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Abstract
Ischemic post-conditioning (iPoCo) by coronary re-occlusion/reperfusion during immediate reperfusion after prolonged 
myocardial ischemia reduces infarct size. Mechanical manipulation of culprit lesions, however, carries the risk of coronary 
microembolization which may obscure iPoCo’s cardioprotection. Pharmacological post-conditioning with exogenous trii-
odothyronine (T3) could serve as an alternative conditioning strategy. Similar to iPoCo, T3 may activate cardioprotective 
prosurvival pathways. We aimed to study T3’s impact on infarct size and its underlying signal transduction. Hearts were 
isolated from male Lewis rats (200–380 g), buffer-perfused and subjected to 30 min/120 min global zero-flow ischemia/
reperfusion (I/R). In additional hearts, either iPoCo (2 × 30 s/30 s I/R) was performed or T3 (100–500 µg/L) infused at rep-
erfusion. Infarct size was demarcated with triphenyl tetrazolium chloride staining and calculated as percent of ventricular 
mass. Infarct size was reduced with iPoCo to 16 ± 7% vs. 36 ± 4% with I/R only. The maximum infarct size reduction was 
observed with 300 µg/L T3 (14 ± 2%). T3 increased the phosphorylation of protein kinase B and mitogen extracellular-
regulated-kinase 1/2, both key enzymes of the reperfusion injury salvage kinase (RISK) pathway. Pharmacological RISK 
blockade (RISK-BL) during reperfusion abrogated T3’s cardioprotection (35 ± 10%). Adult ventricular cardiomyocytes 
were isolated from buffer-perfused rat hearts and exposed to 30 min/5 min hypoxia/reoxygenation (H/R); reoxygenation 
was initiated without or with T3, respectively, and without or with RISK-BL, respectively. Maximal preservation of viabil-
ity was observed with 500 µg/L T3 after H/R (27 ± 4% of all cells vs. 5 ± 3% in time-matched controls). Again, RISK-BL 
abrogated protection (11 ± 3%). Mitochondria were isolated at early reperfusion from buffer-perfused rat hearts without or 
with iPoCo or 300 µg/L T3, respectively, at reperfusion. T3 improved mitochondrial function (i.e.: increased respiration, 
adenosine triphosphate production, calcium retention capacity, and decreased reactive oxygen species formation) to a similar 
extent as iPoCo. T3 at reperfusion reduces infarct size by activation of the RISK pathway. T3’s protection is a cardiomyocyte 
phenomenon and targets mitochondria.
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Introduction

In patients with acute myocardial infarction, the only way to 
salvage myocardium at risk is early reperfusion. Despite the 
successful implementation and use of percutaneous coronary 
interventions (PCI) in patients with acute ST-segment eleva-
tion myocardial infarction, their 1-year mortality remains 
at ~ 15% as reported in a recent large registry [65]. There-
fore, there is still an unmet need to protect myocardium at 
risk of infarction beyond the protection induced by early rep-
erfusion [23]. Myocardial damage is not only determined by 
ischemic, but also by reperfusion injury [6, 27, 67]. Cycles 
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of coronary re-occlusion/reperfusion at early reperfusion 
(ischemic post-conditioning; iPoCo) attenuate ischemia/
reperfusion (I/R) injury and reduce infarct size in preclini-
cal and clinical studies [19, 51, 64]. In patients with acute 
myocardial infarction, iPoCo is induced during primary PCI 
by repetitive short re-occlusions using an angioplasty bal-
loon after initial re-opening of the occluded coronary artery 
[25, 64]. However, the mechanical manipulation of culprit 
lesions carries the risk of coronary microembolization 
with subsequent injury [30], and iPoCo requires mechani-
cal manipulation. Such iatrogenic microembolization may 
obscure iPoCo’s cardioprotection [22]. Thus, pharmaco-
logical post-conditioning appears as an attractive alterna-
tive or additive strategy to induce cardioprotection [9]. In 
experimental models of myocardial infarction [12, 52], but 
also in patients with acute ST-segment elevation myocar-
dial infarction [57], exogenous triiodothyronine (T3) infu-
sion during reperfusion restored the reduced endogenous 
T3 levels and improved left ventricular (LV) contractile 
function. T3 is the most important endogenous biologically 
active thyroid hormone, and T3 replacement therapy aims to 
restore physiological T3 levels [16]. T3 in doses which result 
in supraphysiological plasma T3 levels during reperfusion 
also improved the recovery of coronary flow (CF) [4] and 
LV contractile function [53] in isolated perfused rat hearts 
with global I/R. Recovery of LV contractile function is cer-
tainly a clinically relevant endpoint, but mechanistically dif-
ficult to interpret, as it reflects loss of viable tissue (infarct 
size), the time-dependent recovery of reversibly injured 
myocardium (stunning) [28], and the potentially adaptive 
contractile function of remote myocardium. Thus, infarct 
size is a more robust endpoint to study cardioprotection [5, 
42]. Whether or not acute T3 treatment only improves LV 
contractile function or also reduces infarct size is currently 
unknown. T3 induces multiple genomic and non-genomic 
effects in the heart and vascular system [32, 56, 60], and 
the acute T3-induced effects must primarily rely on non-
genomic effects.

Several intracellular survival pathways have been identi-
fied in the context of cardioprotection and conceptually cat-
egorized as the nitric oxide synthase (NOS)/protein kinase 
G pathway, the reperfusion injury salvage kinase (RISK) 
pathway, and the survival activating factor enhancement 
(SAFE) pathway [27]. These pathways transmit their car-
dioprotective signal to end-effectors, notably the mitochon-
dria [8]. Phosphatidylinositol(4,5)-bisphosphate-3-kinase/
protein kinase B (PI3K/AKT) [50] and mitogen extracel-
lular-regulated kinases (ERK)1/2 are key enzymes of the 
RISK pathway [24, 61]. Downstream of RISK activation, 
the phosphorylation and thus inhibition of glycogen synthase 
kinase 3β (GSK-3β) was proposed to inhibit mitochondrial 
permeability transition pore (mPTP) opening, and thus to 
mediate cardioprotection [34]. In rats, with permanent left 

anterior descending coronary artery occlusion, chronic T3 
and thyroxine treatment over 12 days starting at day three 
after occlusion resulted in a decreased myocardial AKT 
expression and an increased AKT phosphorylation [50]. 
Also, in isolated rat aortic vascular smooth muscle cells, 
acute T3 treatment activated PI3K/AKT [7]. In the myo-
cardium, however, none of the classical cardioprotective 
pathways has yet been reported to be activated by acute T3 
treatment. T3 interacts with membrane integrin receptors, 
which mediate the activation of ERK1/2 [3, 47]. Therefore, 
T3 is hypothesized to activate the classical cardioprotective 
RISK pathway. T3 also targets mitochondria: T3 given dur-
ing reperfusion in isolated perfused rat hearts re-inforced 
mitophagy through a phosphatase tensin homolog-induced 
kinase 1/parkin-dependent mechanism [4, 11].

We have now studied the impact of exogenous T3, given 
at reperfusion, on infarct size in isolated buffer-perfused rat 
hearts subjected to global zero-flow I/R. In rat myocardium, 
cardioprotection by ischemic and pharmacological condi-
tioning activates RISK and/or SAFE pathways [18, 21, 43, 
58, 59]. We therefore focused on these pathways and on 
GSK-3β as a downstream target of the RISK pathway and 
analyzed them in myocardial tissue samples. To identify 
cardioprotection at the cardiomyocyte level, isolated adult 
rat ventricular cardiomyocytes were subjected to hypoxia/
reoxygenation (H/R) without or with T3 during reoxygena-
tion. The causal involvement of RISK and/or SAFE acti-
vation was addressed by use of pharmacological blockers. 
The impact of T3 on mitochondrial respiration, adenosine 
triphosphate (ATP) production, reactive oxygen species 
(ROS) formation and calcium retention capacity (CRC) as 
potential effectors of cardioprotection was also assessed. We 
used iPoCo as a reference for the cardioprotection by T3.

Methods

All data of the present exploratory study are available in 
the article and its Online Resources. Experiments were per-
formed between December 2019 and December 2020 using 
contemporary block randomization. We have recently shown 
that in our rat model sex has no impact on the cardioprotec-
tion by ischemic conditioning [39]. Therefore, only male 
Lewis rats (200–380 g, 2.0–3.5 months, Central Animal 
Laboratory, University of Duisburg-Essen, Essen, Germany) 
were used in the present study. The experimental protocols 
in isolated buffer-perfused rat hearts, cardiomyocytes and 
mitochondria as well as the methods for the measurement 
of hemodynamics and quantification of infarct size and car-
diomyocyte viability were standard [5, 42] and have been 
described in detail previously [15, 40, 63]. For details, see 
Online Resources. Unless otherwise specified, materials 
were obtained from Sigma-Aldrich (Deisenhofen, Germany).
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Isolated buffer‑perfused hearts

To study whether or not T3 reduces infarct size, isolated 
buffer-perfused rat hearts were subjected to I/R. Hearts 
were reperfused with Krebs–Henseleit buffer. Exogenous 
T3 was added in increasing concentrations (100, 200, 
300, 500 µg/L) to determine the T3 concentration which 
maximally reduced infarct size. This T3 concentration 
(300 µg/L) was then used in the following experiments to 
analyze the potential activation of cardioprotective sign-
aling pathways: to block RISK activation (RISK-BL) the 
PI3K blocker wortmannin (1 µmol/L) and the mitogen 
extracellular-regulated-kinase (ERK)1/2 blocker U0126 
(1 µmol/L) were added to the perfusion buffer. To dis-
tinguish between activation of the RISK pathway kinases 
PI3K and ERK1/2, experiments with T3 at reperfusion 
were repeated under either PI3K blockade (PI3K-BL) 
or ERK1/2 blockade (ERK-BL). The signal transducer 
and activator of transcription (STAT)3 blocker stattic 
(1 µmol/L) was used to block SAFE pathway activation 
(SAFE-BL). T3 was dissolved in NaOH (40  mmol/L, 
final dilution of at maximum 1:10,000 in the perfusion 
buffer). Blockers were dissolved in dimethylsulfoxide 
(final dilution in the perfusion puffer 1:10,000). The 
blocker concentrations have been previously established 
in a comparable experimental setup; RISK-BL abrogated 
the increased phosphorylation of AKT1/2/3Ser473 and 
ERK1/2Thr202–Tyr204/Thr185–Tyr187 induced by cardioprotec-
tive maneuvers in rat myocardium [62, 63]. The solvents 
NaOH and dimethylsulfoxide per se had no impact on 
infarct size. T3’s cardioprotection was compared to that 
induced by iPoCo.

Experimental preparation and protocols

Rats were sacrificed, their hearts isolated, immediately 
mounted on a Langendorff-apparatus and perfused with 
modified Krebs–Henseleit buffer at constant pressure of 
65–70 mmHg. CF and LV developed pressure (LVDP) 
were continuously recorded, and heart rate was kept at 360 
beats per min by right atrial pacing [38]. After completion 
of reperfusion, myocardial biopsies were taken from the 
heart’s apex (~ 10–20 mg) and quickly frozen in liquid 
nitrogen for later protein analysis by western blot. Infarct 
size was demarcated by triphenyl tetrazolium chloride 
staining and calculated as percent of the sum of left and 
right ventricular mass (% of ventricular mass). For details, 
see Online Resources, material section.

Preparations were allowed to stabilize for 10–20 min, 
before baseline values for CF and LVDP were recorded. 
Block randomization with sealed envelopes was then used 

for the allocation of isolated buffer-perfused hearts to the 
following groups (Fig. 1a):

I/R: Ischemia was induced globally by stopping coronary 
flow for 30 min followed by 120 min reperfusion, prior to 
measurement of infarct size (n = 10).

I/R + iPoCo: After 30 min ischemia, iPoCo was induced 
30 s after the onset of reperfusion by two cycles of 30 s full 
stop of perfusion and 30 s reperfusion, and reperfusion was 
then continued for 118 min (n = 15).

I/R + T3: After 30 min ischemia, the perfusion buffer 
was switched to modified Krebs–Henseleit buffer with T3 
(100, n = 12; 200, n = 13; 300, n = 12; 500, n = 11; in µg/L). 
Experiments with blockers of the RISK and SAFE pathway 
(I/R + T3 + PI3K-BL, n = 10; I/R + T3 + ERK-BL, n = 10; 
I/R + T3 + RISK-BL, n = 9; I/R + T3 + SAFE-BL, n = 10), 
respectively, were performed with 300 µg/L T3, because this 
T3 concentration induced the maximal infarct size reduction.

Phosphorylation of cardioprotective proteins

Protein phosphorylation was analyzed in biopsies taken 
from the isolated buffer-perfused hearts after 120 min rep-
erfusion. From hearts with I/R, I/R + iPoCo or I/R + T3 
(300 µg/L), n = 8 myocardial tissue biopsies, respectively, 
were randomly selected to have them all analyzed on the 
same gel/membrane (Online Resources, Online Fig. 1). 
Myocardial tissue biopsies were homogenized and pro-
tein aliquots were electrophoretically separated on precast 
stain-free 12% (for AKT1/23, ERK1/2 and STAT3) or 7.5% 
(for GSK-3β) sodium dodecyl sulfate polyacrylamide elec-
trophoresis gels (BioRad, Hercules, USA). In preliminary 
experiments, for each analyzed protein and its phosphoryl-
ated form, the combined linear range had been determined 
according to the manufacturer’s protocol [55], and the 
respective protein quantity within the linear range was then 
used for western blotting. Total protein fluorescence was 
activated by ultraviolet light exposition, imaged (Gel Doc 
EZ system, Bio Rad) and visually examined for equal load-
ing. Proteins were transferred to 0.45 µm low fluorescence 
polyvinylidene difluoride membranes (Merck, Chemicals 
GmbH, Darmstadt, Germany). Membranes were cut into 
three parts and then incubated with primary antibodies 
directed against the phosphorylated forms of AKT1/2/3Ser473, 
ERK1/2Thr202-Tyr204/Thr185-Tyr187, GSK-3βSer9, or STAT3Tyr705. 
Membranes were then incubated with the respective antibod-
ies directed against the total forms of AKT1/2/3, ERK1/2, 
GSK-3β or STAT3, respectively, before adding the second-
ary antibodies. Fluorescence signal intensity was imaged 
using the LI-COR Biosciences infrared imaging system 
(LI-COR Biosciences, Lincoln, USA). Detected signals 
were analyzed with the LI-COR Biosciences Empiria® stu-
dio software (version 1.3.0.83). Fluorescence signal inten-
sity of each phosphorylated protein was normalized to the 
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(a)

(b)

(c)

Fig. 1   Experimental groups and protocols. ERK-BL mitogen extra-
cellular-regulated-kinase phosphorylation blockade, H/R hypoxia and 
reoxygenation, iPoCo ischemic post-conditioning, I/R ischemia and 
reperfusion, PI3K-BL phosphatidylinositol(4,5)-bisphosphate-3-ki-
nase blockade, RISK-BL reperfusion injury salvage kinase pathway 

blockade, SAFE-BL survival activating factor enhancement pathway 
blockade, T3 triiodothyronine, TC time control, TMP time-matched 
perfusion, TTC​ infarct size demarcation by triphenyl tetrazolium 
chloride staining
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respective signal of the total protein form. For details, see 
Online Resources.

Isolated adult ventricular cardiomyocytes

To identify whether or not the protection by exogenous T3 
is a cardiomyocyte phenomenon, rats were sacrificed, hearts 
buffer-perfused, and adult ventricular cardiomyocytes iso-
lated by enzymatic digestion. Cardiomyocytes were isolated 
and kept in normoxic buffer for 5 min before viability was 
determined at baseline. Experimental set 1 (Fig. 1b): cardio-
myocytes from each heart were divided into H/R and time 
control (TC) groups. Hypoxia was induced for 30 min by 
exposing cardiomyocytes to hypoxic, glucose-free buffer, 
pH adjusted to 6.5, and sealing with mineral oil; cells were 
kept in solution where they sediment; reoxygenation was 
induced by removal of oil and hypoxic buffer and adding 
of reoxygenation buffer for 5 min. In TC experiments, car-
diomyocytes were exposed to normoxic buffer for 65 min. 
The viability of cardiomyocytes was quantified after 5 min 
(baseline) and at 65 min after H/R and TC, respectively, in 
all groups and expressed as the percentage of rod-shaped, 
trypan blue-negative cardiomyocytes over the total number 
of cells. To evaluate the impact of T3 on cardiomyocyte via-
bility, T3 (100, 200, 300, 500 µg/L) was added to the hypoxia 
buffer at 25 min hypoxia and to the reoxygenation buffer, 
and in TC groups to normoxic buffers, respectively. Experi-
ments with different T3 concentrations were performed to 
determine the T3 concentration that maximally preserved 
viability. This T3 concentration (500 µg/L) was then used 
for subsequent blocker experiments in experimental set 2: 
again, cardiomyocytes from each heart were divided into 
H/R and TC groups. Cardiomyocytes were incubated with 
T3 (500 µg/L) without or with PI3K-BL, ERK-BL, RISK-BL 
or SAFE-BL, respectively. Blockers were added to the buff-
ers throughout the whole experiment. T3 and blockers were 
dissolved and used in the same concentrations as described 
above. NaOH and dimethylsulfoxide per se had no impact on 
cardiomyocyte viability. For details, see Online Resources.

Isolated mitochondria

To verify whether or not there is a direct effect of T3 on 
mitochondria, in experimental set 1 (Fig. 1c) mitochondria 
were isolated from naïve hearts or buffer-perfused hearts 
with I/R and incubated with 300  µg/L T3 or 4  µmol/L 
NaOH, respectively, in vitro for 10 min. Mitochondrial 
adenosine diphosphate (ADP, 0.4  mmol/L)-stimulated 
complex I respiration, complex IV respiration after addi-
tion of N,N,N,N′-tetramethyl-p-phenylenediamine (TMPD, 
300 μmol/L) and ascorbate (3 mmol/L) and maximal uncou-
pled oxygen uptake in the presence of carbonyl cyanide-
p-trifluoro-methoxyphenyl-hydrazone (FCCP, 30 nmol/L) 

were measured with a Clark type electrode (Strathkelvin, 
Glasgow, UK). Mitochondrial ATP production was meas-
ured using ATP assay mix and compared to ATP standards 
by spectrometry (F-7100, Hitachi High-Tech, Krefeld, Ger-
many). Mitochondrial ROS formation was measured using 
the amplex™ red hydrogen peroxide assay (Thermo Fisher 
Scientific, Waltham, USA). CRC was determined using glu-
tamate/malate as substrates in the presence of ADP. Cal-
cium green™-5N (Thermo Fisher Scientific) was used to 
measure the extramitochondrial calcium concentration in a 
spectrophometer. Pulses of CaCl2 (5 nmol/L) were added 
(1/min) until a rapid increase in calcium green fluorescence 
indicated mPTP opening [15]. Cyclosporine A delays mPTP 
opening by interaction with cyclophilin D to keep the pore 
closed. Therefore, additional measurements with cyclo-
sporine A (10 µmol/L) served as a positive control [1, 15].

In experimental set 2 (Fig. 1c) the protocols as in groups 
I/R, I/R + iPoCo, and I/R + T3 (300 µg/L) were repeated 
(n = 8, each), and reperfusion was stopped after 10 min. 
For the respective control experiments, hearts were per-
fused for additional 30 min after baseline values for CF 
and LVDP had been recorded, followed either by 10 min 
perfusion without (time-matched perfusion, TMP, n = 8) or 
with 300 µg/L T3 (TMP + T3, n = 8). Mitochondria were 
isolated at 10 min reperfusion or at the corresponding time 
point in TMP experiments, respectively, before analysis of 
mitochondrial function, as described above. For details, see 
Online Resources.

Statistics

Investigators performing experiments in isolated buffer-
perfused hearts, cardiomyocytes, and mitochondria and 
analyzing infarct size and time courses of CF and LVDP 
in isolated buffer-perfused hearts, cardiomyocyte viabil-
ity and mitochondrial respiration, ATP production, ROS 
formation and CRC were blinded with respect to group 
assignment and treatment. Investigators analyzing data 
sets were blinded with respect to the protocols. Investi-
gators who performed iPoCo and investigators who ana-
lyzed CF and LVDP in isolated buffer-perfused hearts 
with iPoCo could not be blinded, since iPoCo impacts 
on CF and LVDP. The Kolmogorov–Smirnov test was 
used to test normality for all data sets. The assumption 
of normality was confirmed for all analyzed data sets, 
except for the protein fluorescence signal intensity of 
GSK-3β. Data are presented as means ± standard devia-
tions or as median [interquartile range]. Time courses 
of CF and LVDP in isolated buffer-perfused hearts were 
analyzed by two-way (time, group) ANOVA for repeated 
measures. One-way ANOVA was used to analyze CF 
and LVDP in isolated buffer-perfused hearts at baseline, 
infarct size in isolated buffer-perfused rat hearts, viability 
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in isolated cardiomyocytes, mitochondrial respiration, 
ATP production and ROS formation in mitochondria 
and fluorescence signal intensity of protein phospho-
rylation (AKT1/2/3Ser473, ERK1/2Thr202-Tyr204/Thr185-Tyr187, 
STAT3Tyr705) in myocardial biopsies. Individual mean 
values of data sets were compared by Fisher’s least-
significant-difference post-hoc tests when ANOVA indi-
cated a significant difference (SigmaStat 3.5, Erkrath, 
Germany). One-way Kruskal–Wallis ANOVA on ranks 
with Tukey’s multiple comparisons procedures was 
used to analyze the signal intensity of GSK-3β phos-
phorylation. Differences were considered significant at 
the level of p < 0.05, and exact p values are given for 
p values when ≥ 0.01 for infarct size, cardiomyocyte 
viability, functional parameters of isolated mitochon-
dria and fluorescence signal intensity of phosphorylated 
AKT1/2/3Ser473, ERK1/2Thr202-Tyr204/Thr185-Tyr187, GSK-
3βSer9 and STAT3Tyr705.

Results

Coronary flow, left ventricular function, infarct size 
and cardioprotective proteins

Baseline values for CF and LVDP were not different 
between groups (Online Resources, Online Tables 1 and 
2). The recovery of CF at 10 min reperfusion was bet-
ter with I/R + iPoCo than with I/R; whereas, I/R + T3 
(100–500  µg/L) had no beneficial effect on CF. With 
I/R + T3 (500 µg/L), the recovery of LVDP during reperfu-
sion was improved compared to I/R and similar to that with 
I/R + iPoCo. With I/R, infarct size was 36 ± 4% (Fig. 2a), 
and it was less with I/R + T3 (100 µg/L T3: 27 ± 15%; 
200 µg/L T3: 24 ± 8%; 300 µg/L T3 14 ± 2%; 500 µg/L 
T3: 18 ± 6%, Fig. 2a). Infarct size reduction with I/R + T3 
(300 and 500 µg/L) was similar to that with I/R + iPoCo 
(16 ± 7%, Fig. 2a). The myocardial levels of phosphoryl-
ated AKT1/2/3Ser473, ERK1/2Thr202-Tyr204/Thr185-Tyr187 and 
GSK-3β normalized to their respective total protein, were 
higher with I/R + T3 (300 µg/L) and with I/R + iPoCo, 
respectively, than with I/R (Fig. 3a–c). The levels of phos-
phorylated STAT3Tyr705, normalized to total STAT3 pro-
tein, were not different between groups (Fig. 3d).

In hearts subjected to I/R without T3 at reperfusion, 
RISK-BL, but not SAFE-BL, impaired the recovery of 
LVDP during reperfusion (Online Resources, Online 
Table 1). The blockers per se had no impact on infarct 
size (I/R + RISK-BL: 34 ± 9%; I/R + SAFE-BL: 32 ± 5%, 
Fig. 2b). Infarct size reduction by 300 µg/L T3 at reper-
fusion was abrogated by PI3K-BL, ERK-BL and RISK-
BL, respectively (35 ± 12%; 29 ± 12%; 35 ± 10%, Fig. 2b). 

SAFE-BL had no impact on T3’s infarct size reduction 
(16 ± 5%, Fig. 2b).

Viability of isolated cardiomyocytes

The yield of viable cardiomyocytes was > 65% at baseline. 
After H/R, only 7 ± 2% of cardiomyocytes remained viable 
(Fig. 4a). The incubation with 100 µg/L T3 at reoxygenation 
had no impact on cardiomyocyte viability (7 ± 2%, Fig. 4a); 
whereas, the incubation with 200, 300 and 500 µg/L at 
reoxygenation preserved cardiomyocyte viability concen-
tration-dependently (11 ± 4%; 15 ± 4%; 23 ± 6%, Fig. 4a). 
In TC experiments, the mean viability decreased by only 
6 ± 2% (Fig. 4a). Incubation with T3 had no impact on car-
diomyocyte viability in TC experiments, irrespectively of 
its concentration (Fig. 4a). Maximal protection of cardio-
myocytes was induced by incubation with 500 µg/L T3 at 
reoxygenation. Therefore, 500 µg/L T3 was used in further 
experiments.

Also in blocker experiments, the yield of viable cardio-
myocytes was > 65% at baseline. After H/R, only 5 ± 3% 
of cardiomyocytes remained viable (Fig. 4b). RISK-BL or 
SAFE-BL per se had no impact on cardiomyocyte viabil-
ity after H/R (Online Resources, Online Fig. 2). PI3K-BL, 
ERK-BL and RISK-BL, respectively, attenuated the pro-
tection by 500 µg/L T3 (18 ± 6%; 21 ± 6%; 11 ± 3%, ver-
sus 27 ± 4%, Fig. 4b); whereas, SAFE-BL had no impact 
(24 ± 4%, Fig. 4b). In TC experiments, cardiomyocyte via-
bility decreased by 8 ± 5%, irrespectively of the blockers 
(Online Resources, Online Fig. 2).

Mitochondrial function

Baseline respiration of mitochondria was not different 
between groups (Figs. 5, 6, 7). In mitochondria isolated from 
naïve hearts (Fig. 5) or buffer-perfused hearts subjected to 
I/R (Fig. 6) the in vitro incubation with T3 (300 µg/L) or 
NaOH, respectively, had no impact.

In mitochondria from hearts with TMP, 300 µg/L T3 had 
no effect. In mitochondria isolated after I/R, ADP-stimulated 
complex I respiration was decreased compared to mitochon-
dria from hearts with TMP. With 300 µg/L T3 at reperfu-
sion or iPoCo, respectively, this decrease in ADP-stimulated 
complex I respiration was reversed. Complex IV respiration 
and maximal uncoupled oxygen uptake were not different 
between groups, reflecting equal loading of viable mitochon-
dria in the chamber. The decrease in ATP production by I/R 
was reversed with iPoCo or 300 µg/L T3, respectively, at 
reperfusion. Mitochondrial ROS formation was increased 
with I/R, and 300 µg/L T3 at reperfusion or iPoCo, respec-
tively, attenuated such increase. The CRC impairment by 
I/R was reversed by 300 µg/L T3 or iPoCo, respectively, at 
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reperfusion. With cyclosporine A, CRC was not different 
between groups (Fig. 7).

Discussion

T3, when given at early reperfusion in a supraphysiologi-
cal concentration, reduces infarct size in isolated buffer-
perfused rat hearts through activation of the RISK, but not 
the SAFE pathway. The magnitude of cardioprotection and 

Fig. 2   Impact of T3 at reperfu-
sion on infarct size in isolated 
buffer-perfused rat hearts. Data 
are presented as means ± stand-
ard deviations. For each 
group, representative triphenyl 
tetrazolium chloride-stained 
heart slices are displayed; areas 
enclosed by yellow lines indi-
cate infarcted tissue. ERK-BL 
mitogen extracellular-regulated-
kinase phosphorylation block-
ade, iPoCo ischemic post-con-
ditioning, I/R 30 min ischemia 
and 120 min reperfusion, PI3K-
BL phosphatidylinositol(4,5)-
bisphosphate-3-kinase 
blockade, RISK-BL reperfusion 
injury salvage kinase pathway 
blockade, SAFE-BL survival-
activating factor enhancement 
pathway blockade, T3 triiodo-
thyronine at reperfusion, a T3 at 
reperfusion—given in increas-
ing concentrations; *p < 0.001 
vs. I/R; †p < 0.01 vs. I/R + T3 
(100 µg/L); one-way ANOVA 
with Fisher’s least significant 
differences post-hoc tests. b T3 
at reperfusion—given under 
RISK or SAFE blockade; I/R 
and I/R + T3 (300 µg/L): groups 
are identical to those depicted 
in Fig. 1a; *p < 0.001 vs. 
I/R + T3 (300 µg/L); #p < 0.01 
vs. I/R + T3 (300 µg/L) + SAFE-
BL; one-way ANOVA with 
Fisher’s least significant differ-
ences post-hoc tests
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the involved signal transduction of T3’s cardioprotection are 
similar to those of iPoCo. T3’s cardioprotection is a cardio-
myocyte phenomenon and associated with improved mito-
chondrial function.

We have chosen infarct size as the endpoint for cardio-
protection [5], because it is a more robust endpoint than 
the improvement of LV function, and therefore extend the 
current knowledge on T3’s cardioprotection. In principle, 
we confirmed improved recovery of LV function with T3 
at reperfusion. So far, no pathway has been identified as 
causal for cardioprotection by acute T3 treatment [4, 53]. 
Here, in the rat myocardium, T3’s cardioprotection causally 
involved the activation of AKT1/2/3 and ERK1/2 and inhibi-
tion of GSK-3β. Accordingly, infarct size reduction by T3 
was attenuated by either PI3K-BL or ERK-BL, respectively, 
and abrogated when both blockers were combined—proving 
a causal role for the classical cardioprotective RISK path-
way. We realize that RISK activation must occur during 
early reperfusion to induce protection; whereas, we have 
determined RISK activation by western blot after 120 min 
reperfusion along with infarct size; however, our blocker 
experiments covered the early reperfusion phase and thus 
provide evidence for a causal role of RISK activation in 
the observed protection by T3. SAFE pathway activation, 

however, was not involved in the cardioprotection by T3. 
Neither was STAT3 activated nor did SAFE-BL abrogate 
T3’s cardioprotection. In a prior study in isolated perfused 
rat hearts, T3 given at reperfusion decreased lactate dehy-
drogenase activity in the coronary effluent and reinforced 
mitophagy through a phosphatase tensin homolog-induced 
kinase 1/parkin-dependent mechanism, but no RISK activa-
tion was detected in myocardial biopsies taken after 45 min 
reperfusion using the western blot technique [4]. A higher 
dose of exogenous T3 in that study and differences in timing 
and processing of the myocardial biopsies [14] may explain 
this difference to our study. T3’s cardioprotection obviously 
utilizes the same pathways as iPoCo: in isolated perfused 
rat hearts iPoCo causally involves RISK pathway activa-
tion [66]. However, different post-conditioning strategies 
may involve different intracellular signaling pathways: i.e. 
pharmacological post-conditioning with sevoflurane [68], 
diazoxide [54], insulin [33], transforming growth factor-
beta1 [2] and several other agents [21] also involves RISK 
pathway activation; whereas, hydrogen sulfide involves 
SAFE pathway activation [43] and oxytocin involves the 
activation of both pathways [58, 59] in isolated perfused 
rat hearts. Also, humoral transfer of ischemic condition-
ing’s cardioprotection in a post-conditioning mode involves 
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SAFE, but not RISK pathway activation in isolated perfused 
rat hearts [41]. Thus, the combination of different cardiopro-
tective strategies, e.g. the combination of pharmacological 
post-conditioning strategies to target both RISK and SAFE 
may enhance cardioprotection [9]. Of note, cardioprotective 
intracellular signaling is probably species-specific [9, 24, 

36, 62]. In pigs with regional ischemia/reperfusion, iPoCo 
activates the SAFE pathway [35], and so far, no RISK acti-
vation by cardioprotective maneuvers has been demonstrated 
in pig myocardium [45, 62]. Furthermore, in the human 
myocardium cardioprotection by ischemic conditioning is 
associated with STAT5, but not with STAT3, AKT1/2/3 or 
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ERK1/2 activation [31]. The NOS/protein kinase G path-
way is known to be involved in cardioprotection [29]. Thus 
we cannot exclude that NOS is also involved in T3’s car-
dioprotection. Such hypothetical parallel activation of NOS 
appears less relevant in our study, since upstream RISK-BL 
abrogated T3’s cardioprotection completely.

To improve the transfer of promising preclinical cardio-
protective strategies into clinical studies further characteri-
zation of possible species-specific differences in the signal 
transduction of pharmacological post-conditioning strategies 
is therefore mandatory.

We here used protein lysates of whole myocardium to 
characterize the RISK activation, which does not permit to 
differentiate between RISK activation in cardiomyocytes 
and other cell types such as vascular cells or fibroblasts. 

A prior experimental approach has indeed reported RISK 
activation by T3 in vascular cells [7]. Nevertheless, in our 
present study the involvement of RISK in T3’s cardio-
protection was also demonstrated in cardiomyocytes and 
thus truly characterizes T3’s protection as a cardiomyo-
cyte phenomenon. We therefore confirm prior results in 
neonatal cardiomyocytes [4], where cell death after H/R 
was also reduced by T3, although cardioprotection and its 
signaling are not comparable between adult cardiomyo-
cytes and neonatal cardiomyocyte cell lines. In cultivated 
neonatal cardiomyocytes, the predominant pathomecha-
nism of cell death is apoptosis; whereas, that in adult 
cardiomyocytes is necrosis [5]. The protective effect on 
cardiomyocytes may be paralleled by effects on vascular 
cells, rendering the coronary circulation another promising 
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target for cardioprotection [20, 26]. In contrast to a prior 
study [4], we did not observe an improved recovery of CF 
in isolated buffer-perfused rat hearts with T3 treatment. 
Again, subtle differences in the experimental setting and 
higher T3 doses in the latter study [4] may account for this 
difference. In addition, the isolated buffer-perfused and 
denervated heart preparation with an artificially high CF 
and maximal vasodilation [42] may hamper the detection 
of T3’s protective effect on the coronary circulation.

Activation of RISK by cardioprotective post-conditioning 
strategies has been demonstrated to inhibit opening of the 
mPTP [10] through phosphorylation inhibition of GSK-3β 
and thus may link T3’s cardioprotective properties on the 
subcellular level to the preserved function of mitochondria. 
However, the role of GSK-3β for ischemic conditioning’s 

cardioprotection is not clear, since genetic ablation of 
GSK-3β did not abrogate cardioprotection by ischemic pre-
conditioning in one study [49], but was mandatory for iPo-
Co’s cardioprotection in another study, which used the same 
animal model [17]. Of note, pharmacological inhibition of 
GSK-3β induces cardioprotection beyond mPTP inhibition 
[48].

Mitochondria also express T3 receptors, which may exert 
transcriptional effects [44]. However, exposure of isolated 
mitochondria neither from I/R injured buffer-perfused rat 
hearts nor from naïve rat hearts to T3 had an effect on mito-
chondrial function. Apparently, upstream activation of car-
dioprotective intracellular pathways is mandatory to transfer 
T3’s protection to the mitochondria.
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In anecdotal reports of three patients treated for refrac-
tory hypothyroidism, when 1000 µg oral thyroxine was 
given on two consecutive days, no safety signals were 
observed within 3–6 days [37]. Also, in another case study 
of refractory hypothyroidism weekly intravenous 300 µg 
thyroxin over 14 months raised no safety signals [46]. 
These single human case studies are difficult to extrapolate 
to our saline-perfused isolated heart preparation, where no 
intestinal absorption and plasma-protein binding occurred 
[13]. Future studies in vivo and in clinically relevant large 
animal models are warranted to evaluate T3’s safety and 
efficacy before translation of T3’s adjunct cardioprotection 
to patients with myocardial infarction. Potentially then, in 
patients with acute myocardial infarction, a single intrac-
oronary bolus application of T3 during PCI could be used 
to achieve a high local T3 concentration. Combination 
therapy of cardioprotective strategies has been proposed 
recently. In future studies, combined pharmacological and 
ischemic conditioning protocols such as the less invasive 
remote ischemic conditioning could serve as an attractive 
strategy to boost cardioprotection in patients with acute 
myocardial infarction [9].
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