
EDUCATION

Assessing an effective undergraduate module

teaching applied bioinformatics to biology

students

Andreas Madlung*

University of Puget Sound, Department of Biology, Tacoma, Washington

* amadlung@pugetsound.edu

Abstract

Applied bioinformatics skills are becoming ever more indispensable for biologists, yet incor-

poration of these skills into the undergraduate biology curriculum is lagging behind, in part

due to a lack of instructors willing and able to teach basic bioinformatics in classes that don’t

specifically focus on quantitative skill development, such as statistics or computer sciences.

To help undergraduate course instructors who themselves did not learn bioinformatics as

part of their own education and are hesitant to plunge into teaching big data analysis, a mod-

ule was developed that is written in plain-enough language, using publicly available comput-

ing tools and data, to allow novice instructors to teach next-generation sequence analysis

to upper-level undergraduate students. To determine if the module allowed students to

develop a better understanding of and appreciation for applied bioinformatics, various tools

were developed and employed to assess the impact of the module. This article describes

both the module and its assessment. Students found the activity valuable for their education

and, in focus group discussions, emphasized that they saw a need for more and earlier

instruction of big data analysis as part of the undergraduate biology curriculum.

Introduction

In the post-genomic era, bioinformatic analysis skills have become an all but unavoidable need

for life scientists [1] who are tasked with learning and often teaching skills and tools that they

themselves may not have acquired during their own training [2]. In a 2017 survey of more

than 700 biologists funded by the American National Science Foundation, more than 90% of

respondents stated that they were, or soon would be, working with large data sets that required

high-performance computing [3]. These same researchers listed training in data analysis tools

and bioinformatics as the most urgent and unmet need they had to address to successfully

complete their research projects [3].

Bioinformatics is a complex field of study. Life scientists rely on bioinformaticists to help

them analyze big data sets that require knowledge of how to format and parse through data

files and how to write computer scripts and programs that can connect existing software appli-

cations. Bioinformaticists have to apply software tools that don’t have graphical user interfaces,

navigate the use of high-power computer clusters, and often have to have at least basic system
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administration knowledge. In addition, bioinformaticists help with experimental design, statis-

tical analysis, and data visualization. However, according to many practitioners in the field

and textbooks on bioinformatics, bioinformaticists are first and foremost computer scientists

who use computer programming tools to develop new algorithms and programs useful for bio-

logical applications and are not primarily data analysts serving the needs of biologists [4–7]. In

college teaching, this dichotomy is often reflected in the choice of which department, if any,

might offer a bioinformatics course, what content such a course covers, and what kind of pre-

requisite knowledge is expected of students taking the course [6,8]. Some authors have tried

to clarify the different aspects of bioinformatics by subdividing the field of bioinformatics

depending on interest, training, and focus into “bioinformatics users,” “bioinformatics scien-

tists,” and “bioinformatics engineers” [9]. For all practical purposes, in life science research,

the ubiquity of big data and the need for biocomputing skills means that biologists either have

to learn the use of bioinformatics tools themselves or hire (or collaborate with) a specialist to

help them with data analysis. Biologists at all levels are well served if they can analyze their data

on their own, or at least speak the same technical language as their collaborators who help

them with data analysis. As of 2015, fewer than 30 institutions throughout the United States

were reported to offer bioinformatics degree-granting programs at the undergraduate level [9];

however, if including the term “computational biology” into a search, 72 such programs were

reported [10]. How much training in bioinformatics standard biology programs require was

not reported in these studies.

It is before this backdrop that biologists have started developing workshops, online tuto-

rials, and course materials [11] to familiarize mostly current graduate students and postdocs

with the applied kind of bioinformatics that, for example, allows the analysis of next-genera-

tion sequencing data to address problems in molecular biology, physiology, population genet-

ics, or evolutionary biology. However, in order to be able to use next-generation sequence

analysis tools or even just to be able to understand the language of many tutorials and the syn-

tax of simple computer code, novices must first learn some basic computer science, the use of

Unix, shell scripting, and the use of the Linux computer operating system. Only then can they

start using tools for DNA or RNA sequence analysis, including genome assembly, RNAseq

(transcriptome) analysis, or SNP detection for trait mapping and the analysis of evolutionary

questions.

Because bioinformatics is not traditionally a subject that most undergraduate biology stu-

dents learn within the core classes of their biology curriculum and because students often have

preconceived notions that biology is, from among the sciences, the subject that least relies on

large-scale mathematical skills, it is important to monitor students’ attitudes towards the intro-

duction of computational biology into traditionally less-computational biology courses, since

such preconceived notions can affect student learning [12]. It has been shown that one way to

assess student learning is to measure how their attitude towards a particular field of study

changes over time as they are being exposed to this field [13]. Such attitude change can be mea-

sured on a continuum between novice and expert by comparing student responses to a specific

type of question—before and after they engage in an activity—with the answers that an expert

would give. Participation in a course, workshop, or activity should ideally lead to changes in

students’ attitude along this continuum towards that of an expert.

The Colorado Learning Attitudes about Science Survey (CLASS; http://www.colorado.edu/

sei/class/) was based on studying novice-to-expert development and specifically designed to

measure student attitude development in three areas of learning [13]. The first area measures

to what degree a respondent views the field at hand as a collection of unrelated facts as opposed

to a cohesive set of concepts. The second distinguishes between the novice-like perception that

facts in the discipline of study are fixed versus an expert-like view that sees facts as results of
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experimentation and analysis. The third area assesses to what degree problem-solving abilities

are developed along the novice-to-expert line [14]. CLASS surveys have been successfully used

to specifically determine how students’ perceptions impact their learning, as well as to assess

pedagogical tools that are designed to help students mature in their understanding and appre-

ciation of the sciences [14]. CLASS surveys have previously been developed to assess classes in

physics [15], chemistry [16], biology [14], and computer science [17].

This paper describes a teaching module that was developed for educators of upper-level

undergraduate biology majors, who—like their students—have little or no prior knowledge of

computer science, programming, or working on the command line. The module was designed

to achieve the following three learning objectives: (a) teach students basic command-line com-

puting and bioinformatics skills, (b) motivate students to develop an interest in bioinformatics

approaches to address biological questions, and (c) allow students to develop an appreciation

for the use of bioinformatics in modern biology. The module developed for this study was

therefore written in a way that allows teaching faculty with no experience in next-generation

sequence analysis to prerun the module and to teach themselves enough to be able to use the

module in class. The module was piloted in the fall of 2014, refined after its first use, and subse-

quently assessed in three separate upper-level elective courses (twice in a molecular biology

course and once in a plant physiology course) taught by the author. It was also tested by two

additional novice educators and taught at a second institution in an upper-level biology class.

The assessment of the module was based on the following four aspects: the use of a pre- and

postmodule questionnaire for students, the comparison of student answers to a group of

“experts,” a formal focus group, and student transcript analysis. The questionnaire used for the

assessment was modeled after other validated CLASS assessment tools [14–17]. The results of

our assessment suggest that the module increases student learning, increases student interest

in applied bioinformatics, and is equally effective for students at all levels of preparation as

measured by their overall college performance.

Methods

Ethics statement

This study was approved for exempt status by the Institutional Review Board of the University

of Puget Sound (approval # 0708–018). Participants were also asked to provide written permis-

sion for the use of their data and for the use of their college transcript by the investigator.

Approach

The goals of this study were three-fold, as follows: first, to design a teaching module that

requires no previous computer science skills and introduces students (and potentially their

teachers) to applied bioinformatics methods; second, to rigorously assess the value of this

module to student learning; and third, to gain insights from the assessment that can guide

future curricular decisions for undergraduate biology education.

Institutional details and cohort selection

The study was performed at the University of Puget Sound, a small, selective liberal arts college

in Washington State (US). Puget Sound graduates about 60 to 70 majors in biology per year.

To balance the need for a large-enough sample size and a fast-enough study time, three upper-

level classes all taught by the author in successive semesters from spring 2015 (N = 24), fall

2015 (N = 15), and spring 2016 (N = 12) were chosen as the student cohort. Experts, whose

survey answers are used as a control group in CLASS studies, were chosen to fit the following
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description: these experts were natural scientists by training, had a PhD degree or were within

a year of attaining their PhD, were interested in college teaching and had at least some teaching

experience, and could be considered primarily as life scientists (as opposed to bioinformati-

cists, computer scientists, or strictly computational biologists). Thus, those providing the

expert opinion were not experts in bioinformatics but experts in a field of life sciences that

required or might require the use of bioinformatics tools. This group was selected to enrich

the expert group in scientists who didn’t choose to become professional bioinformaticists out

of interest in the field of bioinformatics but instead supposedly resembled the participating

students in their academic career paths. The total number of experts participating was 50.

Module design

The module created for this study demonstrates to students the use of next-generation

sequencing of RNA—a technique known as RNAseq. This method allows the analysis of the

entirety of all active genes in an organism (the transcriptome), for example in response to a

stimulus or during growth and development. While plenty of online tutorials exist explaining

the use of the software employed here (the so-called “Tuxedo pipeline”), most tutorials are not

written in a way that is accessible to complete novices, as in the example of the leading method

publication in the journal Nature Protocols describing the Tuxedo pipeline [18].

The experiments conducted in this module begin by downloading RNA sequence data

from a repository. The data in this experiment compare transcriptomes of unripe versus ripe

tomatoes. Comparison between data sets should therefore allow the identification of genes

that are important in the ripening process. After data are downloaded, the RNA sequences

(the so-called “reads”) are quality checked and computationally aligned to the tomato refer-

ence genome. The number of reads for each gene is compared between the two developmental

stages (unripe vs ripe) and assessed for statistical significance. Fig 1 describes this process

along with the logistics of the module in flowchart format. Eventually, genes that are differen-

tially expressed between the two samples are categorized by function and graphically displayed.

Fig 2 shows examples of student analyses of the data set used in the module.

The format of the module was designed to fit 4 four-hour–long lab sessions and written in

the style of a self-guided tutorial. Each of the four parts is self-contained so that students have

minimal homework to do between sessions. In this study, students worked on their own dur-

ing regularly scheduled lab sessions with the instructor (author of the module) present.

Depending on the computational power of the instance (i.e., a virtual computer) chosen, large-

scale calculation steps take between a few minutes and several hours. Larger instances with

more memory can reduce the compute time of the most time-consuming step to 20 minutes.

If the module is used as designed for 4 four-hour–long labs, the longest compute times fall at

the end of a lab session so that they can be run in the cloud after the student has left the lab.

Fig 1 shows estimated compute times per step. As an alternative to multiple lab sessions, stu-

dents can elect to do the entire tutorial on their own time and on their own computer, or the

project can be completed in a workshop format. All required software and hardware (except

for a regular desktop or laptop computer) is freely available. The raw data can be downloaded

from a publicly accessible file transfer protocol (FTP) site. The high-performance computing

platform used here is the freely accessible CyVerse (formerly iPlant) cloud computing cluster,

and the required software is preloaded on a so-called image (essentially a virtual external hard

drive), to which students connect once they have registered for their CyVerse account.

During the first session, students sign up for and activate a private account, perform a tuto-

rial in which they learn basic commands in the command-line scripting language Unix, which

is preinstalled on Macintosh computers and is also preloaded on CyVerse. In the second and
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third session, students are introduced to the main project, in which they perform the compari-

son of the transcriptome of unripe versus ripe tomato fruit. This analysis requires them to use

a variety of software programs and file manipulation Unix commands. During the fourth ses-

sion, students download and install the free statistics and graphing software R, which they

then use to manipulate the output from the previous session, create bar graphs and heatmaps

of their gene expression data, and finally perform so-called gene ontology analysis. Using R,

they categorize the genes differentially expressed between unripe and ripe tomatoes into func-

tional classes and calculate the statistical significance, with which these functional groups are

overrepresented among all functions within the differentially expressed genes. The module

contains various pre- and postlabs and a final assignment, but the material in the assessment

of the module did not appear on any class exams. The cumulative value of these assignments

in the context of the whole session in which the module was taught made up about 5% of the

students’ overall grade for the course. The complete teaching material is available in S1 Sup-

porting information.

Instrument design

The questionnaire was modeled closely after the validated CLASS assessment tools that have

been used in slightly modified versions for the assessment of several science classes [14–17].

Briefly, questions from the original biology CLASS assessment tool [14] were either used ver-

batim or changed slightly, for example by changing the word “biology” or “computer science”

Fig 1. Flowchart depicting the compute pipeline used in the module. In Week 1, all introductory Unix exercises are performed on the

student’s computer without the need for cloud computing or a Linux cluster. In Week 1, students also sign up for a free CyVerse account and

start up a virtual machine. In Weeks 2 and 3, most of the cloud computing steps are performed. The approximate compute times for each step

are listed based on the use of a virtual machine with one CPU (“small” CyVerse instance). In between compute steps, students write scripts,

format and verify data using command-line Unix tools, read the rationale behind each step, and spend some time watching a YouTube video

(for the FastQC tutorial) and getting familiar with specific help forums for bioinformatics questions, such as Biostars. Depending on student

preparedness and engagement, each lab session can be completed in 2.5 to 4 hours. Using more CPUs can speed up the compute time

significantly for Tophat and CuffDiff analyses, which are in the current lab set-up “overnight” steps separating labs. CPU, central processing

unit.

https://doi.org/10.1371/journal.pcbi.1005872.g001
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(as in the computer science version of the CLASS assessment tool, [17]) to “bioinformatics” or

“computational biology.” Other questions were adapted by adding some explanatory language

to make clear that a situation was focused on the biological context of a bioinformatically

approached task, such as in question 13, 24, or 28 (see S2 Supporting information for complete

list of statements). In some cases, the term “biology” was used instead of bioinformatics to

indicate that the ultimate goal of using bioinformatics was to understand a biological question,

such as in question 8 and 10 (S2 Supporting information). Overall, questions were selected

based on their previously measured effectiveness in measuring student attitude changes to

learning [14,15].

CLASS surveys were originally designed to assess student progress on a novice-to-expert

trajectory usually in the context of taking an introductory class in the discipline [14,17,19].

The CLASS survey here had a somewhat more limited scope in assessing the introductory bio-

informatics module that was delivered as part of an advanced biology class. Participants in the

module assessed here were given approximately 15 minutes to fill out the survey before the

first module session and another approximate 15 minutes to fill out the postmodule survey a

week after the conclusion of the last module session. The survey was administered by the

instructor, but answers were collected into an envelope and anonymized by an assistant before

data analysis.

Assessment methods

Assessment material and analysis. To assess how students respond to the use of bioinfor-

matics as a central requirement for data analysis in a biology class, the module started with a

31-item questionnaire plus some questions about student demographics. After completing the

Fig 2. Sample figures and tables from RNAseq analysis in the described module. The RNAseq pipeline creates a variety of

figures that students can customize by changing the R-script that creates them. CummeRbund analysis creates the heatmap (left)

and the bar chart (top right). Using the R-package TopGO, students calculate the probabilities (using Fisher exact tests) that

certain functional categories are enriched in differentially expressed genes from the RNAseq analysis (table bottom right).

Abbreviations: dUTP, 2´-Deoxyuridine, 5´-Triphosphate; FPKM, Fragments Per Kilobase of transcript per Million mapped reads.

https://doi.org/10.1371/journal.pcbi.1005872.g002
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four-week module, students were given a postmodule questionnaire that contained the same

questions as the first questionnaire (except for the part asking about demographics), plus a

number of questions about student perception of the usefulness of the module for their future

career. All questions from this questionnaire can be found in S2 Supporting information.

Pre- and postquestionnaires were matched by a research assistant. Responses were com-

pared to each other before and after the module, as well as to the responses of the expert group

before and after the module. Expert responses were used to determine the level of maturity

in student responses before and after participating in the module. For the interpretation of

the student comparison to experts, only those questions were considered for which experts

reached consensus in their answers. Consensus answers were defined as those for which at

least two-thirds (66.7%) of experts answered with “agree” or “strongly agree” or, alternatively,

for which two-thirds answered with “disagree” or “strongly disagree.” Questions for which the

expert group reached consensus are indicated in S2 Supporting information.

Questions 32 to 41 on the postmodule questionnaire were only answered by students.

These questions addressed the students’ perception of the usefulness of the module. Responses

to these questions were binned into three groups: agree or strongly agree, neutral, and disagree

or strongly disagree. Academic transcripts (cumulative college grade reports) of students were

used to determine if there was a correlation between academic strength and interest in bioin-

formatics. Academic strength was measured by using either cumulative grade point averages

(GPAs) or GPAs only for science, technology, engineering, and math (STEM) courses. Pearson

correlation values were calculated using R (version 3.3.2).

The questionnaire contained a question (question 25) that required a predefined answer

and that acted as a control for filtering out responses of participants who did not read the ques-

tions carefully. This approach has been successfully used as an integral component of the clas-

sic CLASS surveys [14,17,19]. Participants whose answer to question 25 was anything other

than the prescribed value were eliminated completely from the study. Of the 51 participating

students and 50 participating experts, this eliminated eight students and one expert from the

pool. The remaining responses were analyzed statistically using R (version 3.3.2) and Microsoft

Excel (version 14.7.2, www.microsoft.com).

Statistics. Statistical significance was determined as follows: means between student responses

pre versus post module participation were compared using a paired, two-sided t test. Post-hoc anal-

ysis to account for multiple testing was performed using both the Benjamini-Hochberg false dis-

covery rate (BH) and Bonferroni correction methods, both with an alpha level of 0.05. For the

interpretation of the p-values, only those that were below the corrected p-value were considered sig-

nificant. Student responses were compared against expert responses either before or after student

participation in the module using unpaired, two-sided t tests followed by BH and Bonferroni post-

hoc correction as described above. Data were graphed using R (version 3.3.2).

Focus group discussions. One week after the module was completed, students were asked

to participate in a 30-minute focus group discussion. This discussion was mostly designed to

allow students to give feedback to the instructor in free form answers. Because the focus group

was conducted by the author/instructor, some bias in answers is possible, therefore the focus

group answers were not systematically evaluated for this paper. Some interesting and represen-

tative free text answers are provided in S3 Supporting information).

Results

Questions were divided into two categories: those for which expert answers were in agreement

(as defined in the Methods section) and those for which experts did not agree. Experts agreed

on 18 of the 31 questions on the questionnaire. Student responses before and after module
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participation were compared against each other, as well as against the expert response. Across

the board, student responses after the module were closer to those of the experts among ques-

tions for which experts agreed. However, only a few student responses changed from being

statistically significantly different from the experts before the module to being statistically

indistinguishable from expert responses (Fig 3, S1 Fig). For example, students said that after

participating in the module they were more confident that they could tackle a biological ques-

tion that required some bioinformatics (questions 18 and 20), and, unlike before doing the

module, they now agreed with experts on the statement that understanding of some biological

concepts requires quantitative skills not found among the general public (question 26).

Students responded to some questions significantly differently after the module as opposed

to before the module even though their responses did not reach the same level as that of

experts. In this category were questions about the importance of computer science skills and

students’ willingness to try computer science to solve biological questions (questions 20 and

23). Finally, there were several questions for which experts did not find consensus, but students

changed their responses statistically significantly after exposure to the module. Four of those

questions dealt with the general concept of computational biology as a way to study biology

(questions 4, 5, 6, and 11), and one question (question 10) was about the participant’s level of

enjoyment of bioinformatics, which had increased.

Questions 32 to 41 asked students about their impression of the module’s usefulness and

the impact it had had on them. Students stated that their curiosity about bioinformatics had

increased, that the module had provided them with new insights into bioinformatics, and that

they were more likely now than before to enroll in a general computer science course. Many

students even stated that the bioinformatics module was “downright fun” (Fig 4).

Variation in student responses between the three different cohorts was not explicitly mea-

sured because of the relatively small size of each individual cohort. However, the overall

impression from the raw data suggests that semester-to-semester differences were small.

In addition to the student participants, two biology professors also new to bioinformatics

participated in this study. These professors completed the module on their own time using

only the instructions of the module and requiring only minimal help from the instructor. One

of these professors subsequently used the module in her own class in a slightly modified format

(shorter weekly meetings distributed over the entire semester) and a smaller class of about 8

students. This professor reported that students were very engaged and provided enthusiastic

feedback but did not conduct a formal assessment. The other professor reported satisfaction in

her ability to learn RNAseq analysis in this self-taught way but has not yet used the module for

teaching in her own classes.

To see if there was a demographic group among the students who had benefitted more

from the bioinformatics module than other students, all responses to questions 32–41 were sta-

tistically correlated with the students’ general GPA, their science GPA [Biology, Chemistry,

Geology, and Physics classes only), and their math/computer science GPA. Interestingly, there

was no correlation between any of these answers and any of the student GPAs.

Discussion

The call for modernizing biology education to include more bioinformatics in the undergradu-

ate curriculum is not new [8,20,21], yet it is questionable whether or not the rate at which cur-

ricula adept at the new realities can keep pace with the speed of the development of new

computational tools and methods [9,22,23].

The increasing need for life scientists to become proficient in large-scale data analysis and

data management and also be able to teach these skills to undergraduates has created a
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Fig 3. Student and expert answers to a selection of questions from the pre- and postmodule questionnaire. Student and expert responses were

filtered as described in the Methods. Student responses were compared before module participation and after module participation using a paired t test.

Student responses both pre and post module were also individually compared to expert responses using t tests. Error bars reflect SE. If student

responses before the module compared with expert responses were statistically significantly different (at p < 0.05), and postmodule student responses

were no longer statistically significantly different from expert responses (at p < 0.05), then the question was marked ***. If student responses before the

module compared with expert responses were statistically significantly different (at p < 0.1), and postmodule student responses were no longer

statistically significantly different from expert responses (at p < 0.1), then the question was marked *. If student responses before the module compared

with student responses after the module were statistically significantly different from expert responses (at p < 0.05), then the question was marked ^^^. N

(students) = 51; N (experts) = 50. A complete list of the questions can be found in Supporting information. SE, standard error; SPE, student response pre

module; SPO, student response post module; XPT, expert response.

https://doi.org/10.1371/journal.pcbi.1005872.g003
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bottleneck in the ability of life science faculty as a whole to keep up with the demand [24–26].

On average, lack of experience within the faculty correlates with less exposure of biology

undergraduates to these techniques and creates a problem for graduates who lack an important

skill set that would make them competitive in their search for jobs in industry or their applica-

tions for graduate school [22,27].

Fig 4. Student perceptions of the usefulness of the bioinformatics module used in this study. Student responses were binned into three groups:

agree (A), disagree (D), and neutral (N). Student responses were filtered as described in the Methods. Students had overwhelmingly positive responses

to their experience with the module. N (students) = 51. A complete list of the questions can be found in Supporting information.

https://doi.org/10.1371/journal.pcbi.1005872.g004
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While over the last two decades the use of statistics has more and more permeated all levels

and subject areas of biology instruction, bioinformatics is often still largely relegated to upper-

level elective courses, although efforts have been made to introduce bioinformatics more

widely in more biology classes [28]. A key obstacle for the teaching of bioinformatics in more

diverse kinds and levels of classes is the lack of the required skills in teaching applied bioinfor-

matics [24] to undergraduates in biology in more classes than just advanced elective courses,

which reach only a small portion of the student population [22,23]. Formal university training

of current biology teachers or college faculty very often predates the dramatic increase in the

requirement for bioinformatics in the life sciences, necessitating that training of in-service fac-

ulty precede student training [9,29–31]. Finding enough expertise in bioinformatics to develop

new biocomputing-intensive biology programs is particularly difficult at small liberal arts col-

leges [9] because many faculty received their own training before the sudden expansion of

high-throughput bioinformatics-intensive research methods were developed [23], and turn-

over within small faculties is slow, resulting in only slow replacement of retiring faculty with-

out bioinformatics skills with young faculty who possess these skills. While financial and

practical constraints will likely prevent rapid retooling of existing faculties, it is incumbent

upon universities and programs to find feasible means to speed up the process of modernizing

programs to prevent opening up an ever-widening gap between what has traditionally been

taught in undergraduate biology programs versus the skills that practicing biologists need now

and in the future.

The choice of assessment instrument for this module allowed the analysis not only of stu-

dent perception of learning and engagement before and after participation in the module but

also the normalization of student responses to the expert group. CLASS analysis studies have

used this approach in the past with good results [14–17]. One aspect in which this study dif-

fered from previous CLASS studies was the choice of experts. Using potential bioinformatics

users who were, for the most part, not bioinformaticists by training, allowed the comparison

against a group of practitioners who were likely to be more similar in their interest of using

bioinformatics tools for the primary goal of analyzing biological data, not creating new tools,

algorithms, or software programs. This is the group of bioinformatics users that this module

was trying to reach. Given the relative heterogeneity of this expert group that reflects the diver-

sity of life scientists from all biological disciplines, it was not too surprising that the group

reached consensus on a comparatively smaller number of questions on the questionnaire than

would be expected, for example when biology students in a biology CLASS study were com-

pared with biology professors as the expert group [14]. Interestingly, one question about

which the expert group did not reach consensus regarded their enjoyment of bioinformatics,

indicating that skills in this field are often seen as little more than a tool to allow the scientist to

analyze the data in their chosen subject area more fully.

The assessment suggested that the studied module reached some of its goals with the stu-

dents (Fig 3, Fig 4, Table 1, Table 2), particularly with respect to an increased awareness of the

tools available and to a gain in proficiency in their application (as shown, for example, in the

change in response to questions 18 and 19), greater confidence that mastery of these tools can

be learned by anyone (question 27), and a higher level of curiosity to learn more about bioin-

formatics in the future (questions 10, 15, and 20).

While the statistical analysis of answers on the questionnaire indicated that participants’

attitudes had reached parity with the experts in some areas, other areas did not allow that con-

clusion. In many cases, however, student responses suggested that their postmodule attitudes

had shifted towards the attitudes of the expert group, just not to a degree that would make stu-

dent responses statistically indistinguishable from expert responses. The most parsimonious

reason for that is that a four-week module simply might not provide enough exposure for the
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students to reach the level of sophistication that experts have. Areas in which students most

conspicuously did not improve much after participation in the module included questions

about the respondents’ ability to make sense of abstract or multilayered situations, such as

question 17 (“There are times I think about. . . a. . .question. . .in more than one way”), or

about their level of problem-solving sophistication, revealed in examples such as question

3 (“. . .I have difficulty applying [learned] information to answer questions on similar

aspects. . .”). Addressing these gaps would likely require longer modules, repetition, and appli-

cation of learned material to more than just the one example studied in this module. Interest-

ingly, personal interest questions, such as statement 10 (“I enjoy figuring out answers to

biology questions that require bioinformatics”) received more support by postmodule partici-

pants than by premodule participants or even experts (although the difference with experts

post module was not statistically significant), suggesting that students liked learning how bio-

informatics can help them answer questions of interest to them and created enthusiasm imme-

diately after their experience of success at a task that, previous to the module, seemed daunting

to them. Taken together, these data suggest that students enjoy the exposure to bioinformatics

but that a module of this length is not long enough to provide them with enough confidence to

reach that of experts. While this may not be expected, this study seems to suggest that students

Table 2. Classification of the three learning objectives* as addressed by questions/statements on

the CLASS survey.

Question/Statement CLASS Category

1,2,8,10,12,14,15,24 Personal Interest

2,10,12,13,16,21,30 Real World Connection

3,5,18,28 Problem solving: synthesis and application

6,17 Problem solving: strategies

7,10,17,20,24,27,28 Problem solving: effort

13,20 Problem solving: reasoning

9,11,16,19,29,31 Conceptual connections

4,22,23,26 Uncategorized

*The three stated learning objectives of the module are (a) teach students basic command-line computing

and bioinformatics skills, (b) motivate students to develop an interest in bioinformatics approaches to

address biological questions, and (c) allow students to develop an appreciation for the use of bioinformatics

in modern biology.

Abbreviation: CLASS, Colorado Learning Attitudes about Science Survey.

https://doi.org/10.1371/journal.pcbi.1005872.t002

Table 1. Categorization of questionnaire questions by learning objective. Questions used in this survey

were closely adapted from previous CLASS surveys [14–16]. Categories are as in Semsar et al. 2011. The

learning objective column lists the stated learning objectives* of the module as they are addressed by the

statements/questions on the survey.

Question/Statement Learning Objective

3,4,5,7,8,17,18,19,28 A

10,14,15,20,24,27 B

3,4,5,6,12,13,16,21,23,30,31 C

*The three stated learning objectives of the module are (a) teach students basic command-line computing

and bioinformatics skills, (b) motivate students to develop an interest in bioinformatics approaches to

address biological questions, and (c) allow students to develop an appreciation for the use of bioinformatics

in modern biology.

Abbreviation: CLASS, Colorado Learning Attitudes about Science Survey.

https://doi.org/10.1371/journal.pcbi.1005872.t001
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might both enjoy and benefit from more, similar exercises either in the same context/class or a

different class soon after their first exposure.

While there is widespread agreement that lack of adequate undergraduate bioinformatics

instruction creates a disadvantage for students without access, opinions differ on the question

of how to introduce biologists to computational thinking. Some argue for the integration of

bioinformatics modules like the one described here into existing college classes, acknowledg-

ing that most undergraduate biology curricula are already so full that they might not allow the

addition of a mandatory bioinformatics course for all biology majors [9,23,30,32,33]. Others

call for the addition of new, more fundamental mathematics-focused courses for biologists

[6,8] or even specialized courses that go far beyond elementary computer programing [24–26].

Indeed, some bioinformaticists have warned against the mere use (and by extension teaching)

of applied bioinformatics without a deep understanding of the mathematical or computational

background underlying bioinformatics analysis programs [34]. Their argument is that employ-

ing these tools as “black boxes” without a deep understanding of their underlying mathemati-

cal and computational principles can lead to misinterpretation of the results and errors in their

use [34,35]. No matter which argument carries the day in any given biology department at

the moment, it will be important for all undergraduate programs in biology to assess to what

degree bioinformatics, and the necessary background material to understand it, will in the

near future have to replace topics currently represented in typical curricula. While acknowl-

edging the dangers discussed by May, Rubinstein, and Chor [34,35], this paper argues that it is

all but inevitable that life scientists today will have to learn to use “black box” bioinformatics—

at least to such a degree that life scientists can use methods and programs developed by others

—and apply them to novel research questions without having to be experts in the underlying

disciplines in addition to biology and their research specialty. On the other hand, in today’s

world of big data, one might argue that it is incumbent upon aspiring biologists to acknowl-

edge these rapid changes and learn the necessary underlying concepts of bioinformatics and

statistics along with their applications. But change does not happen overnight. It is therefore

important to empower faculty and students alike to tackle tools that may not come naturally to

some practitioners in the life sciences and to engage with methods across the curricula that not

only hold great promise but without a basic understanding of which biology graduates will be

ill prepared for a career in the life sciences of the future.

In addition to creating a useful teaching tool introducing biology students to applied bioin-

formatics, a secondary goal of this study was therefore to design and assess a module that

would encourage greater adoption of bioinformatics tools into non-bioinformatics college

courses while at the same time allowing novice students and nonexpert teachers alike to engage

in state of the art next-generation sequence analysis, learn basic bioinformatics tools in the

process, and raise their interest in increased engagement with bioinformatics in the future—or

at least provide appreciation of the power of these tools in life science research. While assess-

ment of teaching faculty experiences with this module was only minimal and anecdotal, it will

be both interesting and important to more formally assess faculty experiences with the use of

this and similar modules. Their attitude to using modules like these in their non-bioinformat-

ics core and specialty classes will be important to assess if the introduction of bioinformatics

tools into many non–bioinformatics-oriented undergraduate classes across the curricula is to

be successful.
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S2 Supporting information. Questions on student/expert questionnaire. Questions 1–31

were asked of both students and experts. Questions 32–41 were only asked of students after

completing the module. Questions for which experts achieved “consensus” (more than 66.7%

of answers were answered either as 1 or 2, or as 4 or 5) are italicized.

(PDF)

S3 Supporting information. Focus group questions and examples of student free text

responses about their experience with the module. These responses were recorded from stu-

dents during a focus group analysis one week after the conclusion of the module. Questions

were asked in seven separately conducted sessions using a standardized script.

(PDF)

S1 Fig. Student and expert responses to all questions on the questionnaire. N (students) =

51; N (experts) = 50. Unless reported in Fig 3 (which shows a subset of these data), student

responses compared with those of the experts did not differ between pre- and postmodule test-

ing. This figure shows responses to all questions, including those for which experts did not

reach consensus (see Methods and Results). SPE, student response pre module; SPO, student

response post module; XPT, expert response.

(PDF)
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