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Current platforms and novel 
instrumentation
The most widely disseminated robotic-assisted 
surgical platforms to date are those using multiple 
instrument arms, and consequently multiple inci-
sions for ports, such as the Intuitive da Vinci Si, 
X, and Xi devices. While multi-port architecture 
remains the most accessible and familiar to urolo-
gists across a variety of practice settings, the need 
to triangulate the ports strategically to maximize 
instrument range of motion and avoid collisions is 
a limitation, especially in the narrow confines of 
the deep pelvis. The da Vinci single port (SP) 
platform addresses some of these concerns by 
directing three double-jointed, independent arms 
through a 2.5 cm multichannel trocar from a sin-
gle incision.1 Further advantages include the abil-
ity to rotate the entire system completely while 

docked, visual feedback on the surgeon console of 
the location of each arm, and the ease of perform-
ing concurrent procedures (for example, com-
bined transabdominal and perineal dissection) 
due to the unobtrusiveness of the platform.2

Apart from the immediate benefits of fewer 
required incisions, which correspond to less mor-
bidity and improved cosmesis, as well as poten-
tially more rapid convalescence, a variety of pelvic 
pathology can be approached with the SP system, 
including posterior urethral or bladder neck sten-
oses, rectourethral fistula, or vaginoplasty.3,4 The 
operating distance of 15–25 cm for the instrument 
arms to articulate is ideal for a transabdominal 
approach to the deep pelvis. Where the target 
anatomy is closer to the abdominal wall than this 
distance, or in a ‘floating dock’ or ‘air dock’ 
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technique, using a GelPoint retractor and AirSeal 
effectively to create a surrogate for pneumoperi-
toneum (Figure 1) has been described and is sim-
ple to implement.5 Further limitations of the SP 
platform include more limited instrumentation 
relative to its multiport counterparts, in particular 
lacking a vessel sealer or near-infrared fluores-
cence (NIRF)-mode camera at the time of this 
publication. While the double-jointed instru-
ments facilitate dissection and suturing in narrow 
confines, less force can be applied correspond-
ingly with an individual arm. Due to the need to 
triangulate the instrument arms from a single tro-
car, countertraction can be problematic, poten-
tially necessitating the placement of an assistant 
trocar, or the use of external aids such as mag-
netic retractors.6,7 Nevertheless, with incremental 
improvements in the technology from both man-
ufacturers and practitioners, further workarounds 
or solutions to these issues may be expected in the 
near future.

Novel platforms produced by an array of manu-
facturers and industry-academic collaboratives 
are on the horizon for clinical deployment and 
may prompt a diversification of the current offer-
ings, from which surgeons will undoubtedly ben-
efit.8 Of particular note, the Virtuoso Surgical/
Vanderbilt concentric tube technology prototype, 
allowing for articulation of instruments from a 
fixed endoscope tip, is an exciting development 
which possesses striking implications for tradi-
tional lower urinary tract reconstruction owing to 
the potential for endoluminal surgery.9 The data 
underpinning these novel techniques are eagerly 

awaited and herald a bright future for surgical 
innovation.

Posterior urethra and bladder  
neck pathology
Robotic-assisted approaches to recalcitrant or 
refractory posterior urethral stenoses were devel-
oped in response to the sheer technical difficulty 
of visualization and precise suturing in the deep 
pelvis, as well as the close proximity of critical 
structures including the external urinary sphinc-
ter, cavernous nerves, and rectum. Maneuvers 
such as pubectomy and combined abdominoper-
ineal dissection may be required to facilitate anas-
tomosis. The functional outcomes of open 
reconstruction, even when technically successful 
(as quantified by urethral patency), demonstrate 
a high rate of de novo stress urinary inconti-
nence.10 Furthermore, extensive urethral mobili-
zation and bulbar artery transection are 
independently associated with an increased risk of 
artificial urinary sphincter (AUS) cuff erosion.11,12 
Collectively, the morbidity of these historical 
approaches may discourage providers from 
attempting definitive surgical management, and 
consequently patients may be deemed ‘unrecon-
structible’, with the end-stage options of repeated 
endoscopic procedures, chronic catheter drain-
age, or cystectomy and urinary diversion.

In the past several years, novel techniques to 
address this pathology have been described. 
These procedures combine improved articulation 
and precision, with modalities such as NIRF 
imaging, to facilitate mucosal anastomosis with 
excellent short and mid-term results. Table 1 
details the published series to date of robotic-
assisted reconstruction of bladder neck or poste-
rior urethral stenoses. For non-obliterative 
disease, a rectal dissection can be avoided by per-
forming anterior dissection only, with scar inci-
sion and advancement of well vascularized tissue 
in the form of a bladder flap or buccal mucosal 
graft (BMG) onlay.13,14 Where the urethral lumen 
or vesicourethral orifice is completely obliterated, 
concomitant transrectal ultrasonography and 
flexible cystourethroscopy can facilitate circum-
ferential dissection and excision of fibrotic tissue. 
For stenoses spanning the membranous urethra, 
combined robotic–perineal dissection can be  
used in the event distal urethral mobilization is 
required.15 The aforementioned techniques are 
significantly easier to perform with the working 

Figure 1.  Single-port robotic-assisted pyeloplasty with use of a ‘floating 
dock’ technique in a pediatric patient.
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space of the SP platform, which facilitates dissec-
tion and suturing under the pubic bone, and 
allows for concurrent endoscopic or transperineal 
manipulation (Figure 2). In terms of patency and 
continence, the short and mid-term outcomes 
reported thus far are highly encouraging.16 
Crucially, if a perineal dissection can be avoided, 
long-term durability of potential future AUS may 
be improved.

A similar approach may be taken for adjacent 
disease processes including rectourethral fistu-
lae, or if salvage prostatectomy is clinically indi-
cated. In these situations, the versatility of the 
robotic platform lies not only in the technical 
benefits it offers, but also in terms of adjunctive 
procedures such as the feasibility of minimally 
invasive flap harvest for vascularized tissue cov-
erage, and the possibility of multiple surgical 
approaches that are performed concurrently. 
Further, comparative studies of the long-term 
durability of these techniques are needed, espe-
cially with respect to operating efficiency and 
potential cost. In addition, stenosis-specific fac-
tors lending weight to the selection of one treat-
ment modality versus another need to be better 
delineated, to aid in the decision-making process 
(i.e. BMG onlay may not be as efficacious as 
bladder flap advancement in the setting of radi-
onecrosis or dystrophic calcifications).

Intracorporeal urinary diversions
With the recent publication of the RAZOR rand-
omized trial, in which robotic-assisted radical cys-
tectomy was demonstrated to be non-inferior to 
open radical cystectomy in terms of oncological 

outcomes, the safety of the robotic approach was 
underscored.17 Urinary diversion, however, was 
accomplished via an extracorporeal approach in 
this and other studies. The precision of robotic-
assisted ureteroenteric anastomosis, as well as 
decreased blood loss, lower insensible fluid loss, 
and more prompt recovery are potential advantages 
of intracorporeal diversions.18 Nevertheless, totally 
intracorporeal approaches have not been adopted 
widely to date, and ileal conduits constitute the 
majority of intracorporeal diversions.19 The learn-
ing curve is thought to account for some of the lack 
of widespread utilization; in a large single-center 
comparison of open, robotic extracorporeal, and 
intracorporeal diversion, the anastomotic stricture 
rate was greatest for patients undergoing 

Table 1.  Review of recent literature encompassing robotic-assisted lower urinary tract reconstruction.

Authors Pathology (N) Operative time 
(min)

Follow-up 
(months)

Patency (%) De novo 
SUI (%)

Granieri et al.13 BNC (6)
VUAS (1)

240   8   7 (100) 2 (33)

Musch et al.53 BNC (12) 178 23 10 (83) 0

Kirshenbaum 
et al.16

BNC (7)
VUAS (5)

180 14   9 (75) 2 (17)

Lavollé et al.54 VUAS (6) 108 19   6 (100) N/A*

Operative time and follow-up are presented as medians.
*Baseline continence status was not reported.
BNC, bladder neck contracture; SUI, stress urinary incontinence; VUAS, vesicourethral anastomotic stenosis.

Table 2.  Benchmark reconstructive procedures 
discussed in this paper.

Robotic-assisted procedure Year 
introduced

BNC/VUAS repair (MP) 2018

Intracorporeal neobladder (MP) 2003

Intracorporeal neobladder (SP) 2019

Ureteroplasty with BMG (MP) 2015

Davydov vaginoplasty (MP) 2019

Davydov vaginoplasty (SP) 2020

Vaginectomy (SP) 2020

Vesicovaginal fistula repair (MP) 2005

BNC, bladder neck contracture; MP, multiport; SP, single 
port; VUAS, vesicourethral anastomotic stenosis.
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intracorporeal diversion, but after 75 cases, this rate 
declined to significantly less than either extracor-
poreal or open procedures (4.9%).20 While opera-
tive volume influences operative time and the 
subsequent development of complications and 
readmissions, a reasonably high-volume robotic 
practice may have the appropriate infrastructure 
and personnel to support routine intracorporeal 
diversion.21 This approach may be particularly 
applicable to the construction of orthotopic neo-
bladder, as performing a tension-free, watertight 
urethroileal anastomosis may be a challenging step 
during open surgery. Multiple techniques have 
been described with the aim of maximizing intraop-
erative efficiency and teachability. The method first 
reported and consequently with the longest follow-
up is from the Karolinska group, in which the ure-
throileal anastomosis is performed prior to bowel 
detubularization and reservoir creation.22 However, 
several alternative orders of steps have been 
reported with similar short and mid-term data with 
respect to continence and stricture incidence. 
Larger studies with longer follow-up are warranted 
in order to define ideal parameters for this techni-
cally demanding operation.

The SP platform may also have a role to play in 
the realm of urinary diversion, not only in terms 
of reconstruction following radical cystectomy, 
as has been reported by Kaouk et al.,23 but also 
in populations with neurogenic or end-stage 
bladder. Grilo et al.24 reported a series of 10 
patients undergoing totally intracorporeal sup
ratrigonal cystectomy with augmentation cysto-
plasty, in which the median operative time was 

250 minutes, hospital stay was 12 days, and 
1 year functional and urodynamic outcomes 
were acceptable. Conceivably, within a high-vol-
ume robotic surgical practice, as refinements of 
the technique accrue, the intracorporeal 
approach may fit into a niche that benefits both 
providers and patients.

Upper urinary tract reconstruction
Laparoscopic repair of ureteral obstruction, 
reported first in 1992, has not been widely adopted 
despite advantages in terms of morbidity and cos-
mesis compared to open approaches, likely due to 
a steep learning curve for proficiency and limited 
instrumentation for precise dissection and sutur-
ing.25 These technical challenges become more 
apparent when confronting long strictures or when 
there is an irradiated or reoperative field. Multiple 
series have now demonstrated that robotic plat-
forms address these concerns satisfactorily, and 
serve as a viable alternative to open procedures, 
with demonstrated advantages in terms of intraop-
erative blood loss, postoperative pain and hospital 
stay.26,27 The cornerstone of the technical suc-
cesses reported to date leverage the advantages of 
enhanced articulation, three-dimensional vision, 
and the use of adjuncts such as indocyanine green 
(both intravascular, and for ureteral identification, 
intraureteral as in Figure 3) and flap interposition 
to facilitate the tension-free anastomosis of healthy, 
well vascularized tissues.28

While direct, head-to-head comparison of open 
versus robotic-assisted ureteral reconstruction 
may not be logistically feasible, the patency 
offered by robotic approaches is highly encourag-
ing even in a hostile field. The multi-institutional 
Collaborative of Reconstructive Robotic Ureteral 
Surgery (CORRUS) group recently reported 
outcomes of ureteroplasty specifically for radia-
tion-induced stenoses (32 patients, median 
length 2.5 cm) with 88% clinical and radio-
graphic success at 13 months.29 A quarter of the 
patients in that study were treated with an inno-
vative side-to-side non-transecting anastomosis, 
with putative advantages of minimal posterior 
dissection, avoiding transection of the ureteral 
plate, and preservation of the native ureteral ori-
fice. Slawin et al.30 elaborated on this technique 
in a study of 16 patients with distal ureteral 
obstruction, demonstrating 94% success at 
13 months with avoidance of potentially deleteri-
ous circumferential ureteral mobilization and 
dissection over the iliac vessels.

Figure 2.  Robotic-assisted approach to non-
obliterative vesicourethral anastomotic stenosis 
(VUAS) via anterior cystotomy, with cystoscope light 
and wire visible, and laparoscopic-guided needle 
used in hydrodissection.
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While ureteroureterostomy is ideal for the man-
agement of short unifocal stenoses, longer or 
more complex strictures traditionally required 
mobilization of either bladder flaps or downward 
nephropexy, or salvage procedures such as ileal 
ureteral interposition or renal autotransplant. 
For the treatment of mid and proximal ureteral 
strictures, intermediate term outcomes are now 
available. First described by Zhao et al.31 in 
2015, robotic ureteral reconstruction with BMG 
has matured as a treatment modality, with the 
most recent cohort of 54 patients achieving, for 
median stricture length of 3 cm, 87% success at 
28 months with minimal perioperative morbid-
ity.32 Critically, a third of the patients in this 
cohort had failed prior ureteral reconstruction. 
The methodology reported by the CORRUS 
group incorporates stricture location, length and 
preoperative luminal patency. A longitudinal 
anterior ureterotomy preserves the posterior ure-
teral plate and is treated with a BMG as an onlay 
repair. For total obliteration, an augmented 
anastomotic reconstruction is used in which 
ischemic tissue is excised, healthy ureteral plate 
is anastomosed posteriorly, and BMG covers the 
anterior defect. To support the repair, vasculari-
zation can be assessed with ICG, and flaps 
derived from omentum or perinephric fat can be 
used for coverage.33

A potential concern of ureteroplasty with BMG is 
harvest site morbidity, especially when treating 
long ureteral strictures. In response to this clinical 
need, Jun et al.34 reported a series of 13 patients 

who were treated for long (median length 6.5 cm) 
right-sided ureteral strictures with robotic appen-
diceal onlay or interposition. After intraoperative 
verification of stricture length, the appendix was 
mobilized with confirmation of its vascular pedi-
cle with intravenous ICG. Success was demon-
strated in 92% of renal units at 15 months 
follow-up. For complete obstruction, appendiceal 
interposition was utilized; non-obliterative stric-
tures were treated by detubularizing the appendix 
and performing ventral onlay (Figure 4). Notably, 
a third of the patients in this series had a history 
of pelvic radiation. While a long Boari flap could 
also have bridged similarly long defects, the 
resultant loss of functional bladder capacity may 
result in significant morbidity in this population.

The potential for innovation in the space of 
robotic-assisted upper urinary tract reconstruction 
is high, owing to advances in instrumentation and 
familiarity with surgical approaches, as knowledge 
of the outcomes of these techniques  
is disseminated further. The SP platform has hith-
erto not been applied widely to ureteral recon-
struction, likely due to less availability of the 
system and the lack of directly available NIRF 
imaging. However, recent reports have demon-
strated promise with respect to the management 
of adult and pediatric ureteropelvic junction 
obstruction with same-day discharge.35 An  
application of robotic technology which will 
likely become more accepted in the near future  
is the management of transplant ureteric stric-
tures. Most recently, Kim et al.36 described 

Figure 3.  Identification of the stump of the proximal 
ureter (U) during robotic reconstruction with the aid of 
intraluminal indocyanine green (ICG). The ureter had 
previously been ligated during colectomy and ICG was 
instilled per nephrostomy tube in order to locate it.

Figure 4.  Augmented anastomotic appendiceal onlay 
ureteroplasty for right proximal ureteral stricture. 
The ureteral plate (U) has been incised anteriorly for 
the onlay.

https://journals.sagepub.com/home/tau


Therapeutic Advances in Urology 13

6	 journals.sagepub.com/home/tau

robotic-assisted treatment of distal stenoses in five 
patients (mean length 2.5 cm). While only short-
term data are reported, all patients had successful 
outcomes, underscoring the reliability of the tech-
nique. While more follow-up is needed for this 
and other cohorts, robotic-assisted ureteral recon-
struction will undoubtedly continue to evolve as a 
useful and facile addition to the reconstructive 
armamentarium.

Gender-affirming surgery
As reconstructive urologists play an increasingly 
more prominent role in the multidisciplinary care 
of patients seeking gender-affirming surgery, 
robotic-assisted approaches have come to the 
fore, prompted by the goals of minimizing mor-
bidity while boosting the likelihood of successful 
reconstruction. Peritoneal Davydov flap augmen-
tation of traditional penile inversion vaginoplasty, 
first reported via a robotic assisted approach by 
Jacoby et al.37 in 2019, provides the advantages of 
creating a well vascularized neovaginal apex, 
additional length and depth of the neovaginal 
canal, anchoring to structures in the pelvis to mit-
igate the risk of neovaginal prolapse, and robotic-
assisted rectoprostatic dissection. At mid-term 
follow-up, depth appears to be preserved, with 
negligible risk of rectoneovaginal fistula; the use 
of a SP platform renders a simultaneous robotic–
perineal approach feasible and markedly reduces 
operative time as compared to multiport.4 The 
technique has been applied to revision vagino-
plasty as well since the potential hazards of revi-
sion surgery center on the rectal dissection.38 

Adjunctive measures such as intraoperative tran-
sectal ultrasound may be useful in this scenario.

For patients seeking phalloplasty, robotic-assisted 
vaginectomy results in reliable closure of the vagi-
nal canal and can be combined with staged ure-
thral reconstruction. Cohen et al.39 described a 
technique for simultaneous vaginectomy and gra-
cilis flap harvest. Via a transabdominal vaginot-
omy, the vaginal mucosa is dissected (Figure 5) 
and anteriorly is passed transperineally as a flap 
for tubularization. A gracilis flap buttresses this 
repair and is used to inset into the vaginal cavity 
to fill it. For the 16 patients in this cohort, at 
nearly 1 year follow-up, there was no develop-
ment of urethrocutaneous fistula. The impor-
tance of complete removal of vaginal mucosa is 
underscored by a report from the same group on 
robotic-assisted excision of vaginal remnant in 
patients presenting with lower urinary tract symp-
toms following phalloplasty with urethral length-
ening.40 Especially for patients with distal urethral 
obstruction, pressurized urine can be forced into 
an incompletely closed vaginal canal, which pre-
sents as a vaginal remnant acting as a urethral 
diverticulum. Together with urethroplasty of the 
distal stenosis as warranted, the robotic-assisted 
approach demonstrates complete resolution of 
urinary symptoms at medium-term follow-up.

Vesicovaginal fistula repair
Specialists in urological reconstruction may be 
involved in the repair of vesicovaginal fistula 
(VVF), which can result from obstructed labor, 
iatrogenic injury, or as a complication of abdomin-
opelvic radiation at rates reported between 0.3% 
and 2%.41 When the fistula is located distally, a 
transvaginal approach with coverage by vascular-
ized tissue is usually successful.42 However, for 
supratrigonal VVF, or those involving the ureters, 
a robotic-assisted approach may have advantages 
over traditional open repair in terms of precise 
identification of unhealthy tissue, ability to treat 
synchronous ureteral pathology in the manners 
described above, and the ability to mobilize the 
bladder wall as well as the peritoneal or omental 
flap for interposition. First described in 2005, 
robotic-assisted VVF repair is now well established 
in the literature, with a comprehensive review by 
Randazzo et al.43 of 19 studies demonstrating 
nearly a 100% resolution rate especially with more 
recent publications. Further delineation of the 
ideal flap for interposition, as well as the timing of 
robotic-assisted fistula repair, is needed.

Figure 5.  Robotic-assisted vaginectomy via 
transverse vaginotomy during gender-affirming 
staged phallic construction. The anterior vaginal 
mucosa has been delivered intraperitoneally to 
complete the distal dissection.
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Novel applications of robotic-assisted 
reconstruction
Multidisciplinary approaches to complex pathol-
ogy, including genital lymphedema, abdominal 
wall and perineal hernias, and pelvic flap coverage 
may warrant urological expertise, to which 
robotic-assisted modalities are a welcome addi-
tion. An array of minimally invasive iterations of 
previously highly morbid or technically challeng-
ing open operations has emerged specifically to 
address these clinical entities. For example, the 
mobilization of omentum for vascularized lymph 
node transfer historically was performed via lapa-
rotomy. Frey et al.44 reported a technique for 
omental free flap harvest in which the desired tis-
sue is mobilized off the transverse colon greater 
curvature of the stomach while preserving its 
blood supply. Intraoperative ICG confirms the 
direction of dissection and the viability of the 
resultant free flap, which is then delivered to the 
recipient vascular bed extracorporeally. While the 
aid of a microvascular surgeon is needed for the 
microvascular anastomosis, the robotic flap har-
vest can be accomplished with either the multi-
port or single port platform.

A pedicled rectus abdominis flap, which similarly 
occasions significant morbidity if performed open 
due to the need for a large abdominal scar and 
potential for hernia, can be harvested robotically 
as described by Hammond et al.45 The applica-
tion here is in the setting of abdominoperineal 
resection, to provide vascularized coverage of 
dead space: via a peritoneal incision the posterior 
rectus sheath alone can be opened, the rectus 
body separated from the anterior sheath and 
mobilized to the level of the inferior epigastric 
artery, yielding a long muscle flap which easily 
reaches the deep pelvis. One potential application 
of rectus flaps is the management of perineal her-
nias. Traditional open mesh-based repairs of this 
entity are technically demanding and suffer from 
a high rate of recurrence. A putative advantage of 
a robotic-assisted approach, first described in a 
case report by Rajabaleyan et al.,46 is the relative 
ease of precise suturing with magnification in the 
pelvis. Similarly, robotic-assisted management of 
ileal conduit parastomal hernias has been reported 
with excellent short-term outcomes and no erosion 
of mesh into the bowel segment, or need for stoma 
re-siting.47 For these and other pathologies, the 
intersection of urology, colorectal surgery and 
plastic surgery will continue to yield novel and effi-
cacious surgical approaches which can be adapted 
and improved via robotic techniques. Table 2 

demonstrates benchmark procedures described in 
this review.

Training and education
While learning curves for certain benchmark pro-
cedures such as robotic radical prostatectomy or 
cystectomy are established, as discussed previ-
ously, structured curricula and training models as 
they apply specifically to reconstruction have not 
yet been published. Dual-console based systems 
may lend themselves to real-time feedback and 
technical guidance.48 However, the SP platform 
does not presently feature this. Studies to date 
suggest that the learning curve for most proce-
dures (albeit in expert hands) may be similar to 
that of multiport robotic surgery.2,49 The cogni-
tive burden of operating the SP platform has also 
been evaluated, with findings again comparable 
to more established approaches. With further dis-
semination of various techniques and approaches 
for robotic-assisted reconstruction, standardizing 
the training and grading of surgeons will become 
paramount – as well as the environment in which 
learning occurs.50

Limitations of robotic platforms
In addition to the need for standardized training, 
currently available robotic platforms have both 
device-inherent and systemic limitations. In partic-
ular, lack of haptic feedback and prolonged opera-
tive times, especially early in the learning curve of 
any robotic-assisted procedure, may pose impedi-
ments to efficient operations. While no studies to 
date have specifically evaluated whether tactile 
feedback is in fact necessary to attain robotic surgi-
cal proficiency, future iterations of these platforms 
may include such functionality and may improve 
safe tissue handling.51 A further gap in the evidence 
base is the lack of comparative analyses directly 
evaluating robotic versus open procedures, obscur-
ing exact comparison of complications and out-
comes, not to mention downstream considerations 
such as reimbursement and overall financial impact 
to healthcare systems. Nevertheless, trials such as 
RAZOR are an excellent model to follow for future 
investigation. In particular, the reconstructive sur-
gical space lends itself to a toolbox or armamen-
tarium mentality: surgeons avail themselves of 
techniques and instrumentation with which they 
are most proficient, and which can achieve the 
desired operative outcome as efficiently as possible. 
As more surgeons adopt robotic-assisted proce-
dures in their practice, critical questions may 
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include the possibility of degraded open surgical 
expertise, reduced cost-effectiveness and uncertain 
comparison of outcomes.52 While the initial investi-
gations detailed in this review are promising, only 
head-to-head comparative analysis will elucidate 
the overall value of robotic platforms in reconstruc-
tive urological procedures.

Conclusion
As robotic proficiency becomes more widespread, 
analogues and extensions of open procedures and 
operative maneuvers, previously perceived as 
technically challenging, will become more com-
monplace. Robotic-assisted procedures carry 
putative advantages in terms of anastomotic 
patency, identification and preservation of blood 
supply, and reduced perioperative morbidity. 
The role of the reconstructive expert who can lev-
erage both robotic and traditional techniques in 
the management of complex upper and lower uri-
nary tract pathology will be at the forefront of 
multidisciplinary management.
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