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Abstract: Low-cost light scattering particulate matter (PM) sensors have been widely researched
and deployed in order to overcome the limitations of low spatio-temporal resolution of
government-operated beta attenuation monitor (BAM). However, the accuracy of low-cost sensors
has been questioned, thus impeding their wide adoption in practice. To evaluate the accuracy of
low-cost PM sensors in the field, a multi-sensor platform has been developed and co-located with
BAM in Dongjak-gu, Seoul, Korea from 15 January 2019 to 4 September 2019. In this paper, a sample
variation of low-cost sensors has been analyzed while using three commercial low-cost PM sensors.
Influences on PM sensor by environmental conditions, such as humidity, temperature, and ambient
light, have also been described. Based on this information, we developed a novel combined calibration
algorithm, which selectively applies multiple calibration models and statistically reduces residuals,
while using a prebuilt parameter lookup table where each cell records statistical parameters of each
calibration model at current input parameters. As our proposed framework significantly improves the
accuracy of the low-cost PM sensors (e.g., RMSE: 23.94→ 4.70 µg/m3) and increases the correlation
(e.g., R2: 0.41 → 0.89), this calibration model can be transferred to all sensor nodes through the
sensor network.

Keywords: particulate matter (PM); low-cost sensor; calibration; multivariate linear regression (MLR);
multilayer perceptron (MLP); segmented model and residual treatment (SMART) calibration

1. Introduction

Particulate matter (PM) is classified by size bins of maximum aerodynamic diameter (e.g.,
PM10 < 10 µm, PM2.5 < 2.5 µm, and PM1.0 < 1 µm). Exposure to PM is regarded as a major health risk
and it causes various diseases from respiratory and cardiovascular diseases to neurodevelopmental
disorders and mental disorders [1]. According to recent reviews, it globally affects a mortality rate
of up to 4.2 million deaths per year [2,3]. The collection and analysis of PM concentration data is
now being major interest of government and non-government organizations because of such an effect
on public health. Meanwhile PM concentration features spatial and temporal fluctuation due to
their aerodynamic nature, hence enabling higher spatiotemporal resolution of the PM concentration
data is also being increasingly important. However, maintaining such high resolution with a
government-grade air monitoring station is nearly impossible by the matter of cost. Additionally,
their sampling interval is rather long, at the cost of the data quality. Because of the above facts,
low-cost light scattering PM sensor have been widely used for a practical alternative of the air
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monitoring station in dense sensor deployment [4]. Even though these sensors still have a major
challenge on data quality, they have overwhelming advantages of less expensive price, more compact
size, and faster update rate [5,6]. As a result, many countries have densely deployed the low-cost
sensor in the smart city [7–9]. As of April 2020, there are 40 government-operating beta attenuation
monitor (BAM) stations in Seoul releasing information to the public every hour [10]. Additionally,
approximately 3500 light-scattering PM equipment have been deployed in Korean major cities
by leading telecommunication companies [11,12] and have continuously increased spatiotemporal
resolution, as shown in Figure 1. As the importance of low-cost sensors has been increasing, more
research is being conducted to evaluate and calibrate low-cost light scattering sensors.

(a) (b)
Figure 1. Comparison of deployment density by the responsible organization in Seoul. A circle
indicates the location of equipment with Korea air quality index (AQI) of PM2.5. (a) By government
(BAM); (b) By a company (Light-scattering) [12].

Evaluation of low-cost sensors was analyzed under various climate and weather conditions over
the world from a day to longer than a year [13–15]. Additionally, these studies have several aims,
such as environmental effect analysis [16], newly developed sensor validation [17], and calibration
performance evaluation. We built four kinds of rough prototypes for briefly checking sample-to-sample
variability (PMSA003, PMS7003 (Plantower Inc., Beijing, China [18]), SEN0177 (DFRobot Inc., Shanghai,
China [19]), and HPMA115s0 (Honeywell Sensing Inc., Charlotte, NC, USA [20])). Subsequently, we
chose PMS7003 and developed a muti-sensor platform for further long-term evaluation. We describe
performance limitation on the raw signal of low-cost sensors that have been identified by co-locating
them with governmental BAM for about 7.5 months in Section 3.2. Plus, we compared theperformance
between raw signal and calibrated signals under various environmental explanatory variables,
sampling intervals, and calibration methods.

Based on the previous research of low-cost PM sensors [13–17], the low-cost sensor has
limited accuracy and it requires a calibration procedure in order to boost accuracy. The most
common calibration methods on PM2.5 calibration are a linear calibration accounting for two-thirds
of total calibration cases according to a technical report from the Joint Research Center of the
European Commission [21] (univariate linear regression (ULR)—46%/multivariate linear regression
(MLR)—22%). As such, linear regression (LR) is widely used for PM calibration, since it is a simple and
powerful method. However, LR sometimes generates an under-fitting problem when the true function
of data is not sufficient to fit the linear function approximation. For example, MLR suffers severe
performance degradation under a high humidity environment [22]. On the other hand, non-linear
calibration is quite free from the problem, but it is required to avoid an over-fitting problem by selecting
an appropriate order of function approximation.

Beyond the cases of a single calibration model, sequentially combined calibration models were
studied. Lin et al. 2018 introduced a two-phase calibration model while using Akaike information
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criterion (AIC) and random forests (RF). As a first phase, several linear models are created by selecting
subsets from the entire input variable space based on the AIC index. After that, RF is used to learn
the residual of the linear models [23]. However, RF uses the aggregation of randomized models with
several decision trees and their results are averaged in the regression problem; it is usually good at
avoiding over-fitting problems, but it might present lower accuracy due to the averaged result from
several decision trees. Cordero et al. 2018 obtained the calibrated PM value through the linear model to
generate the difference of the raw PM value. Subsequently, a non-linear calibration among RF, support
vector machine (SVM), and artificial neural networks (ANN) is performed using the difference and the
input variables [24]. However, their dataset was small and the training dataset and test dataset were
shared with the k-fold cross-validation method.

This paper introduces a novel combined calibration method that selects the most accurate
model from models for each sampling. This combined calibration differs from the cited methods in
dividing the entire input variable space into segmented cells and applying the best model among
multiple models for each cell. Besides, we proposed additional procedures to reduce the residuals
probabilistically by managing the sum of residuals that are generated by the selected model in each
cell. This combined calibration is named segmented model and residual treatment calibration (SMART
calibration). The performance of this SMART calibration method was analyzed with raw data and
compared with not only other state-of-the-art calibration methods, but also other study group’s
calibrated results based on 16 month-duration datasets [25]. The comparison results show that our
proposed method offers better accuracy than counterparts.

Our contribution can be summarized, as follows:

• Field evaluation of low-cost PM2.5 sensor in Seoul, Korea has been executed and
analyzed. These were under several conditions, such as environmental explanatory variables
(humidity/temperature/ambient light), sampling intervals (5 min/1 h/24 h), and calibration
methods (linear/non-linear/SMART calibration).

• A novel combined calibration method has been introduced to increase low-cost sensor accuracy.
The performance was compared to other calibration methods. This calibration method can also
be applied to an upcoming future dataset with the previously generated models.

The next sections are structured, as follows. Section 2 describes the overall method of this research
including data collection, data preprocessing, and data calibration. Section 3 presents the results and
discussion. It covers the result of the experiments and explains the analysis of the result. Section 4
summarizes this paper and explains the potential use cases.

2. Methods

This section is written for describing the overall procedures of evaluation and calibration on
low-cost sensors. It includes data collection (Section 2.1), data preprocessing (Section 2.2), data
calibration methods (Section 2.3), and metric information (Section 2.4). Figure 2 shows the overall
procedures for sensor evaluation and calibration. A multi-sensor platform has been developed and
co-located with the governmental BAM in the government station (Dongjak-gu, Seoul, Korea) to
evaluate low-cost light scattering PM2.5 sensor. The data have been collected for around 7.5 months
(15 January 2019–4 September 2019). The following subsections will explain more information on
several procedures we executed.
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Figure 2. Overall procedures for sensor evaluation and calibration.

2.1. Data Collection

In this section, the sensor configuration and deployment information on the low-cost sensor and
reference system is described.

2.1.1. Multi-Sensor Platform—Low-Cost Light Scattering PM Sensor

We developed prototypes and roughly evaluated the repeatability of signal and the
sample-to-sample variability to select a proper low-cost sensor among four kinds of commercial
low-cost sensors. Based on this analysis, PMS7003 (Plantower Inc., Beijing, China [18]) was chosen
and the configuration and design of the multi-sensor system development proceeded for long-term
evaluation and calibration.Detailed information of prototypes evaluation is further described in
Appendix C. The selected PM sensor and other environmental sensors were built together as a
multi-sensor platform, as shown in Figure 3a.

(a) (b)
Figure 3. Information on multi-sensor platform. (a) Picture of platform; (b) Configuration of submodules.

Three low-cost PM sensors are mounted on a single multi-sensor platform to identify sample
variation among three low-cost sensor samples. It also includes environmental sensors of humidity,
temperature, and ambient light to analyze and calibrate the environmental impact on the measurement
of PM. Data collection of each sensor module in low level is performed through Arduino Due,
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and communication with sensor network in high level is implemented through Raspberry Pi 3B+,
as shown in Figure 3b. Data are measured and stored at 1-s sampling intervals and configured to be
transmitted to users via wired LAN or Wi-Fi.

2.1.2. Governmental BAM—High-End PM Monitoring Station

In Korea, BAM is the only regulatory reference that received a formal approval from the Korean
Ministry of Environment. As a reference to the experiment, the PM711 model (Kimoto Inc., Osaka,
Japan [26]) was selected because it has a relatively fast sampling interval (5 min) compared to a
sampling interval (1 h) of other BAM as shown in Figure 4b. Five min. sampled output may be
less accurate than 1 h averaged output since 5 min. sampling interval data is the data source of 1 h
averaged output. This equipment consists of two separate racks of monitoring systems for PM2.5
and PM10 measurements. It features a high accuracy, since it includes a sampling stabilizer, such as
particle separator (PM2.5 impactor and PM10 impactor) and environment controllers of temperature,
humidity, and air-flow to stably supply PM.

(a) (b)
Figure 4. Information on governmental BAM station. (a) Outside; (b) Inside. It’s located at 6, Sadang-ro
16a-gil, Dongjak-gu, Seoul, Korea, and operated by the Seoul research institute of public health and
environment. Inlets of BAM (red circle) and Multi-sensor platform (blue circle) are located together.

2.2. Data Preprocessing

In this step, different data sampling intervals of two equipment were matched so that the data from
the multi-sensor platform can be directly compared with the data from the governmental BAM. Data
were excluded from data preprocessing if any intermittent data were observed from sensor modules.
The data of the multi-sensor platform was averaged with a 5-min. fixed window. The preconditioned
data were used to build the linear/non-linear calibration model, such as MLR, MLP, and SMART
calibration, and to perform the actual calibration with the prebuilt model in the next step. To build and
evaluate the calibration model, the dataset was constructed in two ways for comparison, as shown in
Figure 5. One is sampling in a sequential manner (hereinafter sequential) and the other is a random
manner (hereinafter shuffled) under various separating ratio (unless otherwise stated, 80% of the
total datasets were randomly selected to construct a training dataset and the remaining 20% was used
as a test dataset). Data preprocessing was done via Matlab R2018b [27] and Python 3. Pandas [28],
the state-of-the-art Python data manipulation library, was also utilized for data preprocessing.
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Figure 5. Default data separation methods for the training dataset and test dataset. 20% of the
training dataset is used for the validation dataset to prevent the over-fitting calibration model.
A shuffled method is controlled by a fixed random seed to compare the performance between
calibration algorithms.

2.3. Data Calibration

In this paper, calibration doesn’t mean any correction for the observed data in the training dataset.
The calibration means an estimation for the unseen data in the training dataset. PM2.5 (low-cost
sensor), humidity, temperature, and ambient light were selected as explanatory variables, and PM2.5
(BAM) was selected as a response variable. The influence of each explanatory variable was separately
analyzed in Section 3.3. The calibration methods were analyzed in three ways: linear, non-linear,
and SMART calibration. Data calibration was performed via Python 3 libraries (pandas [28], keras [29],
sklearn [30] and tensorflow [31]).

2.3.1. Linear Calibration

Based on multivariate linear regression (MLR), we selected PM (low-cost sensor), humidity,
and temperature of the multi-sensor platform as explanatory variables and chose PM (governmental
BAM) as the response variable. The least-square method was applied with the chosen coefficients
as shown in Table 1 (all the p-values for each coefficient were all less than 0.00001 and are
omitted hereinafter.)

ŷ = w0 +
N

∑
i=1

wixi (1)

ŷ : PM calibrated, w0 : intercept, wi : coe f f icient, xi : input variable measured

Table 1. Chosen coefficients of multivariate linear regression (MLR) (80%—training dataset, 20%—test
dataset, shuffled method, 5 min. sampling interval condition).

Raw(a) Humidity Temperature Intercept

0.4470 −0.0581 0.0329 8.2511

2.3.2. Nonlinear Calibration

Non-linear calibration was performed based on a multilayer perceptron (MLP) from the neural
network and it consists of an input layer, an output layer, and hidden layers. The calibration is
performed by making an appropriate sum of weights between neurons existing in each layer, as shown
in Figure 6. The sum of each weight passes a non-linear activation function, rectified linear unit (ReLU),
to generate a non-linear model. ReLU activation is explained in Equation (2). PM2.5 (low-cost sensor),
humidity, and temperature from the multi-sensor platform were preprocessed and used as input
variables in the input layer. PM2.5 (BAM) from the governmental station was used as output variables
in the output layer. Hyperparameters were manually chosen under several trials, as shown in Table 2.

ŷ = W3max(0, W2max(0, W1x)) (2)

ŷ : PM calibrated, Wi : weight matrix, x : input variable measured



Sensors 2020, 20, 3617 7 of 24

Figure 6. The architecture of a fully connected neural network. An input layer in red feeds explanatory
variables and an output layer in green feeds response variable. Based on hyperparameter, the weight
matrix (parameter) is built.

Table 2. Hyperparameter of MLP (80%—training dataset, 20%—test dataset, shuffled method, 5 min.
sampling interval condition).

Hidden layer Neurons/layer Epoch Batch Activation Dropout rate Learning rate Optimizer

2 24 200 32 ReLU 0.2 0.005 Adam

2.3.3. SMART Calibration (Combined Calibration)

In this section, we introduce a SMART calibration algorithm, which selectively maps most
probabilistically appropriate models given multiple linear/non-linear calibration models. LR is the
most representative methodology for finding a best-fit line for the approximation and estimation.
However, the LR is usually too simple to correctly fit the true function of complex data. And the best-fit
line is highly affected by non-linearity, outliers, and data range. Meanwhile, non-linear calibration
can optimally generate a model which has lower prediction error of training dataset as the model
complexity increases more. However, in this case, a prediction error of the test dataset is largely
generated in case the model is overfitted. This is well known disadvantage of non-linear calibration
(limitations of linear and non-linear calibration are further described in Appendix A).

Each model has its “weak spot” in their domain due to the above nature of the linear/non-linear
calibration models. For instance, LR has its weak spot in the non-linear region of the domain, and MLP
has weak spot in the overfitted region. The SMART calibration method has been developed to improve
this limitation. Figure 7 shows the overall procedures of model build and model selection. Firstly, two
training models and residual maps are generated with training dataset in model build step. Secondly,
a prevailing model map is constructed by comparing residual maps. Subsequently, the prevailing
model map can be utilized in the model selection step.

In more detail, the residual map that divides a full range of explanatory variable space (e.g.,
temperature and humidity) into segmented small area cells is generated, as shown in Figure 8.
Every residual of training data is allocated to a corresponding partitioned cell of residual maps.
The distribution of residuals in each cell of a residual map are assumed as a Gaussian, since residual
is the error of the estimator. Each cell has its probability density function (PDF), which is expressed
by its average and standard deviation. This information is stored in residual maps. For each cell,
a prevailing calibration model is defined by comparing the residual maps of the linear and non-linear
models. Every prevailing calibration model of each cell is stored in a prevailing model map. Once a
prevailing model map is completed through a whole training dataset, the corresponding input cell of
test dataset calibrates their data with a predefined suitable model and averaged residual, as shown
in Figure 9 (Procedures of SMART calibration are further described in Appendix D). Figures 7–9 are
examples of explanations and the number and type of calibration models are not limited in MLR and
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MLP. SMART calibration has good features on the simpleness of procedures and the compatibility
of several models since it is the hierarchical calibration model. As it depends on the consistency of
estimators, the number of data in each cell is increased when the accuracy of SMART calibration is
increased. Additionally, it has good performance with a high bias model, but it cannot outperform
when SMART has only high variance models, since SMART calibration selects model according to
variance of data in segmented cell.

Figure 7. Overall procedures for SMART calibration. (e.g., MLR and multilayer perceptron
(MLP) model).

Figure 8. Residual maps and a prevailing model map for SMART calibration. Residual map#1 from the
linear model (top left) and residual map#2 from the nonlinear model (bottom left) are merged into
a prevailing model map (right). Residuals under high humidity and low-temperature condition are
indicated in red dotted circles. In this region, the linear model has higher expectations of residuals than
the nonlinear model.



Sensors 2020, 20, 3617 9 of 24

Figure 9. Prevailing model map and prevailing model map (segmented cell). A cell (Blue box) is
segmented by the allocated inputs, and it has means and standard deviations of calibration models
and BAM. The cell offers the prevailing model and its residual for the allocated input.

2.4. Metric Information

Four key metrics were used to analyze the performance as shown in Table 3. The analysis
index used mean absolute error (MAE), mean squared error (MSE), root mean squared error (RMSE),
and R2 (coefficient of determinant). RMSE is excluded hereinafter, because it can be calculated by
MSE. In some analysis cases, slope, intercept, mean and standard deviation, quartile, and Pearson’s
correlation coefficient are also used.

Table 3. Metrics for performance analysis.

MAE MSE RMSE R2

1
N ∑N

i=1 |yi − ŷi | 1
N ∑N

i=1(yi − ŷi)
2

√
1
N ∑N

i=1(yi − ŷi)2 1− ∑ (yi−ŷi)
2

∑ (ŷi−ȳ)2

y : PM re f erence, ŷ : PM calibrated, ȳ : PM mean o f re f erence.

3. Results and Discussions

This section is written for describing preliminary analysis (Section 3.1) by varying explanatory
variables and sampling interval conditions. Subsequently, we compare the performance of SMART
calibration under several conditions, such as before calibration (Section 3.2), after calibration
(Section 3.3), other calibrations methods (Section 3.4), and a previous similar study (Section 3.5).

3.1. Preliminary Analysis

3.1.1. Performance Characteristics: Explanatory Variables

The low-cost sensor features cost-effectiveness, lightweight, rapid, and continuous measurements,
but it has a limitation on their accuracy. Accordingly, this low-cost sensor generally excludes any
sampling stabilizer for PM size, humidity, temperature, or flow control. As a result, the low-cost
sensor is directly affected by the surrounding environment. In particular, the influence of humidity
and temperature has been continuously researched by several research groups, and calibration models
that are based on meteorological parameters are introduced as Equations (3) and (4) [22,32].

ŷ = β1 + β2
ρ2

(1− ρ)
y + β0 (3)
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ŷ = α1y + α2t + α0 (4)

ŷ : PM calibrated, αi : coe f f icient, y : PM measured, ρ : RH measured, t = temp. measured.
In this section, short-term analysis for the effects of humidity, temperature, and ambient light on

PM concentration was performed, and long-term analysis for the effects of humidity and temperature
was executed while applying linear and non-linear calibration. As a result, we found that the humidity
and temperature is the important variable on PM concentration calibration.

Performance Characteristics: Explanatory Variables, Short-Term Analysis (45 Days)

The experimental data from 18 July 2019 to 4 September 2019 were analyzed, since the storage
of data on the ambient light sensor was executed in this limited period. This period was summer in
Korea and the summer climate of Korea is characterized by high temperatures and high humidity.
As previously researched in Equation (3), high humidity features high non-linearity of the calibration
function. In our result, the non-linear calibration had a relatively smaller error than the linear
calibration, as shown in Table 4.

Table 4. Comparison of calibration performance by input variables (short-term: 80%—training dataset,
20%—test dataset, shuffled method, 5 min. sampling interval condition).

Linear - ULR/MLR Nonlinear - MLP
Input Variables MAE MSE R2 MAE MSE R2

[uncalibrated] Raw PM 9.78 216.89 0.52 9.78 216.89 0.52
[ calibrated] Raw PM 3.69 24.44 0.78 3.55 23.12 0.80
[ calibrated] Raw PM + Humidity 3.11 18.72 0.84 2.99 16.69 0.84
[ calibrated] Raw PM + Temp 3.22 19.56 0.83 3.11 18.39 0.83
[ calibrated] Raw PM + Light 3.39 21.40 0.81 3.23 18.97 0.84
[ calibrated] Raw PM + Humidity + Temp 3.11 18.70 0.84 2.95 16.91 0.83
[ calibrated] Raw PM + Humidity + Light 3.09 18.61 0.84 2.99 17.01 0.83
[ calibrated] Raw PM + Temp + Light 3.19 19.25 0.83 3.10 18.15 0.83
[ calibrated] Raw PM + Humidity + Temp + Light 3.08 18.41 0.84 2.93 16.76 0.83

The comparison of the uncalibrated raw PM signal and the calibrated PM signal expressed a
significant improvement (e.g., MAE of MLP: 9.78→ 3.55 µg/m3), and the calibration, including the
PM raw signal with humidity signal showed remarkable improvement (e.g., MAE of MLP: 3.55→
2.99 µg/m3). In the case of calibrations, including temperature and ambient light, the improvement
was insignificant. The long-term analysis was performed in the next section on the influence of PM,
humidity, and temperature.

Performance Characteristics: Explanatory Variables, Long-Term Analysis (7.5 Months)

The experimental data from 15 January 2019 to 4 September 2019 were analyzed in Table 5.
Similar to short-term analysis, the uncalibrated raw PM signal and the calibrated PM signal (e.g.,
MAE: 15.87→ 4.21 µg/m3), and the calibration, including raw PM signal with humidity signal (e.g.,
MAE: 4.21→ 4.04 µg/m3) showed a significant improvement. The performance by humidity signal
under the short-term analysis was highly improved where the high humidity region accounted for the
majority, whereas, under the long-term, analysis was slightly improved. However, the performance
was highly improved by adding temperature, especially for non-linear calibration cases (e.g., MAE:
4.04→ 3.52 µg/m3).



Sensors 2020, 20, 3617 11 of 24

Table 5. Comparison of calibration performance by input variables (long-term: 80%—training dataset,
20%—test dataset, shuffled method, 5 min sampling interval condition)

Input Variables
Linear - ULR/MLR Nonlinear - MLP

MAE MSE R2 MAE MSE R2

[uncalibrated] Raw PM 15.87 573.23 0.41 15.87 573.23 0.41
[ calibrated] Raw PM 4.28 33.79 0.82 4.21 33.79 0.79
[ calibrated] Raw PM + Humidity 4.01 30.13 0.84 4.04 32.15 0.77
[ calibrated] Raw PM + Humidity + Temp. 4.00 29.90 0.84 3.52 23.88 0.86

3.1.2. Performance Characteristics: Sampling Interval

In this section, the 5 min. sampling interval was converted into one hour and 24 h sampling
interval to compare with other previous studies. Most of the PM researchers analyzed sensor
performance under one hour or 24 h of sampling interval, because the high-end BAM as a
reference-grade instrument was used in hourly sampling intervals. Especially, Met One BAM-1020
(Met One instrument Inc., Grants Pass, OR, USA [33]), a US EPA [34] certified equipment, was used in
many previous studies [14,25].

Non-overlapping sliding windows were applied for one hour or 24 h of sampling intervals. MAE
decreased with longer sampling intervals, since more aggregated data reduced data variation, as shown
in Table 6. In the case of the 24 h sampling interval, R2, which indicates proportional variance for
response variables was lowered. This lowered R2 is derived from reduced data range by aggregation.
This can be calculated from the R2 equation in Table 3 or explained by Figure 10.

Table 6. Comparison of performance by sampling intervals (5 min/1 h/24 h: 80%—training dataset,
20%—test dataset, shuffled method).

Sampling Interval Metric Raw LR MLP SMART

5 min

MAE 15.87 4.00 3.52 3.32

MSE 573.23 29.90 23.88 22.06

R2 0.41 0.84 0.86 0.89

1 h

MAE 14.72 3.68 3.29 3.51

MSE 486.26 25.22 21.29 25.75

R2 0.41 0.85 0.88 0.86

24 h

MAE 12.33 2.71 2.92 2.68

MSE 299.55 21.72 29.62 21.99

R2 0.37 0.77 0.75 0.77

Figure 10. A characteristic of R2 according to widen data range. The black dot alone has R2 = 0.38,
while the black dot and red triangle have R2 = 0.72. However, their regression line and RMSE are the
same (Figure quoted [35]). This descriptive statistic is also required when R2 is used as a metric.
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3.2. Comparative Analysis: The Low-Sensor and Governmental BAM (Before Calibration)

The performance of the low-cost sensor was analyzed by comparing raw signals from the sensor
platform and the reference signal from the governmental BAM (hereinafter three low-cost sensors’
raw signals are described as Raw (a/b/c), and the BAM signal is remarked as BAM in Tables and
Figures). Figure 11 shows the correlation between three low-cost sensors and the BAM. Additionally,
their correlation coefficient, evaluation metrics, and statistic summary are listed in Appendix B
(Tables A1 and A2).

(a) Correlation plot (b) Box plot
Figure 11. Comparison between low-cost sensors and governmental BAM (before calibration).

R2 of low-cost sensors with BAM was expressed as 0.416, 0.546, and 0.417. However, R2 among
low-cost sensors expressed a very strong positive correlation coefficient, with 0.937, 0.994, and 0.933.
It is possible to expect the effectiveness of the performance improvement via the calibration due to
a very strong correlation coefficient with BAM output. Additionally, high R2 among the low-cost
sensors in the commonplace indicates that a common calibration model can be shared under logged
condition. The data distribution expresses the overall difference between the low-cost sensor and the
BAM, as shown in Figure 11. The reproducibility among the low-cost sensors looked high with a very
tight output span, but the reproducibility between the low-cost sensors with the BAM output looked
low with a wide output span.

3.3. Comparative Analysis: The Low-Cost Sensor and Governmental BAM (After Calibration)

MLR, MLP, and SMART calibration were executed to evaluate the performance by following
the methods in Section 2 with a PM sensor instead of three PM sensors. All of the described results
from this subsection were only calculated by the test dataset, since the training dataset was used
for calibration model generation. Figure 12 shows the correlation between low-cost sensors and
BAM. Additionally, their correlation coefficient, evaluation metrics, and statistic summary are listed in
Appendix B (Tables A3 and A4).

The means and standard deviations in 38.12± 31.18 µg/m3 (raw signal), 23.13± 13.74 µg/m3

(MLR), 22.7± 13.12 µg/m3 (MLP), and 23.09± 13.85 µg/m3 (SMART calibration) were obtained and
compared with 23.10± 14.84 µg/m3 (BAM). The normalized mean bias error declined from 65% to
1.7% and standard deviation decreased from 110% to 11.6% by applying MLP calibration models. R2

were observed as 0.41 (raw signal), 0.84 (MLR), 0.86 (MLP), and 0.89 (SMART calibration), respectively.
By these results, the calibration significantly improves the performance of the low-cost sensors.
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(a) Correlation plot (b) Box plot
Figure 12. Comparison between low-cost sensors and governmental BAM (after calibration).

As shown in Figure 13 and Table 7, several calibration results were analyzed by applying different
data preprocessing conditions. Our dataset was analyzed by a shuffled method as well as a sequential
method, since Korea has four distinct seasons and 7.5 months collected dataset was experienced
through the limited climate and season. The shuffled dataset features a higher R2 than the sequential
dataset. On the other hand, the sequential dataset features a lower error in MAE and MSE than the
calibration result of the dataset under the shuffled condition. Appendix E further describes more
information on several shuffled methods on successive hourly or daily data chunk size.

Figure 13. Comparison plot by data preprocessing methods—shuffled (top) and sequential (bottom).
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Table 7. Metric analysis for data preprocessing methods (shuffled/sequential—5 min sampling
interval condition).

Dataset Ratio Metric
Shuffled Sequential

PM only PM+Humidity+Temp PM only PM+Humidity+Temp
Raw LR MLR MLP SMART Raw LR MLR MLP SMART

70%/30%
MAE 15.68 4.25 3.98 3.65 3.29 8.92 3.54 3.60 3.60 3.32

MSE 563.90 33.45 29.61 25.27 21.80 182.31 21.99 22.49 23.70 21.56

R2 0.41 0.82 0.84 0.83 0.89 0.47 0.66 0.66 0.58 0.61

80%/20%
MAE 15.87 4.28 4.00 3.52 3.32 9.06 3.36 2.91 2.97 2.79

MSE 573.23 33.79 29.90 23.88 22.06 196.35 18.70 14.84 15.20 14.02

R2 0.41 0.82 0.84 0.86 0.89 0.41 0.71 0.76 0.66 0.76

90%/10%
MAE 15.8 4.34 4.06 3.47 3.23 11.67 3.62 2.86 2.84 2.80

MSE 570.1 34.80 30.76 22.70 20.85 311.90 21.31 14.73 15.06 14.05

R2 0.42 0.81 0.84 0.87 0.90 0.33 0.76 0.83 0.82 0.82

95%/5%
MAE 15.44 4.40 4.09 3.64 3.35 10.07 3.63 2.83 3.19 2.74

MSE 549.64 36.53 31.96 24.63 22.48 194.54 19.44 13.34 15.92 12.75

R2 0.42 0.80 0.83 0.86 0.88 0.18 0.57 0.72 0.60 0.74

This calibration can also be applied to an upcoming future dataset with the previously generated
calibration models under the sequential method. As an example, the sequential datasets from the raw
signal, the SMART calibration signal, and the government BAM’s signal were plotted, as shown in
Figure 14. For detailed information, a training dataset was constructed with the sequential condition
from 15 January 2019 to 8 August 2019 and their calibration model was created. After that, the test
dataset was built from 8 August 2019 to 4 September 2019 and the previously derived model from the
training dataset was applied. As a result, the test dataset confirms a very similar BAM output (e.g.,
MAE = 2.79, MSE = 14.02, and R2 = 0.76).

Figure 14. Comparison of output plot between low-cost sensor and governmental BAM–SMART
calibration signal (green line)/BAM signal (blue line)/raw signal (red line).
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3.4. Comparative Analysis: Other Calibration Methods

The SMART calibration method was compared with other regression methods, such as lasso
regularization, ridge regularization, and polynomial linear regression (PLR). Additionally, we applied
state-of-the-art ensemble learning methods such as random forests (RF), extreme gradient boosting
(XGB), and light gradient boosting (LGB). The hyperparameters of these methods were exhaustively
searched over specified hyperparameters. A cross-validated grid search algorithm was applied in order
to optimize hyperparameter and more information of the hyperparameter grid is further described in
Appendix F. SMART calibration parameters were also customized with an increased cell size of the
residual map and another calibration model. Several dataset ratios under the sequential method were
applied for the data precondition method. Our calibration method expressed the smallest MAE and
MSE among twelve calibration methods, as shown in Figure 15 and Table 8.

Figure 15. Comparison plot by metrics (sequential). GridsearchCV (10) found best hyperparameters
as below. PLR (degree:2)/Lasso (alpha:5)/Ridge (alpha:100)/DT—decision tree (max depth =
12, min samples split =16)/RF (max depth = 6, min samples leaf = 8, min samples split = 24,
n estimators = 500)/GB (learning rate = 0.05, n estimators = 200)/ XGB (colsample bytree = 1, learning
rate = 0.05, n estimators = 200, subsample = 0.3)/LGB (colsample bytree = 0.5, learning rate = 0.05,
n estimators = 500, num leaves = 4, reg lambda = 10, subsample = 0.3).
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Table 8. Metric analysis of various calibration methods (sequential method, 5 min sampling
interval condition).

Data
Set

Ratio
Metric Raw LR MLR MLP SMART PLR Lasso Ridge DT RF GB XGB LGB

70%/
30%

MAE 8.92 3.54 3.60 3.60 3.32 3.31 3.40 3.60 4.00 3.00 3.00 2.98 3.15

MSE 182.31 21.99 22.49 23.70 21.56 19.21 20.71 22.49 30.18 16.69 16.45 16.26 17.82

R2 0.47 0.66 0.66 0.58 0.61 0.65 0.68 0.66 0.69 0.78 0.77 0.77 0.74

80%/
20%

MAE 9.06 3.36 2.91 2.97 2.79 2.94 2.92 2.91 3.39 2.85 2.88 2.79 2.84

MSE 196.35 18.70 14.84 15.20 14.02 14.80 14.98 14.84 21.24 14.43 14.58 13.80 14.26

R2 0.41 0.71 0.76 0.66 0.76 0.75 0.75 0.76 0.71 0.77 0.78 0.78 0.79

90%/
10%

MAE 11.67 3.62 2.86 2.84 2.80 2.87 2.85 2.86 3.81 2.95 2.85 2.85 2.95

MSE 311.90 21.31 14.73 15.06 14.05 14.67 14.61 14.73 26.74 15.11 14.78 14.71 15.54

R2 0.33 0.76 0.83 0.82 0.82 0.83 0.83 0.83 0.72 0.81 0.83 0.84 0.83

95%/
5%

MAE 10.07 3.63 2.83 3.19 2.74 2.81 2.80 2.83 3.33 2.86 2.84 2.86 2.89

MSE 194.54 19.44 13.34 15.92 12.75 13.21 13.01 13.34 19.20 13.37 13.88 14.07 14.14

R2 0.17 0.57 0.72 0.60 0.74 0.72 0.71 0.72 0.67 0.71 0.75 0.74 0.74

3.5. Comparative Analysis: Previous Similar Study

The SMART calibration result was compared with the latest results from a similar study because
we could not get a long-term dataset of other research under similar conditions [25]. The study had a
field test for 16 months in North Carolina, USA by comparing a commercial product (PA-II (Purple Air
Inc., Draper, UT, USA [36])) with a BAM 1020 (Met One instrument Inc., Grants Pass, OR, USA [33]).
This study included a long-term performance evaluation and a calibration under 1 h sampling interval
basis. 90% training dataset and 10% test dataset by the shuffled (random) method was conducted
in data preprocessing. MLR with raw PM signal, humidity, and temperature was applied for their
calibration method.

Before the calibration, the results of the other group study were superior, thanks to a factory
calibration under product manufacturing, as shown in Table 9. After the calibration, our group’s
shuffled dataset showed higher R2 than the other group study and our group’s sequential dataset with
SMART calibration was superior in all performance aspects.

Table 9. Performance comparison by group & method.

Category Metric Other Group – Shuffled
(MLR)

Our Group – Shuffled
(SMART)

Our Group – Sequential
(SMART)

Before
calibration

MAE 5.8 15.1 11.4

RMSE 7.5 23.1 17.3

After
calibration

MAE 3.2 3.4 2.8

RMSE 4.1 4.8 3.7

R2 0.57 0.89 0.81

4. Conclusions

The low-cost PM sensor was evaluated and it was calibrated with co-located governmental BAM
in the urban air monitoring station (Dongjak-gu, Seoul, Korea). The performance of the low-cost
PM sensor was analyzed using the analysis metrics of MAE, MSE, RMSE, R2, slope, intercept, mean,
standard deviation, and quartile. The means and standard deviations in the raw signal of the low-cost
sensor and BAM output were 38.15± 31.29 and 23.10± 14.84 µg/m3, with around 65% normalized
mean bias error. Additionally, a comparison of calibration methods, such as MLR, MLP, and SMART
calibration, was performed. The means and standard deviations in the SMART calibration of the
low-cost sensor and the BAM output were 23.09± 13.85 and 23.01± 14.74 µg/m3 with around 0.35%
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normalized mean bias error. When the raw signal and calibrated signals of the low-cost sensor were
compared to the figures from BAM output by applying correlation index, R2, increased correlations
between the low-cost sensor and the BAM output were observed as 0.41 (raw signal), 0.82 (LR), 0.84
(MLR), 0.83 (MLP), and 0.89 (SMART calibration). Furthermore, this calibration model was verified
with the possibility of being applied to future datasets. These results explain the fact that calibration is
highly required when low-cost sensors are used for high accuracy sensing.

A sample-to-sample variability of the low-cost sensors was evaluated among three co-located
low-cost sensors. The sensors were very strongly correlated having an extremely high correlation
coefficient ranging from 0.985 to 0.997. Based on this finding, a calibration model can be continuously
updated and improved by co-locating a single multi-sensor platform with BAM and it can be
transferred toward all nodes in a sensor network to calibrate the entire nodes. This approach is
the base concept of an online calibration for low-cost sensors. For future studies, a mobile node that
is converted from the co-located multi-sensor platform travels among all of the nodes in the sensor
network by performing an offline calibration of slope and intercept of each node. This successive
calibration is named Hybrid Calibration, which features both an entire online calibration and an
individual offline calibration.

Author Contributions: H.L.: platform improvement, conceptualization, validation, data conditioning/analysis/
visualization, writing manuscript text, interpretation of results. J.K.: prototype build/validation/analysis,
platform design, software design, interpretation of results. S.K.: platform build/deployment, investigation. Y.I.:
govenmental BAM data sharing, investigation. S.Y.: writing–review and editing. D.L.: funding acquisition,
supervision, project administration. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by City of Seoul through Seoul Urban Data Science Laboratory Project (Grant
No. 0660-20170004) administered by Seoul National University Big Data Institute.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Limitation on Linear/Nonlinear Approxiamation—Anscombe’s Quartet, Bias &
Variance Trade-off

Figure A1 shows Anscombe’s quartet which intuitively describes the error on LR [37]. The four
datasets have the same best-fit line slope, intercept, and R2 even though the data are very different.
To solve this ambiguousness, we properly compared calibration effectiveness with other metrics in
Section 2.4.

(a) scatter plot (I-IV) (b) data set (I-IV)
Figure A1. Anscombe’s quartet—dataset I (simple linear)/dataset II (nonlinear)/dataset III (linear
with outlier)/dataset IV (a high-leverage point). Four datasets have the same mean, variance, Pearson
correlation coefficient, R2, slope, and intercept of the best-fit line (Figure quoted from [38]).
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As shown in Figure A2, it is important to avoid the generation of underfitting or over-fitting
models and to generate an appropriate trade-off model to reduce total error.

Figure A2. Prediction error of training and test dataset according to model complexity. A medium
level of model complexity minimizes the prediction error of the test dataset (Figure quoted from [39]).

Appendix B. Additional Figures and Tables

This appendix section includes more detailed table information.

Table A1. Correlation coefficient and metrics of low-cost sensor and governmental BAM
(before calibration).

Raw(a) Raw(b) Raw(c) BAM

Raw(a) 1.000

slope = 0.837
intercept = 1.969

R2 = 0.937
MAE = 4.700

slope = 0.998
intercept = 0.003

R2 = 0.994
MAE = 1.583

slope = 0.436
intercept = 6.457

R2 = 0.416
MAE = 15.816

Raw(b) 0.987 1.000

slope = 1.163
intercept = -1.335

R2 = 0.933
MAE = 4.737

slope = 0.512
intercept = 5.732

R2 = 0.546
MAE = 11.952

Raw(c) 0.997 0.985 1.000

slope = 0.435
intercept = 6.526

R2 = 0.417
MAE = 15.712

BAM 0.919 0.916 0.918 1.000

Table A2. Descriptive statistic summary of low-cost sensor and governmental BAM (before calibration).

Raw(a) Raw(b) Raw(c) BAM

No. of samples 36911.00 36911.00 36911.00 36911.00

Mean 38.15 33.89 38.07 23.10

STD 31.29 26.52 31.32 14.84

Min 0.00 0.00 0.00 0.00

25% 16.53 15.07 16.71 13.00

50% 28.95 26.26 28.94 20.00

75% 49.60 45.31 49.39 28.00

Max 215.42 179.73 225.46 115.00
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Table A3. Correlation coefficient and metrics of low-cost sensor and governmental BAM
(after calibration).

Raw MLR MLP SMART BAM

Raw 1.000 - - -

slope = 0.434
intercept = 6.458

R2 = 0.41
MAE = 15.87
MSE = 573.23

MLR 0.989 1.000 - -

slope = 0.996
intercept = -0.028

R2 = 0.84
MAE = 4.00
MSE = 29.90

MLP 0.972 0.982 1.000 -

slope = 1.062
intercept = -1.086

R2 = 0.86
MAE = 3.52
MSE = 23.88

SMART 0.954 0.964 0.979 1.000

slope = 1.008
intercept = -0.258

R2 = 0.89
MAE = 3.32
MSE = 22.06

BAM 0.919 0.929 0.945 0.947 1.000

Table A4. Descriptive statistic summary of low-cost sensor and governmental BAM (after calibration).

Raw MLR MLP SMART BAM

No. of samples 7382.00 7382.00 7382.00 7382.00 7382.00

Mean 38.12 23.13 22.70 23.09 23.01

STD 31.18 13.74 13.12 13.85 14.74

Min 0.00 2.97 2.15 -6.50 0.00

25% 16.42 13.81 14.24 13.94 13.00

50% 28.97 19.52 19.51 19.89 20.00

75% 49.66 28.52 27.64 28.11 28.00

Max 210.93 100.82 104.48 98.55 115.00

Appendix C. Prototype Build/Validation

This experiment was performed to obtain basic data before developing a sensor platform. Through
this experiment, we had information about accuracy comparison by the sensors. Four kinds of
low-cost sensors—PMSA003 (Plantower Inc., Beijing, China [18]), PMS7003 (Plantower Inc.), SEN0177
(DFRobot Inc., Shanghai, China [19]), and HPMA115s0 (Honeywell Sensing Inc., Charlotte, NC,
USA [20])—were selected as candidates and built three each to roughly evaluate their performance.
These sensors were compared their outputs with co-located governmental BAM from 23 July 2018
to 25 July 2018 (Figure A3). We evaluated the correlation plot and the correlation coefficient of the
sensors as shown in Figure A4 and Table A5. Data from four types of sensors was 5 min. averaged
and calibrated by the output of BAM and humidity as shown in Figure A5. As a result, PMS7003 was
selected from candidates for further system construction on the multi-sensor platform because it has
high repeatability and low sample-to-sample variability in a coefficient of determinant among three
homogeneous sensors and linearity with BAM.
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Figure A3. Information on governmental BAM and test environment. The BAM is located at 426,
Hakdong-ro, Gangnam-gu, Seoul, Korea and operated by the Seoul research institute of public health
and environment.

Figure A4. Correlation plot between inter/hetero sensors.

Table A5. Comparison of the coefficient of determination with three sensors of four kinds each. After
calculating the coefficient of determination for each combination of three sensors for each sensor type,
the worst value was selected and calculated. (e.g., pmsa003-a, sen0177-c).

Sensor PMSA003 PMS7003 SEN0177 HPMA115S0

PMSA003 0.987 - - -
PMS7003 0.983 0.994 - -
SEN0177 0.879 0.878 0.882 -

HPMA115S0 0.918 0.910 0.921 0.994
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(a) Intercorrelation plot with heterotypic sensors (b) Calibrated PM and Humidity plot by the time
Figure A5. Prototypes output analysis.

Appendix D. Procedures of SMART Calibration

This is an example of two calibration models with N input variables and three layers of MLP. It is
possible to increase the number of models/input variables/layers.

[Training dataset]
1. Build a calibration model (a or b).

a. MLR: ŷ = w0 + ∑N
i=1 wixi

b. MLP(ReLU activation): ŷ = W3max(0, W2max(0, W1x))
2. Segment each input space (i x j matrix)
3. Calculate residuals of each cell (in i x j matrix) according to corresponding data and generate

a residual map of the training dataset. (n calibration models)
∑n

k=1 εk[ij] = ∑n
k=1(yk[ij] − ŷk[ij])

4. repeat 1–3 steps for the other model.
5. Compare residual maps for each cell and build a prevailing model map.

prevailing model: selected by min(σε[ij],MLR , σε[ij],MLP)

[Test dataset]
6. Infer test data from the prevailing model

ỹ[ij] = ŷ[ij],prevailing model
7. Infer test data from residuals of the prevailing model

if σε[ij],prevailing model < σεbound

ỹ[ij] = ỹ[ij] − 1
n ∑n

k=1 εk[ij],prevailing model

Appendix E. Data Preprocessing Methods—More on Shuffled Methods

The dataset was preprocessed and analyzed in several shuffled methods by selecting successive
hourly or daily data chunk size, as shown in Table A6 and Figure A6.
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Table A6. Metric analysis for data preprocessing methods (shuffled - hourly/sequential - daily).

Dataset Ratio Metric
Shuffled - Hourly Shuffled - Daily

PM only PM+Humidity+Temp PM only PM+Humidity+Temp
Raw LR MLR MLP SMART Raw LR MLR MLP SMART

70%/30%
MAE 14.71 4.33 3.99 3.65 3.57 15.64 4.38 4.01 3.56 3.68

MSE 527.41 36.04 30.72 26.82 26.09 580.05 34.34 29.20 23.94 28.73

R2 0.46 0.80 0.83 0.84 0.87 0.44 0.82 0.86 0.89 0.88

80%/20%
MAE 14.09 4.27 3.92 3.60 3.54 16.86 4.55 4.25 3.57 3.76

MSE 490.61 35.77 30.27 25.82 25.81 694.70 38.76 33.49 24.39 30.03

R2 0.46 0.79 0.83 0.85 0.87 0.41 0.83 0.86 0.89 0.88

90%/10%
MAE 14.14 3.92 3.75 3.45 3.41 18.99 4.85 4.48 3.85 3.77

MSE 535.50 29.96 26.73 25.21 25.09 842.96 44.03 36.97 26.19 26.88

R2 0.44 0.84 0.86 0.88 0.88 0.39 0.84 0.87 0.90 0.90

95%/5%
MAE 14.88 4.02 3.90 3.66 3.71 14.97 5.39 4.87 4.75 4.99

MSE 607.20 33.97 31.75 29.25 30.89 605.08 62.87 51.22 46.65 63.89

R2 0.39 0.82 0.83 0.84 0.85 0.51 0.73 0.79 0.79 0.69

Figure A6. Comparison plot by data preprocessing methods: shuffled - hourly (top)/shuffled -
daily (bottom).

Appendix F. Grid Search CV Methods

This is all list of hyperparameter grids information.

• [Common params] = ’cross validations’:[10], ‘random state’:[0], ’scoring’:[MSE]

• Lasso params = ’alpha’:[0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5, 10, 20, 50, 100]

• Ridge params = ’alpha’:[0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5, 10, 20, 50, 100, 200]

• DT params = ’max depth’:[4,6, 8,12,16], ’min samples split’:[8, 16, 24, 32]

• RF params =’n estimators’: [100, 200, 500], ’max depth’: [6, 8,12], ’min samples split’: [8, 16, 24],
’min samples leaf’: [8,12,18]
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• GB params = ’n estimators’: [100, 200, 500], ’learning rate’: [0.05, 0.1, 0.2]

• XGB params = ’n estimators’: [100, 200, 500], ’learning rate’: [0.05, 0.1, 0.2], ’colsample bytree’:
[0.3,0.5,0.7,1], ’subsample’:[0.3,0.5,0.7,1], ’n jobs’:[−1]

• LGB params = ’n estimators’:[100, 200, 500], ’learning rate’:[0.05, 0.1,0.2], ’colsample bytree’:
[0.5,0.7,1], ’subsample’: [0.3,0.5,0.7,1], ’num leaves’: [2,4,6], ’reg lambda’: [10], ’n jobs’: [−1]
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