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Abstract: Paragangliomas (PGLs) are rare neuroendocrine tumors that can develop from any para-
ganglion across the body. The carotid body is the most often location of PGLs in the head and
neck region. Carotid PGLs (CPGLs) are characterized by predominantly non-aggressive behavior;
however, all tumors have the potential to metastasize. To date, molecular mechanisms of paragan-
glioma progression remain elusive. We report a case of a 38-year-old woman with metastatic CPGL
manifesting as a recurrent tumor with lymph node metastasis. The tumor was fast-growing and
had a high Ki-67 proliferation index. Immunohistochemical (IHC) examination and whole-exome
sequencing were performed for both recurrent tumor and metastasis. A germline pathogenic splice
acceptor variant in the SDHB gene was found in the patient. Immunoreactivity of the SDHB subunit
was weak diffuse in both samples, indicating deficiency of the succinate dehydrogenase. Moreover,
the recurrent tumor exhibited loss of heterozygosity (LOH) at the SDHB locus, that is according
to Knudson’s "two-hit" hypothesis of cancer causation. We also identified a rare somatic promotor
mutation in the TERT gene associated with the tumor progression. Obtained results confirmed
the indicative role of the germline SDHB mutation for metastatic CPGLs, as well as the potential
prognostic value of the TERT promoter mutation.

Keywords: carotid paraganglioma; recurrent tumor; metastasis; SDHB; TERT; whole-exome sequenc-
ing; case report

1. Introduction

Head and neck (HN) paragangliomas (PGLs) are rare neuroendocrine tumors that
form from the paraganglia of the parasympathetic nervous system. HNPGLs are clas-
sified as carotid, vagal, middle ear (jugulotympanic), and laryngeal depending on their
localization [1], but can also occur at other rare sites of the head and neck [2]. Carotid
paragangliomas (CPGLs) are the most common type of HNPGLs that account for about
60%. They manifest as a predominantly painless slow-growing neck mass located at the
bifurcation of the carotid artery [3]. CPGLs can occur as bilateral (10–25%) and multiple
(10%) tumors [1]. Metastatic cases are officially diagnosed in 4–6%; however, all CPGLs
have the potential to metastasize [1].

HNPGLs can develop both as hereditary or sporadic tumors. Hereditary HNPGLs
may be a part of the paraganglioma syndromes (PGLs) 1-5 caused by germline mutations
in the following genes: SDHD (PGL1), SDHAF2 (PGL2), SDHC (PGL3), SDHB (PGL4), and
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SDHA (PGL5) [4]. There are other susceptibility genes, such as VHL, RET, NF1, TMEM127,
MAX, FH, and SLC25A11, that may also contribute to hereditary HNPGLs [5]. Mutations
in these genes predispose phenotypic differences at the molecular level (molecular clusters)
and clinical manifestations [6]. Thus, a mutation in the SDHB gene is associated with a
high risk of malignancy when SDHD mutation often results in multiple tumors [7]. The
evidence for other malignancy biomarkers such as variants in the TERT promotor is also
arising [8,9]. However, despite advances in the genetics of PGLs, one of the main challenges
remains the identification of markers for malignancy risk. Nowadays, the determination
of metastatic PGLs is based on the presence of metastasis. Data on potential markers for
diagnosis of metastatic PGLs and prediction of aggressive tumor behavior are limited and
controversial, meanwhile it plays an important role in the management of the disease.

We present a case of a 38-year-old woman harboring metastatic CPGL with metastasis
in a regional lymph node that was surgically removed and studied using whole-exome se-
quencing. Analysis of genetic changes occurring in tumors and metastasis within a patient
can improve understanding of potential mechanisms underlying the tumor progression.

2. Case Presentation

A 38-year-old woman was referred to the Vishnevsky Institute of Surgery, Ministry of
Health of the Russian Federation with a recurrent tumor on the left side of the neck. At
medical history, she reported neck swelling and left side neck mass diagnosed at 18 years
old by herself. She described the fast growth of the neck mass during a year, which was
then removed in a local hospital. Seventeen years after the surgery, a fast-growing neck
mass developed on the same site. The tumor irregular in shape was surgically resected
with the adjacent lymph nodes. The larynx and digastric muscle were adjacent to the
tumor medially, dystrophic sternocleidomastoid muscle—laterally, spinous processes of
2–3 cervical vertebrae—from behind. The tumor went beyond the corner of the lower
jaw, adjoining the lower pole of the parotid gland, from which it was separated by an
acute way.

Histological and morphological examination of the resected recurrent tumor con-
firmed carotid paraganglioma (CPGL) (Figure 1, Supplementary Materials Figure S1). The
tumor was sized 37 × 30 ×45 mm, had a predominantly solid structure, and was char-
acterized by vascular invasion and invasion of surrounding tissue. Hematoxylin–eosin
(H & E) staining showed a Zellballen structure that is typical for paragangliomas. Chief
tumor cells exhibited positive staining for chromogranin A and synaptophysin indicating
a neuroendocrine tumor. S100 protein was expressed in sustentacular cells. The result of
immunostaining for cytokeratin AE1/AE3 was negative. Histological examination also
revealed metastasis in an adjacent lymph node with the same structure and expression of
neuroendocrine markers (Figure 1, Supplementary Materials File S1—Figure S1). The Ki-67
proliferative activity in the recurrent tumor was 20%.

Immunohistochemistry (IHC) analysis of four succinate dehydrogenase subunits
(SDHA, SDHB, SDHC, and SDHD) was performed for both tumor and metastasis. IHC
staining was carried out and interpreted as described in [10]. Both samples showed
weak-diffuse SDHB staining (Figure 2). All reactions for SDHA, SDHC, and SDHD were
immunopositive (Supplementary Materials File S1—Figure S2).
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Figure 1. Histologic and immunohistochemical sections of recurrent tumor and metastasis. Hematoxylin–eosin staining of
the tumor (a) and lymph node (b) tissues displays a specific “Zellballen” growth pattern. Chromogranin A antibodies stain
chief cells in the tumor (c) and metastasis (d).400×magnification for (a) and (c) and 100×magnification for (b) and (d).

Figure 2. Immunohistochemical examination showed weak diffuse SDHB staining in (a) recurrent tumor and (b) metastasis
of the patient. Magnification 400×.

Genetic testing was performed for the patient after obtaining informed consent using
whole-exome sequencing. The DNA from tumor, metastasis, and normal lymph node
tissues were extracted with a High Pure FFPET DNA Isolation Kit (Roche, Switzerland).
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Exome libraries from all three tissue samples were prepared using a KAPA HyperEx-
ome (Roche, Switzerland) and sequenced on an Illumina NextSeq 500 System (USA) with
paired-end mode (76 × 2). Analysis of sequencing reads was performed as previously
described [5] with several improvements. Bowtie 2 was used for alignment and the latest
version of GATK4 (v. 4.2) was applied for base quality score recalibration. Variant calling
was performed with the GATK pipelines, HaplotypeCaller and Mutect2, for germline and
somatic variant detection, respectively. The pathogenicity of variants was predicted by cal-
culation of “pathogenicity score plus” based on the population frequency, site conservation,
summary weighted score across several prediction algorithms, and clinical significance.

Exome analysis revealed a germline pathogenic variant NM_003000: c.287-2A>G
(chr1: 17355233, rs1064794270) in the SDHB gene affecting an acceptor splice site at the
3′ end of an intron 3. The result was verified in the tumor using Sanger sequencing
(Figure 3). According to the ClinVar database and based on the criteria of the American
College of Medical Genetics and Genomics and the Association for Molecular Pathology
(ACMG-AMP) [11], the variant was classified as pathogenic. This germline mutation has
been previously found in one familial paraganglioma [12] and two HNPGLs (described
as 421-2A>G) [7]. Buffet et al. also identified this germline variant among a large cohort
of patients with PPGLs subjected to genetic testing [13]. We did not find any germline
variants in other HNPGL susceptibility genes.

To identify copy number variations (CNVs) in tumor and metastasis, we performed a
simple comparative (tumor vs. lymph node) beta allele frequency (BAF) analysis in the
following way. First, using variant calling data for the matched normal tissue, we choose
heterozygous single nucleotide polymorphisms (SNPs) that: (a) have total read depth > 25
for both normal and tumor samples, (b) have variant allele frequency (VAF) from 0.35 to
0.65, and (c) are annotated in dbSNP (v. 150). Next, we compared VAF values between the
tumor and matched normal samples using the exact Fisher’s test separately for each SNP.
The tumor-normal difference between VAF values (delta-VAF) greater than 0.2 or less than –
0.2, which passed Fisher’s test p < 0.05 threshold, were considered as significant. Finally, per-
chromosome VAF and delta-VAF plots were generated (Supplementary Materials File S1—
Figures S3 and S4). The same analysis was applied for the comparison of metastasis
vs. the lymph node (Supplementary Materials File S1—Figures S5 and S6). As a result,
deletion of the p-arm of chromosomes 1 and 11, as well as loss of chromosomes 14 and 21
were revealed in the recurrent tumor when no alterations were found in the metastasis
sample (Figure 4).

We also analyzed somatic mutations and mutational load in the recurrent tumor and
metastasis. Somatic missense mutations in the TOR1AIP1, KRT33B, COMMD2, ZNF367,
and TERT were found in both tumor and metastasis samples (Supplementary Materials
File S2). Missense variant in the HAT1 gene was observed only in metastasis. All variants
were characterized by low population frequency (≤0.01), high conservation score (Phast-
Cons and PhyloP), and were predicted as deleterious by many prediction tools. Variants
in most genes were previously detected in other cancers (Cosmic v. 70, v. 90, and ICGC).
Additionally, we calculated weighted mutational load (wML) depending on VAF according
to the previously reported algorithm [14]. We analyzed wML by three modes: “metasta-
sis/tumor vs. lymph node”, “metastasis/lymph node vs. tumor”, and “tumor/lymph
node vs. metastasis” (Supplementary Materials File S2). All comparisons demonstrated
high wML at low VAF that was progressively decreased when it reached 0.2 VAF. Thus,
most somatic variants with VAF < 0.2 are possibly sequencing errors or FFPE artifacts.
Under a setting threshold of VAF = 0.2, wML per megabase (Mb) in recurrent tumor and
metastasis was 0.260 and 0.037, respectively.
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Figure 3. Validation of the SDHB c.287-2A>G mutation with Sanger sequencing in the recurrent tumor. (a) Exome
sequencing data (variant nucleotides are marked by red color, forward and reverse reads present as pink and blue horizontal
lines, respectively). (b) Sanger sequencing chromatogram.
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Figure 4. Variant allele frequency (VAF) across chromosome 1, 11, 14, and 21 of recurrent tumor (orange dots) and lymph
node (blue dots) in a patient with CPGL.
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3. Discussion

In the literature, data on the incidence of recurrent HNPGLs are limited, and factors
associated with the tumor progression are unknown. Kevin et al. reported a 10.5% rate of
recurrence incidence for CPGLs highly associated with metastasis development (~70%) at
10 years of follow-up [15]. In the present case, relapse occurred 17 years after the initial
surgery that is in concordance with the reported median time to recurrence for HNPGLs,
18.4 years [15]. Unusually for PGLs, both primary and recurrent tumors of the patient have
been characterized by fast growth. The Ki-67 proliferation index of the recurrent tumor
was 20%. Several studies showed an association between a high Ki-67 index (>2%) and risk
of malignancy in PGLs [16–18].

Metastatic CPGLs develop in approximately 4–6% of cases [1] and are associated with
decreased survival of patients [19]. The risk of a metastatic tumor is greater for sympa-
thetic PGLs of extra-adrenal localization and is significantly lower for parasympathetic
HNPGLs [20]. Young age and familial disease have also been suggested to correlate with
a higher risk of malignancy [21]. In the present case, the primary tumor was diagnosed
in an 18-year-old woman who harbors germline pathogenic mutation in the SDHB gene
but without any history of familial disease. The presence of the germline mutation in
the SDHB gene was also confirmed by the IHC analysis that showed weak diffuse SDHB
staining in both recurrent tumor and metastasis indicating deficiency of mitochondrial
complex II [10,22,23].

Germline mutation in the SDHB gene is considered a key genetic marker indicating
an increased risk of aggressive behavior of PGLs. The incidence of metastatic tumors
in SDHB-mutated HNPGLs varies from 5.6% to 83% [24–26]. According to Knudson’s
“two-hit” hypothesis, inactivation of tumor suppressor gene in hereditary tumors is caused
by two hits that are germline mutation as the first one and somatic alteration leading
to complete loss of wild-type allele as the second dramatic event [27]. This concept can
be also applied for the understanding of PGL tumorigenesis. Burnichon et al. revealed
losses of heterozygosity (LOH) of driver tumor suppressor genes, including SDHB, in most
hereditary PGLs [28]. In our case, we found large deletion of the p-arm of chromosome 1
where the SDHB gene is located (Ensemble, 1p36.13). However, BAF analysis revealed
LOH at the SDHB locus only in recurrent tumor but not in metastasis. Moreover, no
somatic point mutations in the SDHB gene were found in metastasis. Thus, metastasis and
recurrent tumor could develop from different tumor clones that have different pathways
of the second SDHB allele inactivation. For example, promoter methylation could cause
wild-type allele inactivation in metastasis cells. Metastasis was also characterized by the
lower mutational load (0.037 in metastatic cells vs. 0.260 in the recurrent tumor, VAF = 0.2).

Somatic mutation profiling revealed several common variants in recurrent tumor
and metastasis. Identified promoter mutation in the TERT gene (NG_055467.1: g.586G>A
[C228T]) was previously detected in many tumors according to the ICGC database (ICGC
ID MU832963). Somatic promotor mutation is a common cause of TERT transcription
activation in cancer [29]. Overexpression of TERT was also shown in PGLs and was
frequently correlated with malignancy [30,31]. However, TERT activation in PGLs was
found to be rarely associated with promoter mutation (<1%) [30,32]. Despite this rarity, we
found hotspot somatic promotor mutation C228T in both recurrent tumor and metastasis
of the patient with CPGL indicating its importance in the disease progression. Moreover,
in the present case, the C228T mutation co-occurred with the SDHB germline variant
as in several previously reported studies on metastatic PGLs, further supporting their
association in SDHx-related tumors [8,9,30].

The somatic missense variant in the ZNF367 gene was earlier found in endometrioid
carcinoma and melanoma (COSMIC v. 90 ID COSV64546908). Knockdown of ZNF367 has
been shown to increase invasion and migration of adrenocortical, thyroid, and lung cancer
cells [33,34]. Moreover, elevated ZNF367 protein expression was observed in malignant
pheochromocytoma compared to the benign tumor and normal adrenal medulla [33].
Literature data and our findings suggest that ZNF367 may be involved in the malignization
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of PGLs. Among other somatically mutated genes found in both tumor and metastasis
samples, only KRT33B was previously observed in potential association with tumors of
nervous tissue, such as glioma (COSMIC v. 90 ID COSV52441330, ICGC ID MU4718621)
and ependymoma [35]. The spectrum of predicted somatic deleterious mutations in the
recurrent tumor was very similar to those in metastasis; a missense variant in one gene,
HAT1, was found in metastasis but not in the recurrent tumor. The HAT1 gene, encoding
for type B histone acetyltransferase, was shown to be widely involved in the promotion
of tumorigenesis and anti-cancer drug resistance [36]. The identified variant has been
previously observed in pancreatic and gastric cancer (ICGC ID MU1690271) but the effect
of this variant on protein structure and function has not been assessed.

4. Conclusions

The rarity of metastatic PGLs makes it difficult to optimize diagnostic and treatment
strategies for the disease. Metastatic PGLs are diagnosed only by the presence of paragan-
glionic cells in non-chromaffin organs. Despite several studies supposing a list of potential
markers for the risk of malignancy, reliable predictors for aggressive tumor behavior have
not been found. In the presented case of metastatic CPGL, we identified some of these
molecular characteristics associated with metastasis and recurrence, such as germline
mutation in the SDHB gene and LOH, high Ki-67 proliferation index, as well as somatic
promotor mutation in the TERT gene. This case confirmed that these alterations may serve
as potential indicators for the CPGL progression.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/cimb43030159/s1, Supplementary File S1: [Figure S1: Immunohistochemistry images for
Hematoxylin/Eosin, AE1/AE3, Synaptophysin, Chromogranin A, and S100 protein in recurrent
tumor and metastasis; Figure S2: Immunohistochemistry images for subunits of the SDH complex in
recurrent tumor and metastasis; Figure S3: Variant allele frequency (VAF) across all chromosomes of
recurrent tumor (orange dots) and lymph node (blue dots); Figure S4. Delta-Variant allele frequency
(VAF) across all chromosomes; Figure S5. Variant allele frequency (VAF) across all chromosomes of
metastasis (orange dots) and lymph node (blue dots); Figure S6. Delta-Variant allele frequency (VAF)
across all chromosomes]; Supplementary file 2: Somatic variants, Mutational load.
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