 0.43 | 2 of 552 | 0.36 |
| NF1 | 1 of 587 | 0.17 | 0 of 467 | 0.00 |
| PALB2 | 26 of 1,597 | 1.63 | 23 of 1,217 | 1.89 |
| PMS2 | 4 of 1,576 | 0.25 | 1 of 1,190 | 0.08 |
| RAD50 | 4 of 690 | 0.58 | 2 of 552 | 0.36 |
| TP53 | 9 of 1,647 | 0.55 | 6 of 1,252 | 0.48 |
| VHL | 1 of 143 | 0.70 | 1 of 108 | 0.93 |
| Total | 254 | 20.73 | 189 | 21.12 |

Abbreviation: PC, pancreatic cancer.
Table A3. Patients With PC With Multiple Mutations

| Gene 1 | Gene 2 | Gene 3 | Age at Onset (years) | Sex | Ethnicity | Personal History of Cancer | Family History of Cancer ${ }^{*}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ATM: c.103C>T_p.Arg35X | MSH6: c.3312dup T |  | 64 | M | White | PC | PC, CRC |
| NF1: c.3457_3460delCTCA | $\begin{aligned} & \text { BRCA2: } .5635 \mathrm{G}>\mathrm{T} \_\mathrm{p} . \\ & \text { Glu1879X } \end{aligned}$ |  | 45 | M | Hispanic | Neurofibromatosis osteosarcoma | Neurofibromatosis |
| NBN: c.657_661del5 | CHEK2: c.444+1G>A |  | 49 | F | White | PC | PC |
| ATM: c.170G>A_p.Trp57X | PALB2: c.707dupT |  | 70 | M | White | PC | Breast cancer, CRC |
| CDKN2A: c.71G>C_p. <br> Arg24Pro (homozygous) |  |  | 45 | F | White | PC | PC, breast cancer |
| CHEK2: c. 1567 delC | MSH2: 5'UTR_EX7DEL ${ }^{\dagger}$ | EPCAM: <br> EX2_3'UTRdel ${ }^{\dagger}$ | 72 | M | White | CRC, prostate cancer | Ovarian cancer, CRC |
| ATM: c.5549delT | RAD50: c. 2165 DupA | CHEK2: I157T | 69 | F | Unknown | PC | Ovarian cancer |
| ATM: c.3038dupA | $\begin{aligned} & \text { CDKN2A: c.301G>T_p. } \\ & \text { Gly101Trp } \end{aligned}$ |  | 51 | F | White | PC | Breast cancer, melanoma |

Gly 101 Trp

* $\geq$ One first- or second-degree of relative.
$\dagger$ Contiguous gene deletion.

Table A4. Mutation Frequency at Individual Gene Level Among White Patients With PC Stratified by Median Age of Diagnosis

| Gene | Age $\leq 63$ Years ( $\mathrm{n}=662$ ) |  |  | Age > 63 Years ( $\mathrm{n}=563$ ) |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Patients With <br> Mutations | Patients <br> Tested | Carrier Frequency (\%) | Patients With Mutations | Patients Tested | Carrier <br> Frequency (\%) | $P$ |
| ATM | 23 | 638 | 3.61 | 22 | 546 | 4.03 | . 761 |
| BRCA1 | 6 | 625 | 0.96 | 6 | 531 | 1.13 | . 78 |
| BRCA2 | 29 | 625 | 4.64 | 15 | 531 | 2.82 | . 124 |
| CDKN2A | 11 | 567 | 1.94 | 3 | 471 | 0.64 | . 103 |
| CHEK2 | 6 | 282 | 2.13 | 7 | 267 | 2.62 | . 783 |
| MSH2 | 1 | 634 | 0.16 | 2 | 531 | 0.38 | . 60 |
| MSH6 | 9 | 634 | 1.42 | 3 | 531 | 0.56 | . 243 |
| PALB2 | 13 | 641 | 2.03 | 10 | 647 | 1.55 | . 836 |
| TP53 | 4 | 658 | 0.61 | 2 | 563 | 0.36 | . 692 |

NOTE. Thirty-one patients were excluded because of missing age at diagnosis information.
Table A5. Comparisons of Mutation Carriers for 23-Panel Genes Among White Patients With PC and ExAC Controls Patients With PC

| Cancer Risk |  |  |
| ---: | :---: | :---: |
| OR | $95 \% \mathbf{C I}$ | $\boldsymbol{P}$ |
| 1.99 | 0.09 to 12.38 | .41 |
| 8.96 | 6.12 to 12.98 | $<.001$ |
| 3.50 | 0.59 to 13.45 | .12 |
| 2.95 | 1.49 to 5.60 | .0024 |
| 9.07 | 6.33 to 12.98 | $<.001$ |
| 1.99 | 0.34 to 7.58 | .27 |
| 14.82 | 0.57 to 134.54 | .08 |
| 35.97 | 14.69 to 85.93 | $<.001$ |
| 2.08 | 1.15 to 3.68 | .02 |
| 349.34 | 9.07 to $13,525.94$ | .01 |
| 2.48 | 0.13 to 14.10 | .34 |
| 2.24 | 0.11 to 15.23 | .38 |
| 1.94 | 0.10 to 11.28 | .41 |
| 7.10 | 1.04 to 37.16 | .05 |
| 7.79 | 3.85 to 15.16 | $<.001$ |
| 2.32 | 0.40 to 9.05 | .22 |
| 14.83 | 8.12 to 26.22 | $<.001$ |
| 0.41 | 0.02 to 2.36 | .73 |
| 1.66 | 0.29 to 6.21 | .34 |
| 7.15 | 2.78 to 18.13 | $<.001$ |
| 11.63 | 0.56 to 76.34 | .09 |

[^3]Table A6. Comparisons of Mutation Carriers Among White Patients With PC and gnomAD Controls

| Gene | Patients With PC |  |  | gnomAD Controls* |  |  | Cancer Risk |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | With <br> Mutations | Tested | Carrier <br> Frequency (\%) | With Mutations | Tested | Carrier <br> Frequency (\%) | OR | 95\% CI | $P$ |
| ATM | 41 | 1,213 | 3.38 | 210 | 60,559 | 0.35 | 9.90 | 6.94 to 13.94 | <. 001 |
| BRCA1 | 11 | 1,184 | 0.93 | 194 | 60,631 | 0.32 | 2.91 | 1.48 to 5.37 | . 0022 |
| BRCA2 | 43 | 1,184 | 3.63 | 238 | 60,021 | 0.40 | 9.31 | 6.68 to 13.01 | < . 001 |
| CDKN2A | 14 | 1,057 | 1.32 | 15 | 56,858 | 0.03 | 50.52 | 24.04 to 105.47 | <. 001 |
| CHEK2 | 12 | 563 | 2.13 | 594 | 59,943 | 0.99 | 2.16 | 1.20 to 3.84 | . 016 |
| MSH2 | 2 | 1,190 | 0.17 | 12 | 60,137 | 0.02 | 8.43 | 1.35 to 37.53 | . 029 |
| MSH6 | 12 | 1,190 | 1.01 | 77 | 59,869 | 0.13 | 7.88 | 4.21 to 14.59 | <. 001 |
| PALB2 | 20 | 1,217 | 1.64 | 95 | 60,678 | 0.16 | 10.57 | 6.29 to 17.35 | <. 001 |
| TP53 | 6 | 1,252 | 0.48 | 23 | 60,674 | 0.04 | 12.67 | 5.04 to 31.76 | <. 001 |

Abbreviations: gnomAD, Genome Aggregation Database; OR, odds ratio; PC, pancreatic cancer.
*gnomAD was restricted to non-Finnish European and Ashkenazi Jewish controls.
Table A7. Comparisons of Mutation Carriers Among All Patients With PC and Reference Controls

|  | Patients With PC |  |  | ExAC Controls* |  |  | Cancer Risk |  |  | gnomAD Controls ${ }^{\dagger}$ |  |  | Cancer Risk |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Gene | With <br> Mutations | Tested | Carrier <br> Frequency (\%) | With <br> Mutations | Tested | Carrier Frequency (\%) | OR | 95\% CI | $P$ | With <br> Mutations | Tested | Carrier Frequency (\%) | OR | 95\% CI | $P$ |
| ATM | 55 | 1,592 | 3.45 | 185 | 52,160 | 0.35 | 9.89 | 7.21 to 13.47 | < . 001 | 393 | 122,759 | 0.32 | 10.96 | 8.15 to 14.55 | <. 001 |
| BRCA1 | 14 | 1,561 | 0.90 | 124 | 52,628 | 0.24 | 3.82 | 2.18 to 6.57 | < . 001 | 284 | 122,906 | 0.23 | 3.89 | 2.24 to 6.73 | <. 001 |
| BRCA2 | 64 | 1,561 | 4.10 | 203 | 52,344 | 0.39 | 10.77 | 8.06 to 14.28 | < . 001 | 401 | 121,315 | 0.33 | 12.64 | 9.58 to 16.52 | <. 001 |
| CDKN2A | 18 | 1,407 | 1.28 | 14 | 47,527 | 0.14 | 43.68 | 21.64 to 88.07 | < . 001 | 17 | 115,859 | 0.01 | 87.56 | 44.41 to 170.80 | <. 001 |
| CHEK2 | 13 | 709 | 1.83 | 430 | 49,679 | 0.87 | 2.13 | 1.17 to 3.68 | . 006 | 926 | 121,324 | 0.76 | 2.42 | 1.34 to 4.22 | . 004 |
| MSH2 | 2 | 1,576 | 0.13 | 7 | 49,369 | 0.01 | 8.96 | 1.34 to 39.63 | . 029 | 17 | 121,891 | 0.01 | 9.10 | 1.50 to 35.66 | . 024 |
| MSH6 | 14 | 1,576 | 0.89 | 116 | 51,038 | 0.23 | 3.92 | 2.23 to 6.78 | < . 001 | 135 | 121,436 | 0.11 | 8.02 | 4.59 to 14.06 | <. 001 |
| PALB2 | 23 | 1,597 | 1.44 | 71 | 52,529 | 0.14 | 10.72 | 6.55 to 17.10 | < . 001 | 202 | 122,973 | 0.16 | 8.82 | 5.66 to 13.55 | <. 001 |
| TP53 | 9 | 1,647 | 0.55 | 29 | 52,214 | 0.06 | 9.86 | 4.60 to 20.69 | < . 001 | 32 | 122,964 | 0.03 | 21.06 | 9.88 to 45.32 | <0.0001 |

Abbreviations: ExAC, Exome Aggregation Consortium; gnomAD, Genome Aggregation Database; OR, odds ratio; PC, pancreatic cancer.
*ExAC controls were restricted to non-Finnish Europeans and also excluded The Cancer Genome Atlas patient cases.
$\dagger$ gnomAD was restricted to non-Finnish European and Ashkenazi Jewish controls.
Table A8. Comparisons of Mutation Carriers Among White Patients With PC Not Previously Screened for BRCA1/BRCA2 and Reference Controls

| Gene | Patients With PC |  |  | ExAC Controls* |  |  | Cancer Risk |  |  | gnomAD Controls ${ }^{\dagger}$ |  |  | Cancer Risk |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | With <br> Mutations | Tested | Carrier Frequency (\%) | With <br> Mutations | Tested | Carrier Frequency (\%) | OR | 95\% CI | $P$ | With <br> Mutations | Tested | Carrier Frequency (\%) | OR | 95\% CI | $P$ |
| ATM | 36 | 1,061 | 3.39 | 102 | 26,644 | 0.38 | 9.00 | 6.05 to 13.22 | <. 001 | 210 | 60,559 | 0.35 | 9.93 | 6.93 to 14.28 | <. 001 |
| BRCA1 | 9 | 1,054 | 0.85 | 85 | 26,911 | 0.32 | 2.71 | 1.32 to 5.42 | . 01 | 194 | 60,631 | 0.32 | 2.68 | 1.32 to 5.24 | . 009 |
| BRCA2 | 41 | 1,054 | 3.89 | 109 | 26,791 | 0.41 | 9.73 | 6.68 to 13.99 | <. 001 | 238 | 60,021 | 0.40 | 9.98 | 7.04 to 13.97 | <. 001 |
| CDKN2A | 14 | 941 | 1.49 | 9 | 24,312 | 0.04 | 40.46 | 16.50 to 96.62 | <. 001 | 15 | 56,858 | 0.03 | 56.74 | 27.02 to 118.56 | <.001 |
| CHEK2 | 10 | 477 | 2.10 | 260 | 25,215 | 1.03 | 2.04 | 1.07 to 3.80 | . 04 | 594 | 59,943 | 0.99 | 2.27 | 1.20 to 4.26 | . 016 |
| MSH2 | 2 | 1,049 | 0.19 | 6 | 25,329 | 0.02 | 8.06 | 1.18 to 42.16 | . 037 | 12 | 60,137 | 0.02 | 9.56 | 1.53 to 42.59 | . 023 |
| MSH6 | 10 | 1,049 | 0.95 | 34 | 26,151 | 0.13 | 7.36 | 3.44 to 15.00 | <. 001 | 77 | 59,869 | 0.13 | 7.44 | 3.74 to 14.37 | <. 001 |
| PALB2 | 18 | 1,065 | 1.69 | 30 | 26,869 | 0.11 | 15.26 | 8.37 to 27.75 | <. 001 | 95 | 60,678 | 0.16 | 10.87 | 6.39 to 18.03 | <.001 |
| TP53 | 6 | 1,098 | 0.55 | 18 | 26,789 | 0.07 | 8.15 | 3.17 to 20.68 | <. 001 | 23 | 60,674 | 0.04 | 14.45 | 5.75 to 36.24 | < . 001 |
| Abbreviation *ExAC cont | ExAC, Exom were restric | ne Aggreg cted to no | n Consortiu innish Europ | $\begin{aligned} & \text { gnomAD, Gel } \\ & \text { s and also exc } \end{aligned}$ | me Aggre ded The | ation Database; ancer Genome | OR, odds tlas patie | io; PC, pancreati cases. |  |  |  |  |  |  |  | $\dagger$ gnomAD was restricted to non-Finnish European and Ashkenazi Jewish controls.

Table A9. Comparisons of Mutation Carriers Among White Patients With PC As Initial Cancer and Reference Controls

|  | Patients With PC |  |  | ExAC Controls* |  |  | Cancer Risk |  |  | gnomAD Controls ${ }^{+}$ |  |  | Cancer Risk |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Gene | With Mutations | Tested | Carrier Frequency (\%) | With <br> Mutations | Tested | Carrier Frequency (\%) | OR | 95\% CI | $P$ | With <br> Mutations | Tested | Carrier Frequency (\%) | OR | 95\% CI | $P$ |
| ATM | 23 | 893 | 2.58 | 102 | 26,644 | 0.38 | 6.80 | 4.20 to 10.84 | < . 001 | 210 | 60,559 | 0.35 | 7.51 | 4.82 to 11.54 | < . 001 |
| BRCA1 | 8 | 874 | 0.92 | 85 | 26,911 | 0.32 | 2.91 | 1.30 to 5.91 | . 01 | 194 | 60,631 | 0.32 | 2.87 | 1.32 to 5.75 | . 009 |
| BRCA2 | 27 | 874 | 3.09 | 109 | 26,791 | 0.41 | 7.70 | 4.99 to 11.87 | < . 001 | 238 | 60,021 | 0.40 | 7.90 | 5.15 to 11.87 | < . 001 |
| CDKN2A | 10 | 811 | 1.23 | 9 | 24,312 | 0.04 | 33.49 | 13.65 to 87.35 | < . 001 | 15 | 56,858 | 0.03 | 47.01 | 20.17 to 106.79 | <. 001 |
| CHEK2 | 7 | 341 | 2.05 | 260 | 25,215 | 1.03 | 2.00 | 0.93 to 4.26 | . 093 | 594 | 59,943 | 0.99 | 2.08 | 0.97 to 4.36 | . 09 |
| MSH2 | 1 | 887 | 0.11 | 6 | 25,329 | 0.02 | 4.76 | 0.21 to 35.50 | . 21 | 12 | 60,137 | 0.02 | 5.65 | 0.27 to 35.24 | . 17 |
| MSH6 | 7 | 887 | 0.79 | 34 | 26,151 | 0.13 | 6.09 | 2.63 to 13.68 | < . 001 | 77 | 59,869 | 0.13 | 6.16 | 2.80 to 13.43 | <. 001 |
| PALB2 | 12 | 896 | 1.34 | 30 | 26,869 | 0.11 | 12.06 | 5.85 to 23.79 | < . 001 | 95 | 60,678 | 0.16 | 8.60 | 4.65 to 15.63 | <. 001 |
| TP53 | 2 | 912 | 0.22 | 18 | 26,789 | 0.07 | 3.27 | 0.54 to 13.87 | . 14 | 23 | 60,674 | 0.04 | 5.79 | 0.97 to 22.95 | . 053 | Abbreviations: ExAC, Exome Aggregation Consortium; gnomAD, Genome Aggregation Database; OR, odds ratio; PC, pancreatic cancer. *ExAC controls were restricted to non-Finnish Europeans and also excluded The Cancer Genome Atlas patient cases.

$\dagger$ gnomAD was restricted to non-Finnish European and Ashkenazi Jewish controls.
Table A10. Comparisons of Mutation Carriers Among White Patients With PC and ExAC PASS-Only Controls

| Gene | Patients With PC |  |  | ExAC Controls |  |  | Cancer Risk |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | With <br> Mutations | Tested | Carrier Frequency (\%) | With <br> Mutations | Tested | Carrier <br> Frequency (\%) | OR | 95\% CI | $P$ |
| ATM | 41 | 1,213 | 3.38 | 93 | 26,715 | 0.35 | 9.86 | 6.73 to 14.24 | <. 001 |
| BRCA1 | 11 | 1,184 | 0.93 | 72 | 26,913 | 0.26 | 3.48 | 1.76 to 6.52 | <. 001 |
| BRCA2 | 43 | 1,184 | 3.63 | 94 | 26,804 | 0.35 | 10.53 | 7.24 to 15.26 | <. 001 |
| CDKN2A | 14 | 1,057 | 1.32 | 8 | 24,424 | 0.03 | 40.70 | 16.70 to 101.14 | < . 001 |
| CHEK2 | 12 | 563 | 2.13 | 255 | 25,296 | 1.01 | 2.13 | 1.17 to 3.76 | . 02 |
| MSH2 | 2 | 1,190 | 0.17 | 6 | 25,463 | 0.02 | 7.14 | 1.04 to 37.36 | . 046 |
| MSH6 | 12 | 1,190 | 1.01 | 28 | 26,419 | 0.11 | 9.56 | 4.59 to 19.21 | <. 001 |
| PALB2 | 20 | 1,217 | 1.64 | 26 | 26,871 | 0.10 | 17.11 | 9.24 to 31.50 | <. 001 |
| TP53 | 6 | 1,252 | 0.48 | 16 | 26,757 | 0.06 | 8.03 | 3.09 to 21.46 | <. 001 |

Abbreviations: ExAC, Exome Aggregation Consortium; OR, odds ratio; PC, pancreatic cancer.
*ExAC controls were restricted to non-Finnish Europeans and also excluded The Cancer Genome Atlas patient cases, and were limited to Quality Control PASS mutations.
Table A11. Comparisons of Mutation Carriers Among Patients With PC Excluding Family History of Breast Cancer and Reference Controls

| Gene | Patients With PC |  |  | ExAC Controls* |  |  | Cancer Risk |  |  | gnomAD Controls ${ }^{+}$ |  |  | Cancer Risk |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | With <br> Mutations | Tested | Carrier Frequency (\%) | With <br> Mutations | Tested | Carrier <br> Frequency (\%) | OR | 95\% CI | $P$ | With <br> Mutations | Tested | Carrier Frequency (\%) | OR | 95\% CI | $P$ |
| ATM | 16 | 549 | 2.91 | 102 | 26,644 | 0.38 | 7.71 | 4.45 to 13.25 | <. 001 | 210 | 60,559 | 0.35 | 8.51 | 5.07 to 14.25 | < . 001 |
| BRCA1 | 4 | 539 | 0.74 | 85 | 26,911 | 0.32 | 2.35 | 0.79 to 6.26 | . 09 | 194 | 60,631 | 0.32 | 2.32 | 0.79 to 6.22 | . 099 |
| BRCA2 | 16 | 539 | 2.97 | 109 | 26,791 | 0.41 | 7.39 | 4.29 to 12.62 | < . 001 | 238 | 60,021 | 0.40 | 7.58 | 4.52 to 12.67 | < . 001 |
| CDKN2A | 7 | 509 | 1.38 | 9 | 24,312 | 0.04 | 37.39 | 12.60 to 109.74 | <. 001 | 15 | 56,858 | 0.03 | 52.45 | 20.04 to 136.18 | < . 001 |
| CHEK2 | 1 | 198 | 0.51 | 260 | 25,215 | 1.03 | 0.49 | 0.03 to 2.90 | . 73 | 594 | 59,943 | 0.99 | 0.51 | 0.03 to 2.98 | 1.00 |
| MSH2 | 2 | 556 | 0.36 | 6 | 25,329 | 0.02 | 15.20 | 2.22 to 79.70 | . 012 | 12 | 60,137 | 0.02 | 18.05 | 2.89 to 80.54 | . 007 |
| MSH6 | 9 | 556 | 1.62 | 34 | 26,151 | 0.13 | 12.54 | 5.90 to 26.70 | < . 001 | 77 | 59,869 | 0.13 | 12.68 | 6.15 to 25.67 | < . 001 |
| PALB2 | 2 | 550 | 0.36 | 30 | 26,869 | 0.11 | 3.26 | 0.55 to 12.29 | . 13 | 95 | 60,678 | 0.16 | 2.32 | 0.41 to 8.44 | . 22 |
| TP53 | 3 | 565 | 0.53 | 18 | 26,789 | 0.07 | 7.92 | 1.98 to 26.18 | . 0089 | 23 | 60,674 | 0.04 | 14.05 | 3.58 to 47.16 | . 002 |
| Abbreviatio *ExAC con $\dagger$ gnomAD | ons: ExAC, Ex trols were rest was restricted | ome Aggr ricted to to non-Fi | egation Consor Non-Finnish E nnish Europea | m; gnomAD, peans and also nd Ashkenazi J | enome Ag <br> excluded T <br> wish contr | regation Datab <br> he Cancer Geno <br> ls. | OR, odd Atlas pat | atio; PC, pancreatic th cases. | cancer. |  |  |  |  |  |  |

Table A12. Comparisons of Mutation Carriers Among White Patients With PC Excluding Family History of Ovarian Cancer and Reference Controls

|  | Patients With PC |  |  | ExAC Controls* |  |  | Cancer Risk |  | gnomAD Controls ${ }^{\dagger}$ |  |  |  | Cancer Risk |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Gene | With <br> Mutations | Tested | Carrier Frequency (\%) | With <br> Mutations | Tested | Carrier Frequency (\%) | OR | 95\% CI | $P$ | With Mutations | Tested | Carrier Frequency (\%) | OR | 95\% CI | $P$ |
| ATM | 37 | 976 | 3.79 | 102 | 26,644 | 0.38 | 10.07 | 6.78 to 14.71 | <. 001 | 210 | 60,559 | 0.35 | 11.12 | 7.69 to 15.89 | <. 001 |
| BRCA1 | 10 | 946 | 1.06 | 85 | 26,911 | 0.32 | 3.36 | 1.70 to 6.43 | . 0015 | 194 | 60,631 | 0.32 | 3.32 | 1.73 to 6.20 | . 001 |
| BRCA2 | 33 | 946 | 3.49 | 109 | 26,791 | 0.41 | 8.71 | 5.79 to 12.96 | <. 001 | 238 | 60,021 | 0.40 | 8.94 | 6.11 to 12.88 | < . 001 |
| CDKN2A | 13 | 855 | 1.52 | 9 | 24,312 | 0.04 | 41.35 | 17.74 to 100.53 | <. 001 | 15 | 56,858 | 0.03 | 58.05 | 26.23 to 121.78 | <. 001 |
| CHEK2 | 8 | 434 | 1.84 | 260 | 25,215 | 1.03 | 1.80 | 0.83 to 3.58 | . 10 | 594 | 59,943 | 0.99 | 1.87 | 0.87 to 3.77 | . 085 |
| MSH2 | 2 | 959 | 0.21 | 6 | 25,329 | 0.02 | 8.81 | 1.29 to 46.13 | . 032 | 12 | 60,137 | 0.02 | 10.46 | 1.67 to 46.60 | . 02 |
| MSH6 | 10 | 959 | 1.04 | 34 | 26,151 | 0.13 | 8.06 | 3.76 to 16.42 | <. 001 | 77 | 59,869 | 0.13 | 8.14 | 4.09 to 15.73 | <. 001 |
| PALB2 | 15 | 980 | 1.53 | 30 | 26,869 | 0.11 | 13.81 | 7.26 to 26.49 | <. 001 | 95 | 60,678 | 0.16 | 9.84 | 5.44 to 16.93 | <. 001 |
| TP53 | 5 | 1,007 | 0.50 | 18 | 26,789 | 0.07 | 7.40 | 2.63 to 20.44 | . 0012 | 23 | 60,674 | 0.04 | 13.13 | 4.76 to 33.47 | <. 001 | ${ }^{*}$ ExAC controls were restricted to non-Finnish Europeans and also excluded The Cancer Genome Atlas patient cases. $\dagger$ gnomAD was restricted to non-Finnish European and Ashkenazi Jewish controls.

Table A13. Comparisons of Mutation Carriers Among White Patients With PC Excluding Family History of Endometrial Cancer and Reference Controls

|  | Patients With PC |  |  | ExAC Controls* |  |  | Cancer Risk |  |  | gnomAD Controls ${ }^{\dagger}$ |  |  | Cancer Risk |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Gene | With <br> Mutations | Tested | Carrier Frequency (\%) | With <br> Mutations | Tested | Carrier Frequency (\%) | OR | 95\% CI | $P$ | With <br> Mutations | Tested | Carrier Frequency (\%) | OR | 95\% CI | $P$ |
| ATM | 38 | 1,047 | 3.63 | 102 | 26,644 | 0.38 | 9.64 | 6.55 to 13.99 | < . 001 | 210 | 60,559 | 0.35 | 10.64 | 7.41 to 15.09 | < . 001 |
| BRCA1 | 10 | 1,016 | 0.98 | 85 | 26,911 | 0.32 | 3.13 | 1.58 to 5.98 | . 0024 | 194 | 60,631 | 0.32 | 3.09 | 1.61 to 5.77 | . 002 |
| BRCA2 | 40 | 1,016 | 3.94 | 109 | 26,791 | 0.41 | 9.85 | 6.73 to 14.24 | < . 001 | 238 | 60,021 | 0.40 | 10.11 | 7.15 to 14.23 | < . 001 |
| CDKN2A | 13 | 911 | 1.43 | 9 | 24,312 | 0.04 | 38.80 | 16.64 to 94.30 | < . 001 | 15 | 56,858 | 0.03 | 54.39 | 23.61 to 114.24 | < . 001 |
| CHEK2 | 8 | 492 | 1.63 | 260 | 25,215 | 1.03 | 1.58 | 0.73 to 3.15 | . 18 | 594 | 59,943 | 0.99 | 1.65 | 0.77 to 3.33 | . 17 |
| MSH2 | 2 | 1,029 | 0.19 | 6 | 25,329 | 0.02 | 8.21 | 1.20 to 42.99 | . 036 | 12 | 60,137 | 0.02 | 9.75 | 1.56 to 43.42 | . 023 |
| MSH6 | 8 | 1,029 | 0.78 | 34 | 26,151 | 0.13 | 6.00 | 2.50 to 12.76 | <. 001 | 77 | 59,869 | 0.13 | 6.06 | 2.69 to 12.44 | <. 001 |
| PALB2 | 18 | 1,051 | 1.71 | 30 | 26,869 | 0.11 | 15.46 | 8.48 to 28.12 | < . 001 | 95 | 60,678 | 0.16 | 11.02 | 6.47 to 18.27 | <. 001 |
| TP53 | 5 | 1,082 | 0.46 | 18 | 26,789 | 0.07 | 6.89 | 2.45 to 19.02 | . 0016 | 23 | 60,674 | 0.04 | 12.21 | 4.43 to 31.15 | <. 001 | *ExAC controls were restricted to non-Finnish Europeans and also excluded The Cancer Genome Atlas patient cases.

$\dagger$ gnomAD was restricted to non-Finnish European and Ashkenazi Jewish controls.
Table A14. Comparisons of Mutation Carriers Among White Patients With PC Excluding Family History of Colorectal Cancer and Reference Controls

| Cancer Risk |  |  |
| ---: | :---: | ---: |
|  |  |  |
| OR | $\mathbf{9 5 \%}$ CI | $\boldsymbol{P}$ |
| 8.39 | 5.38 to 12.90 | $<.001$ |
| 2.00 | 0.78 to 4.72 | .110 |
| 9.86 | 6.58 to 14.40 | $<.001$ |
| 147.99 | 77.24 to 282.19 | $<.001$ |
| 0.86 | 0.23 to 2.57 | 1.00 |
| ND | ND | ND |
| 6.00 | 2.54 to 13.55 | $<.001$ |
| 13.62 | 7.93 to 23.03 | $<.001$ |
| 6.41 | 1.08 to 25.41 | .044 |

[^4]Table A15. Comparisons of Mutation Carriers Among White Patients With PC Excluding Family History of Melanoma and Reference Controls

|  | Patients With PC |  |  | ExAC Controls* |  |  | Cancer Risk |  |  | gnomAD Controls ${ }^{+}$ |  |  | Cancer Risk |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Gene | With <br> Mutations | Tested | Carrier Frequency (\%) | With <br> Mutations | Tested | Carrier Frequency (\%) | OR | 95\% CI | $P$ | With <br> Mutations | Tested | Carrier Frequency (\%) | OR | 95\% CI | $P$ |
| ATM | 35 | 1,064 | 3.29 | 102 | 26,644 | 0.38 | 8.72 | 5.90 to 12.89 | <. 001 | 210 | 60,559 | 0.35 | 9.63 | 6.64 to 13.76 | <. 001 |
| BRCA1 | 11 | 1,040 | 1.06 | 85 | 26,911 | 0.32 | 3.36 | 1.70 to 6.38 | <. 001 | 194 | 60,631 | 0.32 | 3.32 | 1.68 to 6.12 | < . 001 |
| BRCA2 | 36 | 1,040 | 3.46 | 109 | 26,791 | 0.41 | 8.64 | 5.79 to 12.60 | <. 001 | 238 | 60,021 | 0.40 | 8.87 | 6.20 to 12.65 | <.001 |
| CDKN2A | 6 | 921 | 0.65 | 9 | 24,312 | 0.04 | 17.65 | 6.24 to 53.09 | <. 001 | 15 | 56,858 | 0.03 | 24.76 | 9.44 to 63.37 | < . 001 |
| CHEK2 | 11 | 492 | 2.24 | 260 | 25,215 | 1.03 | 2.18 | 1.11 to 4.00 | . 02 | 594 | 59,943 | 0.99 | 2.27 | 1.17 to 4.09 | . 019 |
| MSH2 | 2 | 1,040 | 0.19 | 6 | 25,329 | 0.02 | 8.13 | 1.19 to 42.53 | . 036 | 12 | 60,137 | 0.02 | 9.64 | 1.54 to 42.96 | . 023 |
| MSH6 | 12 | 1,040 | 1.15 | 34 | 26,151 | 0.13 | 8.92 | 4.41 to 17.33 | <. 001 | 77 | 59,869 | 0.13 | 9.02 | 4.82 to 16.72 | <. 001 |
| PALB2 | 17 | 1,068 | 1.59 | 30 | 26,869 | 0.11 | 14.36 | 7.61 to 26.54 | <. 001 | 95 | 60,678 | 0.16 | 10.24 | 5.96 to 17.29 | <. 001 |
| TP53 | 6 | 1,100 | 0.55 | 18 | 26,789 | 0.07 | 8.14 | 3.17 to 20.64 | <. 001 | 23 | 60,674 | 0.04 | 14.43 | 5.74 to 36.18 | <. 001 | *ExAC controls were restricted to non-Finnish Europeans and also excluded The Cancer Genome Atlas patient cases.

$\dagger$ gnomAD was restricted to non-Finnish European and Ashkenazi Jewish controls.
Table A16. Comparisons of Mutation Carriers Among White Patients With PC Excluding Family History of PC and Reference Controls

|  | Patients With PC |  |  | ExAC Controls* |  |  | Cancer Risk |  |  | gnomAD Controls ${ }^{+}$ |  |  | Cancer Risk |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Gene | With <br> Mutations | Tested | Carrier Frequency (\%) | With <br> Mutations | Tested | Carrier Frequency (\%) | OR | 95\% CI | $P$ | With <br> Mutations | Tested | Carrier Frequency (\%) | OR | 95\% CI | $P$ |
| ATM | 24 | 667 | 3.60 | 102 | 26,644 | 0.38 | 9.55 | 6.03 to 15.07 | <. 001 | 210 | 60,559 | 0.35 | 10.55 | 6.78 to 16.30 | <. 001 |
| BRCA1 | 7 | 659 | 1.06 | 85 | 26,911 | 0.32 | 3.38 | 1.54 to 7.31 | . 0066 | 194 | 60,631 | 0.32 | 3.33 | 1.54 to 7.12 | . 006 |
| BRCA2 | 31 | 659 | 4.70 | 109 | 26,791 | 0.41 | 11.82 | 7.86 to 17.61 | < . 001 | 238 | 60,021 | 0.40 | 12.12 | 8.17 to 17.82 | <. 001 |
| CDKN2A | 6 | 568 | 1.06 | 9 | 24,312 | 0.04 | 28.67 | 10.13 to 86.16 | < . 001 | 15 | 56,858 | 0.03 | 40.24 | 15.33 to 102.89 | <. 001 |
| CHEK2 | 5 | 360 | 1.39 | 260 | 25,215 | 1.03 | 1.35 | 0.53 to 3.17 | . 43 | 594 | 59,943 | 0.99 | 1.40 | 0.55 to 3.38 | . 42 |
| MSH2 | 1 | 656 | 0.15 | 6 | 25,329 | 0.02 | 6.44 | 0.28 to 47.99 | . 16 | 12 | 60,137 | 0.02 | 7.64 | 0.36 to 47.69 | . 13 |
| MSH6 | 6 | 656 | 0.91 | 34 | 26,151 | 0.13 | 7.06 | 2.89 to 17.05 | <. 001 | 77 | 59,869 | 0.13 | 7.14 | 3.02 to 16.14 | <. 001 |
| PALB2 | 8 | 669 | 1.20 | 30 | 26,869 | 0.11 | 10.76 | 4.49 to 23.53 | < . 001 | 95 | 60,678 | 0.16 | 7.68 | 3.44 to 15.50 | <. 001 |
| TP53 | 4 | 696 | 0.57 | 18 | 26,789 | 0.07 | 8.57 | 2.66 to 24.50 | . 002 | 23 | 60,674 | 0.04 | 15.20 | 4.81 to 43.37 | <. 001 | Abbreviations: ExAC, Exome Aggregation Consortium; gnomAD, Genome Aggregation Database; OR, odds ratio; PC, pancreatic cancer.

*ExAC controls were restricted to non-Finnish Europeans and also excluded The Cancer Genome Atlas patient cases.


[^0]:    Abbreviation: PC, prostate cancer.

[^1]:    Jenna Lilyquist
    No relationship to disclose
    Steven N. Hart
    No relationship to disclose
    Jie Na
    No relationship to disclose

    Abigail Thomas
    No relationship to disclose

    Kun y. Lee
    No relationship to disclose
    Brigette Tippin Davis
    Employment: Ambry Genetics
    Stock and Other Ownership Interests: Ambry Genetics
    Research Funding: Ambry Genetics (Inst)
    Travel, Accommodations, Expenses: Ambry Genetics
    Mary Helen Black
    Employment: Ambry Genetics
    Research Funding: Ambry Genetics
    Travel, Accommodations, Expenses: Ambry Genetics
    Tina Pesaran
    Employment: Ambry Genetics
    Stock and Other Ownership Interests: Ambry Genetics
    Travel, Accommodations, Expenses: Ambry Genetics
    David E. Goldgar
    No relationship to disclose

    Jill S. Dolinsky
    Employment: Ambry Genetics

    Fergus J. Couch
    Consulting or Advisory Role: AstraZeneca
    Research Funding: GRAIL
    Other Relationship: Ambry Genetics

[^2]:    ${ }^{a}$ No. of patient cases tested on respective panel (four patient cases have both BRCAplus and PancNext panel, one has both BreastNext and PancNext panel, one has both GYNPlus and BreastNext panel, and one has both OvaNext and PancNext panel).
    ${ }^{\mathrm{b}}$ PALB2 included for panels ordered on or after October 1, 2015.
    ${ }^{\text {c }}$ STK11 removed for panel orders authorized on or after August 1, 2014.
    ${ }^{\mathrm{d}}$ BRCA1 and BRCA2 included for panels ordered on or after June 13, 2013.
    ${ }^{\mathrm{e}}$ NF1, RAD51D, CDKN2A, and CDK4 included for panels ordered on or after October 18, 2013.
    ${ }^{\mathrm{f}}$ EPCAM and GREM1 include reporting of selected gross deletions/duplications only.
    ${ }^{\mathrm{g}}$ BAP1, GREM1, POLD1, POLE, and SMARCA4 included for panels ordered on or after May 18, 2015.
    ${ }^{\mathrm{h}} F H$ and MEN1 included for panels ordered on or after May 18, 2015.
    ${ }^{\mathrm{i}}$ For MITF only, the status of the $\mathrm{c} .952 \mathrm{G}>\mathrm{A}(\mathrm{p} . \mathrm{E} 318 \mathrm{~K})$ alteration is analyzed and reported.

[^3]:    Abbreviations: ExAC, Exome Aggregation Consortium; OR, odds ratio; PC, pancreatic cancer.
    *ExAC controls were restricted to non-Finnish Europeans and also excluded The Cancer Genoma Atlas patient cases.

[^4]:    Abbreviations: ExAC, Exome Aggregation Consortium; gnomAD, Genome Aggregation Database; ND, not determined; OR, odds ratio; PC, pancreatic cancer.
    ${ }^{*}$ ExAC controls were restricted to non-Finnish Europeans and also excluded The Cancer Genome Atlas patient cases.

