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TAGGEDPA B S T R A C T

Background: Comprehensive proteomics profiling may offer new insights into the dysregulated metabolic
milieu of type 2 diabetes, and in the future, serve as a useful tool for personalized medicine. This calls for a
better understanding of circulating protein patterns at the early stage of type 2 diabetes as well as the
dynamics of protein patterns during changes in metabolic status.
Methods: To elucidate the systemic alterations in early-stage diabetes and to investigate the effects on the
proteome during metabolic improvement, we measured 974 circulating proteins in 52 newly diagnosed,
treatment-naïve type 2 diabetes subjects at baseline and after 1 and 3 months of guideline-based diabetes
treatment, while comparing their protein profiles to that of 94 subjects without diabetes.
Findings: Early stage type 2 diabetes was associated with distinct protein patterns, reflecting key metabolic
syndrome features including insulin resistance, adiposity, hyperglycemia and liver steatosis. The protein pro-
files at baseline were attenuated during guideline-based diabetes treatment and several plasma proteins
associated with metformin medication independently of metabolic variables, such as circulating EPCAM.
Interpretation: The results advance our knowledge about the biochemical manifestations of type 2 diabetes
and suggest that comprehensive protein profiling may serve as a useful tool for metabolic phenotyping and
for elucidating the biological effects of diabetes treatments.
Funding: This work was supported by the Swedish Heart and Lung Foundation, the Swedish Research Council,
the Erling Persson Foundation, the Knut and Alice Wallenberg Foundation, and the Swedish state under the
agreement between the Swedish government and the county councils (ALF-agreement).
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TaggedH11. Introduction TaggedEnd

TaggedPType 2 diabetes, characterized by hyperglycemia on account of
chronic insulin resistance and impaired pancreatic b-cell function, is a
complex systemic disease with dysregulated metabolic pathways and
complications in several organ systems. The early stage of the disease
frequently goes undiagnosed for many years because hyperglycemia
develops gradually and is often not severe enough for the patient to
notice the classic symptoms of diabetes [1]. Despite this seemingly
TaggedEndTaggedPmild disease status, many of the pathophysiological processes of diabe-
tes-related complications are already present, partly due to hypergly-
cemia, but also due to the other cardiometabolic risk factors that
commonly accompany type 2 diabetes such as obesity, hypertension,
dyslipidemia and non-alcoholic fatty liver disease (NAFLD) [2].TaggedEnd

TaggedPThe onset of type 2 diabetes involves numerous pathways and
interactions between metabolically active tissues such as pancreas,
liver, gut, adipose tissue and skeletal muscle [3]. Many of these inter-
actions are mediated through various circulating proteins, including
hormones, growth factors, adipokines, cytokines and enzymes [4].
The recent advancements in high throughput technologies for mea-
suring a large number of proteins in a single assay have enabled
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Research in Context

Evidence before this study

Circulating protein signatures may provide important informa-
tion about the molecular phenotype of diabetes and the cardio-
metabolic health state of individuals. Our knowledge about the
protein alterations of diabetes have grown considerably over
the recent years, however this knowledge is mainly based on
cross-sectional data from patients with different durations of
the disease and with ongoing diabetes treatment.

Added value of this study

This study adds to previous proteomic studies since it describes
the protein signatures of newly diagnosed, treatment naive type
2 diabetes and investigates the relative importance of diabetes-
related metabolic features for these signatures. Most impor-
tantly, the study adds the longitudinal aspect by performing
repeated plasma profiling during standard diabetes treatment so
that the dynamics during metabolic improvement can be eluci-
dated. The comprehensive protein analyses revealed previously
unknown associations with diabetes, as well as confirming previ-
ously published associations, thus contributing to our knowledge
about the biochemical manifestations of diabetes.

Implications of all the available evidence

A broad range of blood-borne proteins are altered in newly
diagnosed type 2 diabetes and protein profiling show promis-
ing potential as a cardiometabolic health indicator. In addition,
protein patterns are sensitive to changes in metabolic status as
well as to metformin medication, indicating that protein profil-
ing can help to elucidate the molecular effects of diabetes
treatments.
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TaggedEndTaggedPdata-driven discoveries that may offer new insights into the dysregu-
lated metabolic milieu of diabetes [5,6]. There is also a potential for
comprehensive protein profiling in personalized medicine, by detect-
ing early signs of disease development and providing simultaneous
information on multiple cardiometabolic health indicators in individ-
ual patients [7]. In addition, protein profiling during diabetes treat-
ments such as diet, physical activity and pharmacotherapy could
potentially help to broaden our understanding of the therapeutic
mechanisms [8].TaggedEnd

TaggedPWhile efforts have been made to study protein alterations in dia-
betes [5,6], little is known about proteomic alterations at the very
onset of the disease and before any diabetes treatment has been initi-
ated. Patients at this stage of the disease can only be reached using
screening programs since they lack classic symptoms of diabetes. Fur-
thermore, there is limited information about the relative importance
of hyperglycemia versus other metabolic aberrations for the protein
signatures in blood. Identifying the main cardiometabolic drivers of
protein patterns in blood has implications not only for the basic
understanding of diabetes, but also for the potential of protein profil-
ing as a cardiometabolic health indicator in these patients. Therefore,
proteomic profiling could be a future approach to monitor diabetes
interventions and it is therefore of major interest to understand to
what extent the protein signatures of diabetes subjects are sensitive
to the clinical improvement that occur during diabetes treatment. TaggedEnd

TaggedPRecently, we have conducted a large research program to analyze
“wellness” in the general population involving the molecular pheno-
types of a longitudinal cohort, the Swedish SciLifeLab SCAPIS Well-
ness Profiling (S3WP) program. This has led to several articles
regarding “wellness”, including Zhong et al., [9], Dodig-Crnkovic et al.
TaggedEndTaggedP[10] and Tebani et al. [11]. Here, we have used the same approach to
target type 2 diabetes and describe for the first time a comprehensive
analysis of plasma protein profiles in newly diagnosed type 2 diabe-
tes patients before and after diabetes treatment, while comparing
their protein profiles to that on non-diabetes controls. TaggedEnd

TaggedPFifty-two individuals with previously undiagnosed and treatment-
naïve type 2 diabetes were identified from large population-based
screening programs and selected for a longitudinal study. Plasma pro-
tein profiles, based on 974 unique proteins, were analyzed using tar-
geted affinity proteomics. The protein profiles were analyzed at
baseline and after one and three months of guideline-based diabetes
treatment, and the protein profiles of the diabetes group were com-
pared to that of 94 subjects without diabetes in the S3WP program. In
this way, we were able to conduct a comprehensive protein profiling
to unveil systemic alterations of early-stage of diabetes and to investi-
gate effects on the proteome during glucose lowering treatment.TaggedEnd

TaggedH12. MethodsTaggedEnd

TaggedH22.1. Study design and subjects TaggedEnd

TaggedPThe diabetes group consisted of 52 subjects, age 50�65 years,
with no history of diabetes who were diagnosed during population-
based screening examinations at the Sahlgrenska University Hospital,
Gothenburg, and consecutively invited to the current study. The diag-
nosis was based on fasting p-glucose and oral glucose tolerance tests
(OGTT). Presence of diabetes was defined according the Swedish
standard, corresponding to the American Diabetes Association stand-
ards [1]: A fasting p-glucose �7.0 mmol/L or an 2-hour OGTT p-glu-
cose �11.1 mmol/L (�12.2 mmol/L when measured capillary).
Subjects who met diabetes criteria were scheduled for a second glu-
cose measurement on a separate occasion and enrolled if diabetes
diagnosis was confirmed. To identify latent autoimmune diabetes in
adults (LADA), glutamic acid decarboxylase (GAD), tyrosine phospha-
tase IA-2 (IA-2) and zinc transporter 8 (ZnT8) antibodies were mea-
sured. Exclusion criteria were severe hyperglycemia requiring
hospitalization or immediate insulin treatment, presence of any clini-
cally significant disease which, in the opinion of the investigator,
may interfere with the subject�s ability to participate in the study, or
any major surgical procedure or trauma within four weeks of the first
study visit. The diabetes group was examined at baseline and after
one and three months of guideline-based diabetes treatment accord-
ing to first-line therapy with lifestyle change including weight man-
agement and physical activity, with or without metformin as judged
by the treating physician. Of the 52 subjects, 51 (98%) completed the
3-month follow-up visit. The non-diabetes control group consisted of
94 participants that completed the second year in the longitudinal
Swedish SciLifeLab SCAPIS Wellness Profiling (S3WP) program
[9�11] and did not have diabetes as judged from repeated fasting
glucose and HbA1c measurements as well as baseline OGTT. The con-
trol group were examined twice during the same time-period and at
the same site as the diabetes subjects (2016�2018, Wallenberg Labo-
ratory, Gothenburg), and the mean values from these examinations
were used in the data analysis. TaggedEnd

TaggedH22.2. Ethics TaggedEnd

TaggedPThe study conforms to the ethical guidelines of the 1975 Declara-
tion of Helsinki and was approved by the Ethical Review Board of
Gothenburg, Sweden (DNR 448-16, 407-15). All participants provided
written informed consent. TaggedEnd

TaggedH22.3. Clinical dataTaggedEnd

TaggedPAll study visits were performed after an overnight fast of at least
8 h. Study assessments in both groups included anthropometry,
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TaggedEndTaggedPblood pressure, clinical chemistry and life-style questionnaires.
Weight was measured with participants in light clothing using cali-
brated scales, and the body mass index (BMI) was calculated by divid-
ing the weight (kg) by the square of the height (m). Waist
circumference was measured midway between the palpated iliac
crest and the palpated lowest rib margin in the left and right mid-
axillary lines. Total body fat was measured using a bioelectrical
impedance scale (Tanita MC780MA, Tanita Corporation, Tokyo, Japan)
according to manufacturer�s instructions. Systolic and diastolic blood
pressure (SBP, DBP) was registered in supine position and after 5 min
of rest, using the automatic Omron P10. Clinical chemistry and hema-
tology measurements included fasting glucose, hemoglobin A1c
(HbA1c), low-density lipoprotein cholesterol (LDL-C), high-density
lipoprotein cholesterol (HDL-C), triglycerides (TG), apolipoprotein A1
(ApoA1), apolipoprotein B (ApoB), creatinine, high sensitive C-reac-
tive protein (CRP), alanine aminotransferase (ALAT), gamma glutamyl
transferase (GGT), urate, cystatin C, N-terminal pro-brain natriuretic
peptide (NT-proBNP), hemoglobin (Hb), white blood cell count
(WBC), red blood cell count (RBC) and platelet count. Estimated glo-
merular filtration rate (eGFR) was calculated from age, gender, creati-
nine and cystatin C according to the Chronic Kidney Disease
Epidemiology Collaboration (CKD-EPI) 2012 formula [12]. Insulin and
C-peptide was measured in the diabetes group and the homeostatic
model assessment of insulin resistance (HOMA-IR) was calculated
according to the formula: fasting insulin (mU/L) x fasting glucose
(mmol/L) / 22.5 [13]. Baseline measurements of liver fat content and
visceral adipose tissue area (VAT) were performed in the diabetes
group using a dedicated dual-source CT scanner equipped with a Stel-
lar Detector (Siemens, Somatom Definition Flash, Siemens Medical
Solution, Forchheim, Germany) as previously described [14].TaggedEnd

TaggedH22.4. Plasma protein measurements TaggedEnd

TaggedPAll plasma samples were collected after an overnight fast and at
the same visit as the clinical examinations. For three subjects, plasma
samples for protein measurements were not available from the 1-
month visit. Multiplex proximity extension assays (PEA, Olink
TaggedEnd Table 1
Comparison of clinical characteristics of diabetes group and control group.

Abbreviation Clinical variable

Gender Males, n (%)
Age Age, years
Smoking Current smoker, n (%)
SedentaryTime Sedentary time, hours
BMI Body mass index, kg/m2

Waist Waist circumference, cm
Bodyfat Body fat content,%
SBP Systolic blood pressure, mmHg
DBP Diastolic blood pressure, mmHg
Gluc Glucose, mmol/L
HbA1c Hemoglobin A1c, mmol/mol
LDL-C Low density lipoprotein cholesterol, mmol/L
HDL-C High density lipoprotein cholesterol, mmol/L
TG Triglycerides, mmol/L
ApoA1 Apolipoprotein A1, g/L
ApoB Apolipoprotein B, g/L
ALAT Alanine aminotransferase,mkat/L
GGT Gamma glutamyltransferase, mkat/L
NT-proBNP N-terminal pro b-type natriuretic peptide, ng/L
eGFR Estimated glomerular filtration rate, mL/min/1.73 m2

Urate Urate,mmol/L
CRP C-reactive protein, high sensitivity, mg/L
WBC White blood cell count, x109/L
Hb Hemoglobin, g/L
RBC Red blood cell count, x1012/L
Platelets Platelet count, x109/L

Values are median (interquartile range) unless otherwise indicated. The symbol * denotes p<
TaggedEndTaggedPBioscience, Uppsala, Sweden) were used to measure the relative con-
centrations of plasma proteins. Each kit provides a microtiter plate
for measuring 92 protein biomarkers in all prepared samples. Each
well contains 96 pairs of DNA-labeled antibody probes. Samples were
incubated in the presence of proximity antibody pairs tagged as pre-
viously described [15]. To minimize inter- and intra-run variation,
samples from the diabetes and control group were mixed and ran-
domized across plates. Both internal control (extension control) and
inter-plate control were used for normalization and then trans-
formed using a pre-determined correction factor. The pre-processed
data were provided in the arbitrary unit Normalized Protein eXpres-
sion (NPX) on a log2 scale, where a high NPX value represents high
protein concentration. The analyses were performed at SciLifeLab’s
Plasma Profiling facility on eleven Olink panels including Cardiome-
tabolic, Cell Regulation, Cardiovascular II, Cardiovascular III, Develop-
ment, Immune Response, Oncology II, Inflammation, Metabolism,
Neurology, and Organ Damage. Quality control was performed at
both sample and protein levels and resulted in using a total of 974
unique proteins in 340 samples. TaggedEnd

TaggedPThe validation of epithelial cell adhesion molecule (EPCAM) was
analysed in EDTA plasma diluted 1:3 using human EPCAM ELISA Kit
(ab155442, Abcam, Cambridge, GB). Samples below detection limit
were considered as 50% of the sensitivity of the ELISA (22,5 pg/ml)
for statistical analysis. TaggedEnd

TaggedH22.5. StatisticsTaggedEnd

TaggedPR version 3.6.1 was used for all statistical analyses. Imputation of
protein abundances were performed using the function rfImpute in
the package randomForest [16]. A protein was not imputed but
instead excluded from the analysis if more than 20 percent of the val-
ues were missing (which was the case for n = 1 protein). In total, less
than 0.2% of the data was imputed. To study the overall protein pro-
file of newly diagnosed type 2 diabetes, we applied linear discrimi-
nant analysis (LDA) on the proteomic dataset from the diabetes
group�s baseline visit and the control group to maximize the compo-
nent axes for group separation. We subsequently applied the LDA to
Diabetes (n = 52) Control (n = 94)

21 (40) 47 (50)
59.9 (8.4) 58.2 (7.0)

9 (17) 1 (1)
8.0 (5.0) 6.5 (4.0)

31.9 (9.9)* 25.1 (5.1)
108.5 (25.3)* 93.8 (14.9)
32.4 (13.2)* 25.0 (12.9)

131.5 (23.0)* 119.0 (20.1)
86.0 (13.5)* 78.0 (12.4)
7.5 (1.6)* 5.7 (0.7)

43.0 (7.5)* 34.3 (3.9)
3.3 (1.0)y 3.6 (0.9)
1.4 (0.5)* 1.8 (0.7)
1.5 (0.6)* 0.9 (0.5)
1.5 (0.3)* 1.7 (0.4)
1.0 (0.3) 1.1 (0.2)

0.55 (0.36)* 0.39 (0.17)
0.62 (0.55)* 0.32 (0.21)
43.5 (59.8) 46.3 (58.4)
77.4 (13.0)y 86.0 (15.3)

363.5 (114.3)* 291.0 (83.4)
2.6 (3.6)* 0.9 (1.4)
5.8 (2.3)y 5.0 (1.4)

147.0 (14.3)y 143.0 (14.4)
4.8 (0.4)y 4.6 (0.5)

210.5 (68.8)* 238.0 (76.6)

0.001 and y denotes p<0.01 [Mann-Whitney U test].
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TaggedEndTaggedPidentify diabetes status from the proteomic data, and to test robust-
ness of the LDA model we also used prediction models based on both
random forest and support vector machine learning since these
methods are well established and represent different approaches toTaggedEnd TaggedFigure
Fig. 1. (a) Density plot of the first latent dimension from the Linear Discriminant Analysis (LD
betes and control groups along the linear discriminant dimension 1 (LD1group) which is a o
learning algorithms (LDA, Random forest and support vector machine) were benchmarked to
tes subjects from controls. The algorithms were trained on half of the cohort and internally
curve (AUC) of the receiver operating characteristics (ROC) from the validation sample. (c) LD
cal variables is based on the strength of correlation, the highest correlation shown to the left
tive importance analysis of clinical variables reveal that HOMA-IR explains most of the
circumference. Insulin, glucose, BMI/VAT and GGT were excluded from the analysis due to h
tance for the random forest diabetes classification model reveals NOS3, HGF, PON3, IGSF3 an
TaggedEndTaggedPprediction. Linear discriminant analysis (LDA) was performed using
the package “MASS” in R [17], random forest prediction modeling
using “randomForest” [16], and support vector machines using the
“e1071” [18] with the default radial kernel and the default parameter
A) based on the proteomic data. This plot shows the separation trend between the dia-
ne-dimensional representation of the proteomic group differences. (b) Three machine
evaluate the classification performance of the protein signature to discriminate diabe-
validated on half of the cohort. Classification accuracy is presented as area under the
1group correlated against clinical variables within the diabetes group. The order of clini-
. Note that a low liver attenuation value corresponds to high liver fat content. (d) Rela-
independent variability in LD1group, followed by HbA1c, ALAT, liver fat and waist

igh covariance with HOMA-IR, HbA1c, waist and ALAT, respectively. (e) Variable impor-
d ADGRG1 as the strongest predictors of diabetes status. TaggedEnd
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TaggedEndTaggedPsettings. Training set (50%) and test set (50%) were utilized to evalu-
ate the performance based on the area under the receiver operating
characteristic curve (AUROC) of the machine learning algorithms.
Relative importance analysis was performed using the package
“relaimpo” with the method “lmg” [19], and variable importance
ranks (Gini coefficients and accuracy decreases) using “randomFores-
tExplainer” [20]. Correlation coefficients refer to Spearman’s rank
correlation coefficients, and p-values were calculated using the
Mann-Whitney U test for non-paired samples or the Wilcoxon
signed-rank test for paired samples. Effect sizes were calculated from
the Z-scores and the sample sizes of the respective significance tests.
Mixed-modeling was performed using the package “lme4” [21] with
metformin dose and visit (which adjusts for other effects related to
the intervention) as random effects and subject as fixed effect. The
control group was only used to determine the diabetes-associated
protein profile and all other analyses were performed within the dia-
betes group to minimize the risk of bias being carried over from the
group-wise comparisons. To correct for multiple comparisons, p-val-
ues were adjusted to a false discovery rate (FDR) of 0.05, based on the
total number of proteins studied (i.e. 974). TaggedEnd

TaggedH22.6. Role of funding source TaggedEnd

TaggedPThe funders did not have any role in study design, data collection,
data analyses, interpretation, or writing of report. TaggedEnd

TaggedH13. Results TaggedEnd

TaggedH23.1. Clinical characteristics at baseline TaggedEnd

TaggedPScreening for diabetes was done in ongoing population studies at
the Sahlgrenska University Hospital. The frequency of newly

TaggedEnd TaggedFigure

Fig. 2. (a) Comparisons of plasma protein levels between the diabetes group and the control
most significant proteins. (b) Correlation matrix of the top 30 diabetes-associated proteins a
representing negative r-values. (For interpretation of the references to color in this figure leg
TaggedEndTaggedPdiagnosed diabetes based on repeated fasting capillary plasma glu-
cose measurements and 2-hour OGTT was 1.7% and 0.5%, respec-
tively. Of the 52 subjects that were included in the diabetes group, 35
(67%) had fasting glucose �7.0 at two separate occasions before inclu-
sion, and for the remaining 17 subjects the 2-hour OGTT was required
for diagnosis on at least one occasion. In addition to having higher
fasting glucose and HbA1c, the diabetes group differed from the con-
trol group regarding the classical features of the metabolic syndrome,
i.e. the diabetes group was more obese, had higher blood pressure,
higher serum triglycerides and lower serum HDL levels. Liver func-
tion tests and inflammatory markers were also increased (Table 1).TaggedEnd

TaggedH23.2. Protein profiles at baseline TaggedEnd

TaggedPTo investigate the protein signature of the diabetes group, LDA
was applied to determine the first linear discriminant for group sepa-
ration (LD1group). The LDA showed that the overall protein profile
clearly differed between the diabetes group�s baseline visit and the
control group (Fig 1a). When LDA, random forest and support vector
machine were used to build prediction models based on the overall
proteome, all three methods were able to identify diabetes status
from the protein signature. The AUROCs were 0.90 (CI: 0.83�0.97),
0.94 (CI: 0.90�0.99) and 0.92 (CI: 0.86�0.98) for LDA, random forest
and support vector machine learning, respectively (Fig. 1b). Variabil-
ity in LD1group correlated with several features of the metabolic syn-
drome including insulin resistance (HOMA-IR), insulin homeostasis
(insulin, C-peptide), NAFLD (Liver fat, GGT, ALAT), glucose control
(fasting glucose, HbA1c) and obesity (waist circumference, BMI), high
triglycerides, and low HDL-C (Fig 1c). In a relative importance analy-
sis that included variables with the highest correlations with
LD1group, HOMA-IR remained most important for variance in LD1group
(Fig 1d). In total there were 44 out of 973 (4.5%) proteins that
group (Mann-Whitney U test), visualized with a volcano plot with labels on the top 30
nd clinical variables in the diabetes group with red color representing positive and blue
end, the reader is referred to the web version of this article.) TaggedEnd
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TaggedEndTaggedPcontributed significantly to the prediction of diabetes (FDR-corrected
p<0.05) in the random forest model, the most important being NOS3,
HGF, PON3, IGSF3, and ADGRG1 (Fig 1e). TaggedEnd

TaggedPTo identify plasma proteins that are altered in early-stage diabe-
tes, we compared the plasma levels of each protein in the diabetes
and control group using Mann-Whitney U test and found that 293
(30%) of the 974 proteins differed significantly between groups
(Fig. 2a). The three proteins with the lowest p-value in the group
comparison were PON3, HGF and NOS3 (FDR-corrected p<10�8). The
top 30 most significant proteins from the group-wise comparison are
listed in Supplemental Table S1 along with a brief summary of their
implication in cardiometabolic disease, and all 293 significant pro-
teins are listed in Supplemental Table S2. Correlations between the
top 30 proteins and clinical variables are visualized in Fig. 2b. The
highest correlations were found with measures related to NAFLD (e.g.
r = 0.70 for HGF versus liver fat content and r = 0.71 for ERBB2 versus
GGT) and there was also a pattern of several proteins correlating

TaggedEnd TaggedFigure

Fig. 3. (a) Density plot of the change in HbA1c after 3 months in the diabetes group. The dash
the change in BMI after 3 months in the diabetes group. The dashed line depicts the mean BM
3-month visit projected onto the LD1group-axis. The distributions between baseline and the 3
control group (p-value = 0.0092 [paired t-test], n = 51). (d) Relative importance analysis sho
HbA1c that explain the variation in the changing proteome during treatment (represented by
TaggedEndTaggedPwith measures of insulin homeostasis (e.g. r = 0.65 for IGSF3 versus
insulin and r = 0.62 for ADGRG1 versus C-peptide). Correlations with
measures of hyperglycemia, adiposity, lipids, blood pressure and
inflammation were generally weaker, exceptions being FABP4 and
ADM which correlated with body fat content (r = 0.75 and r = 0.69,
respectively), and IL6 which correlated with CRP (r = 0.63) and WBC
(r = 0.62). All top 30 proteins were associated with diabetes indepen-
dently of age and sex when examined in linear regression models,
and all but one (FABP4) of the associations were also independent of
BMI (Supplemental Table S1). TaggedEnd

TaggedH23.3. Metabolic improvement during diabetes treatment TaggedEnd

TaggedPThe diabetes subjects were followed over three months of guide-
line based diabetes treatment, and during this period the mean
reduction in HbA1c was 5.2 mmol/mol and the mean weight loss
3.3 kg, corresponding to a mean BMI reduction of 1.1 kg/m2. Of the
ed line depicts the mean HbA1c reduction of 5.2 mmol/mol at visit 3. (b) Density plot of
I reduction of 1.1 kg/m2. (c) Density plot of Linear Discriminant Analysis with the 1 and
-month visit are significantly different with the 3-month distribution being closer to the
wing which changes in the clinical variables BMI, metformin treatment, HOMA-IR and
change in LD1treat). TaggedEnd



TaggedEnd TaggedFigure

Fig. 4. Radarplot showing levels of top 30 diabetes-associated proteins in the diabetes group at each timepoint and in the control group. The symbol * denotes FDR-corrected p<0.05
for change between baseline and 3 months in a paired Wilcoxon signed rank test. TaggedEnd
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TaggedEndTaggedP51 subjects completing the study, 23 subjects had a HbA1c reduction
of 5 mmol/mol or more and 22 subjects lost 3 kg or more in weight.
The distributions of HbA1c and BMI-change are shown in Fig. 3a and
3b, respectively. There were also significant improvements in most of
the other metabolic variables including blood pressure, serum lipids,
liver function tests and CRP (Supplemental Table S3). At 3 months, 13
subjects had a low dose (0.5�1 g) of metformin and 29 had a high
dose (1.5�2 g), whereas 9 subjects were not treated with metformin.TaggedEnd

TaggedH23.4. Changes in the plasma proteome during treatment TaggedEnd

TaggedPTo test if the proteomic alterations of the diabetes group at base-
line were attenuated during treatment, we used the previously deter-
mined first linear discriminant for group separation (LD1group) and
analyzed how the diabetes subjects were distributed at the 3-month
follow-up visit. The signatures of the diabetes group changed in the
direction of the non-diabetic group during treatment and this shift in
the distribution was significant at 3 months compared to baseline
(paired t-test p = 0.0092) (Fig. 3c). To estimate the importance of
improved glucose control, insulin sensitivity, weight loss and metfor-
min medication for the proteomic variance during treatment, we
determined the first linear discriminant of the comparison between
baseline and 3 months of diabetes treatment (LD1treat) and performed
a relative importance analysis (Fig. 3d). The results indicated that
weight change and metformin medication had the largest impor-
tance, each explaining 14% of the proteome variance during treat-
ment, whereas change in HbA1c and HOMA-IR only accounted for
4.8% and 1.1%, respectively. TaggedEnd
TaggedPChanges during treatment in the top 30 diabetes-associated pro-
teins are shown in Fig. 4. Five (17%) of these proteins reached statisti-
cal significance for change from baseline in a FDR-adjusted paired
Wilcoxon signed rank test, all changing in the direction of the control
group. To visualize changes during treatment at a proteome level, we
compared the 3-month visit with baseline for all proteins and plotted
the effect-sizes in relation to the group-wise comparisons (Fig. 5).
There was an overall trend towards normalization of the initial pro-
tein alterations during treatment, although only 22 (7.5%) of the 293
diabetes-associated proteins reached statistical significance for
change from baseline. Notably, some of the most significant changes
during treatment occurred in proteins that did not differ between
groups at baseline. Furthermore, GDF15 showed a unique pattern with
elevated levels in the diabetes group at baseline which were further
increased during treatment. A mixed model analysis revealed that the
five proteins presenting the most pronounced changes during treat-
ment were all independently associated with metformin medication,
including EPCAM (p = 2.6 £ 10�9), GDF15 (p = 5.6 £ 10�8), REG4
(p = 6.4 £ 10�5), PCDH17 (p = 2.6 £ 10�4) and CPA2 (p = 6.7 £ 10�4)
(Fig 5 and Supplemental Table S4).TaggedEnd

TaggedH23.5. Validation of the metformin-EPCAM association TaggedEnd

TaggedPDue to the apparently large importance of metformin for the
proteomic shift during treatment, we performed a validation study
on EPCAM which was the protein that showed the strongest associa-
tion with metformin in our data (Fig. 6a). From a separate population
study we identified 22 metformin-treated subjects (mean § SD; age



TaggedEnd TaggedFigure

Fig. 5. Plot showing effect sizes for all 974 proteins for the diabetes vs controls comparison (y-axis) and for changes during treatment in the diabetes group (x-axis). Dashed lines
depict effect sizes corresponding to FDR-adjusted p-value of 0.05. The top 30 most significant proteins between groups at baseline are indicated with text, as is the top 15 most sig-
nificantly changed proteins during treatment (some overlapping). Proteins also associated with metformin according to mixed model analysis are highlighted in red. (For interpreta-
tion of the references to color in this figure legend, the reader is referred to the web version of this article.) TaggedEnd
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TaggedEndTaggedP63.9 § 4.0 years, BMI 30.4 § 3.7 kg/m2, fasting glucose
6.9 § 0.9 mmol/L) and control group of 44 subjects without metfor-
min, matched based on age, sex, BMI and fasting glucose concentra-
tions (mean § SD; age 62.7 § 4.5 years, BMI 29.6 § 4.4 kg/m2, fasting
glucose 6.8 § 0.9 mmol/L). The proportion of men was 59% in both
groups. The validation study confirmed the hypothesis that metfor-
min medication is associated with reduced plasma EPCAM levels (p-
value=0.001 [Mann�Whitney U test, 1-sided], Fig. 6b). TaggedEnd

TaggedH14. Discussion TaggedEnd

TaggedPResults from the present study show that subjects with screening
detected early type 2 diabetes, void of classic diabetes symptoms, dis-
play wide-ranging alterations in the plasma proteome as compared
to non-diabetic controls, to the extent that diabetes status can be pre-
dicted with high accuracy from the protein signature. These findings
support the notion that broad biochemical alterations are present
already at the onset of type 2 diabetes and that protein profiling
could deliver individualized health assessments of cardiometabolic
diseases. TaggedEnd

TaggedPOur study represents the most comprehensive PEA proteomics
study of type 2 diabetes so far, measuring 974 unique proteins at
multiple time points, revealing several plasma proteins not previ-
ously associated with diabetes. One example is ADGRG1 which is the
most abundant G protein-coupled receptor in human pancreatic
islets and plays an important role in pancreatic b-cell function [22],
TaggedEndTaggedPbut has not previously been reported to be a circulating biomarker of
diabetes. Another example is IGSF3 which is a little studied member
of the immunoglobulin superfamily of proteins that appears to be
completely unknown in the context of diabetes and cardiometabolic
diseases. Although the mechanism that links IGSF3 to diabetes is
unclear, there were several observations that makes IGSF3 an inter-
esting candidate to study further, including strong correlations with
insulin and liver fat, as well as the responsiveness to diabetes treat-
ment. These examples, together with several other proteins that have
not been described previously to associate with diabetes (e.g. HNMT,
SIT1, RTN4R, CDCP1, SIGLEC10, IFNLR1 and VSIG4) expand the knowl-
edge about the biochemical manifestations of type 2 diabetes and
provides a resource for new candidate biomarkers in this disease
area. This study also confirms several previously published associa-
tions between key proteins and prevalent diabetes and/or diabetes
progression, including PON3, HGF, CTSD, IL1RA, SIGLEC7, LPL, IL6,
FGF21, ERBB2, ALDH1A1, GAL4, ADM and FABP4 [5,23�32]. TaggedEnd

TaggedPCardiovascular disease (CVD) is the primary cause of morbidity
and mortality in people with diabetes, and already at this early stage
of the disease the diabetes subjects displayed alterations in a range of
CVD-associated proteins. Proteins implicated in the atherosclerotic
process and suggested as potential blood-borne biomarkers of CVD
include HGF, CTSD, IL6, TNFR1, IL1RA, FABP4, FGF21, and LPL
[24�27,32�34]. Notably, the protein most predictive of diabetes sta-
tus in the random forest model was NOS3 (also known as endothelial
NOS) which is known to play a key role in CVD-protection via the
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Fig. 6. (a) Boxplots showing EPCAM levels in relation to metformin medication in the main study. Boxes represent median and the first and third quartiles of the data. (b) To validate
the finding, plasma EPCAM was measured with ELISA in a separate cohort of 22 metformin-treated subjects and 44 non-treated controls that were matched according to age, sex,
BMI and HbA1c. The metformin-treated subjects had significantly lower EPCAM levels than the controls (p-value=0.001 [Mann-Whitney U test, 1-sided], n = 66). TaggedEnd
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TaggedEndTaggedPgeneration of the vasodilator nitric oxide in blood vessels [35]. To our
knowledge, there are no previous studies showing that diabetes is
associated with elevated circulating NOS3. Our findings encourage
future studies that evaluate integrated proteomics approaches to
improve CVD risk stratification in diabetes subjects. TaggedEnd

TaggedPThe proteomic variance that separated diabetes subjects from
controls reflected key metabolic syndrome features including insulin
resistance, hyperglycemia, fatty liver and adiposity. The importance
of fatty liver was particularly striking among the top 30 diabetes-
associated proteins (e.g. HGF, IGSF3, IL1RA, ALDH1A1, HNMT, ERBB2
and CDCP1). NAFLD is an important risk factor for liver disease as
well as CVD [36], yet often goes undetected in the clinical routine due
to the limited sensitivity of current liver function tests [37], and
therefore improved biomarkers are needed. Our observation that
NAFLD is a strong driver of plasma protein patterns is in line with
two recent studies suggesting that protein profiling could potentially
serve as a biomarker for NAFLD-screening [7,38]. TaggedEnd

TaggedPThe large majority of plasma proteins are stable over time in
humans while healthy, and deviations from the individual�s trajectory
could serve as a comprehensive indicator of changes in the health
state [11]. A previous study in insulin resistant subjects indicated
that the proteome is sensitive to periods of weight gain and loss [39],
however plasma protein changes during improvements in glucose
control are not well studied, nor is the potential influence of diabetes
medication on the proteome. To better understand the dynamics of
protein signatures in diabetes, it was therefore of key interest to
investigate if metabolic improvement is reflected in the overall pro-
tein profile. Our data showed that during treatment, the overall pro-
teome in the diabetes group shifted significantly towards the control
group. This indicates that diabetes-associated protein patterns are
responsive to treatment and hence might serve as a tool to elucidate
the systemic effects of diabetes treatments in a broad and data-driven
manner. This notion was further supported by our findings that met-
formin medication overshadowed the importance of glucose control
for the overall proteome, and that the proteins that changed the
most during treatment correlated strongly with metformin medica-
tion. This is interesting since the mechanisms by which metformin
TaggedEndTaggedPregulates blood glucose are only partly understood [40], and the data
provided here might provide important clues to its pharmacological
effects. Among the top metformin-associated proteins in our study
was GDF15, which was initially discovered to be metformin-associ-
ated from screening 237 serum biomarkers [41], followed by further
studies showing that GDF15 mediates the effect of metformin on
body weight [42,43]. Our findings confirm that metformin treatment
is associated with GDF15 levels, but also clarifies that diabetes is
associated with increased GDF15 levels even in the absence of met-
formin. The protein most strongly associated with metformin in our
data was EPCAM, a protein that is implicated in cancer pathophysiol-
ogy and suggested as a circulating cancer biomarker [44]. This finding
was intriguing in view of the growing body of evidence that metfor-
min may prevent cancer [45] by mechanisms that are poorly under-
stood. Some evidence that metformin reduces EPCAM expression
exists from in vitro studies of cancer cells [46], but to our knowledge
it has not previously been shown in humans that circulating EPCAM
is associated with metformin. Whether EPCAM mediates any of the
metabolic effects of metformin remains to be investigated. TaggedEnd

TaggedPOne limitation of this study is the relatively small sample size.
Even so, the corrected p-values for the associations discussed here
were very low and the validity of our group-wise comparison is sup-
ported by the large overlap with the results in a recent cross-sec-
tional proteomics study that searched for diabetes-associated
proteins based on three of the 11 PEA panels used in the present
study [5]. Novel findings should be verified in other cohorts to test
external validity, given that our study population consists of middle-
aged subjects of mainly European descent. Another limitation is that
it is observational and hence cause-effect relationships cannot be
inferred. The key strengths of this study are that it captures the very
early phase of type 2 diabetes, that the group-wise comparisons are
not confounded by diabetes treatment, the detailed phenotyping that
enabled us to link protein signatures to various cardiometabolic fea-
tures, and the longitudinal aspect showing the dynamics of protein
signatures during treatment. TaggedEnd

TaggedPIn conclusion, a broad range of blood-borne proteins are altered
already at the very early stage of screening-detected type 2 diabetes,
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TaggedEndTaggedPreflecting key metabolic syndrome features such as insulin resistance,
fatty liver, hyperglycemia and adiposity. The comprehensive protein
analyses revealed previously unknown associations with diabetes, as
well as confirming previously published associations, thus contributing
to our knowledge about the biochemical manifestations of diabetes.
The overall proteomic alteration observed at baseline was significantly
attenuated during metabolic improvement and appeared to be modi-
fied by metformin medication independent of metabolic effects. The
results suggest that comprehensive protein profiling may serve as a
useful tool for metabolic phenotyping and to elucidate the biological
effects of diabetes treatment.TaggedEnd

TaggedH1Declaration of Competing Interest TaggedEnd

TaggedPThe authors declare no conflicts of interest. TaggedEnd

TaggedH1Funding sourcesTaggedEnd

TaggedPThis work was supported by the Swedish Heart-Lung Foundation
(#20180324), the Swedish Research Council (2019-01140), the Erling
Persson Foundation, the Knut and Alice Wallenberg Foundation, and
the Swedish state under the agreement between the Swedish gov-
ernment and the county councils (ALFGBG-929989, ALFGBG-
718851). TaggedEnd

TaggedH1Data sharing TaggedEnd

TaggedPThe participant-level datasets used for this report have been
deposited with the Swedish National Data Service (www.snd.gu.se, a
data repository certified by Core Trust Seal). The dataset can be made
available for validation purposes by contacting snd@snd.gu.se. Data
access will be evaluated according to Swedish legislation. Data access
for research related questions can be made available upon reasonable
request by contacting the corresponding author.TaggedEnd

TaggedH1Acknowledgments TaggedEnd

TaggedPThe authors sincerely thank all the participants in this study and
the staff at the Wallenberg Laboratory, Department of Molecular and
Clinical Medicine, as well as the staff of the Human Protein Atlas pro-
gram and the Plasma Profiling facility at Science for Life Laboratory
(SciLifeLab). The authors also thank Rosie Perkins, Department of
Molecular and Clinical Medicine, for valuable advice when preparing
the manuscript. TaggedEnd

TaggedH1Supplementary materials TaggedEnd

TaggedPSupplementary material associated with this article can be found,
in the online version, at doi:10.1016/j.ebiom.2020.103147. TaggedEnd

TaggedH1References TaggedEnd

TaggedP [1] American Diabetes A. 2. Classification and diagnosis of diabetes: standards of
medical care in diabetes-2019. Diabetes Care 2019;42(Suppl 1):S13–28. TaggedEnd

TaggedP [2] Gedebjerg A, Almdal TP, Berencsi K, Rungby J, Nielsen JS, Witte DR, et al. Preva-
lence of micro- and macrovascular diabetes complications at time of type 2 diabe-
tes diagnosis and associated clinical characteristics: a cross-sectional baseline
study of 6958 patients in the Danish DD2 cohort. J Diabetes Complications
2018;32(1):34–40.TaggedEnd

TaggedP [3] Coope A, Torsoni AS, Velloso LA. Mechanisms in Endocrinology: metabolic and
inflammatory pathways on the pathogenesis of type 2 diabetes. Eur J Endocrinol
2016;174(5):R175–87.TaggedEnd

TaggedP [4] Kahn SE, Hull RL, Utzschneider KM. Mechanisms linking obesity to insulin resis-
tance and type 2 diabetes. Nature 2006;444(7121):840–6.TaggedEnd

TaggedP [5] Beijer K, Nowak C, Sundstrom J, Arnlov J, Fall T, Lind L. In search of causal path-
ways in diabetes: a study using proteomics and genotyping data from a cross-sec-
tional study. Diabetologia 2019;62(11):1998–2006.TaggedEnd

TaggedP [6] Noordam R, van Heemst D, Suhre K, Krumsiek J, Mook-Kanamori DO. Proteome-
wide assessment of diabetes mellitus in Qatari identifies IGFBP-2 as a risk factor
TaggedEndTaggedPalready with early glycaemic disturbances. Arch Biochem Biophys 2020;689:
108476.TaggedEnd

TaggedP [7] Williams SA, Kivimaki M, Langenberg C, Hingorani AD, Casas JP, Bouchard C, et al.
Plasma protein patterns as comprehensive indicators of health. Nat Med 2019;25
(12):1851–7. TaggedEnd

TaggedP [8] Chen ZZ, Gerszten RE. Metabolomics and proteomics in type 2 diabetes. Circ Res
2020;126(11):1613–27. TaggedEnd

TaggedP [9] Zhong W, Gummesson A, Tebani A, Karlsson MJ, Hong MG, Schwenk JM, et al.
Whole-genome sequence association analysis of blood proteins in a longitudinal
wellness cohort. Genome Med 2020;12(1):53. TaggedEnd

TaggedP[10] Dodig-Crnkovic T, Hong MG, Thomas CE, Haussler RS, Bendes A, Dale M, et al. Fac-
ets of individual-specific health signatures determined from longitudinal plasma
proteome profiling. EBioMedicine 2020;57:102854. TaggedEnd

TaggedP[11] Tebani A, Gummesson A, ZhongW, Koistinen IS, Lakshmikanth T, Olsson LM, et al.
Integration of molecular profiles in a longitudinal wellness profiling cohort. Nat
Commun 2020;11(1):4487. TaggedEnd

TaggedP[12] Inker LA, Schmid CH, Tighiouart H, Eckfeldt JH, Feldman HI, Greene T, et al. Esti-
mating glomerular filtration rate from serum creatinine and cystatin C. N Engl J
Med 2012;367(1):20–9. TaggedEnd

TaggedP[13] Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeo-
stasis model assessment: insulin resistance and beta-cell function from fasting
plasma glucose and insulin concentrations in man. Diabetologia 1985;28(7):412–9.TaggedEnd

TaggedP[14] Bergstr€om G, Berglund G, Blomberg A, Brandberg J, Engstr€om G, Engvall J, et al.
The Swedish CArdioPulmonary BioImage study: objectives and design. J Intern
Med 2015;278(6):645–59.TaggedEnd

TaggedP[15] Assarsson E, Lundberg M, Holmquist G, Bjorkesten J, Thorsen SB, Ekman D, et al.
Homogenous 96-plex PEA immunoassay exhibiting high sensitivity, specificity,
and excellent scalability. PLoS ONE 2014;9(4):e95192. TaggedEnd

TaggedP[16] Liaw A., Wiener MJRn. Classification and regression by randomForest. 2002;2
(3):18�22. TaggedEnd

TaggedP[17] Venables W, Ripley BJNY. Modern Applied Statistics with S. Springer Verlag; 2002.TaggedEnd
TaggedP[18] David M, Evgenia D, Kurt H, Andreas W, Friedrich LJRpv. e1071: Misc Functions of

the Department of Statistics, Probability Theory Group (Formerly: E1071). TU
Wien 2019;1 7-3.TaggedEnd

TaggedP[19] Gr€omping UJJoss. Relative importance for linear regression in R: the package
relaimpo. 2006;17(1):1�27. TaggedEnd

TaggedP[20] Paluszynska A., Biecek P., Jiang YJRp. randomForestExplainer: explaining and Visu-
alizing Random Forests in Terms of Variable Importance, version 0.10. 0. 2019.TaggedEnd

TaggedP[21] Bates D MM, Bolker BM, Walker SC. Fitting linear mixed-effects models using
lme4. J Stat Softw 2015;67:1–48. TaggedEnd

TaggedP[22] Duner P, Al-Amily IM, Soni A, Asplund O, Safi F, Storm P, et al. Adhesion G Protein-
Coupled Receptor G1 (ADGRG1/GPR56) and Pancreatic beta-Cell Function. J Clin
Endocrinol Metab 2016;101(12):4637–45. TaggedEnd

TaggedP[23] Bancks MP, Bielinski SJ, Decker PA, Hanson NQ, Larson NB, Sicotte H, et al. Circu-
lating level of hepatocyte growth factor predicts incidence of type 2 diabetes mel-
litus: the Multi-Ethnic Study of Atherosclerosis (MESA). Metabolism 2016;65
(3):64–72. TaggedEnd

TaggedP[24] Goncalves I, Hultman K, Duner P, Edsfeldt A, Hedblad B, Fredrikson GN, et al. High
levels of cathepsin D and cystatin B are associated with increased risk of coronary
events. Open Heart 2016;3(1):e000353. TaggedEnd

TaggedP[25] Herder C, de Las Heras Gala T, Carstensen-Kirberg M, Huth C, Zierer A, Wahl S,
et al. Circulating levels of interleukin 1-receptor antagonist and risk of cardiovas-
cular disease: meta-analysis of six population-based cohorts. Arterioscler Thromb
Vasc Biol 2017;37(6):1222–7.TaggedEnd

TaggedP[26] Rip J, Nierman MC, Wareham NJ, Luben R, Bingham SA, Day NE, et al. Serum lipo-
protein lipase concentration and risk for future coronary artery disease: the EPIC-
Norfolk prospective population study. Arterioscler Thromb Vasc Biol 2006;26
(3):637–42. TaggedEnd

TaggedP[27] Lowe G, Woodward M, Hillis G, Rumley A, Li Q, Harrap S, et al. Circulating inflam-
matory markers and the risk of vascular complications and mortality in people
with type 2 diabetes and cardiovascular disease or risk factors: the ADVANCE
study. Diabetes 2014;63(3):1115–23. TaggedEnd

TaggedP[28] Kokkinos J, Tang S, Rye KA, Ong KL. The role of fibroblast growth factor 21 in ath-
erosclerosis. Atherosclerosis 2017;257:259–65. TaggedEnd

TaggedP[29] Muhammad IF, Borne Y, Bao X, Melander O, Orho-Melander M, Nilsson PM, et al.
Circulating HER2/ErbB2 levels are associated with increased incidence of diabe-
tes: a population-based cohort study. Diabetes Care 2019;42(8):1582–8. TaggedEnd

TaggedP[30] Molvin J, Pareek M, Jujic A, Melander O, Rastam L, Lindblad U, et al. Using a tar-
geted proteomics chip to explore pathophysiological pathways for incident dia-
betes- the malmo preventive project. Sci Rep 2019;9(1):272. TaggedEnd

TaggedP[31] Wong HK, Tang F, Cheung TT, Cheung BM. Adrenomedullin and diabetes. World J
Diabetes 2014;5(3):364–71. TaggedEnd

TaggedP[32] Furuhashi M. Fatty acid-binding protein 4 in cardiovascular and metabolic dis-
eases. J Atheroscler Thromb 2019;26(3):216–32. TaggedEnd

TaggedP[33] Bell EJ, Decker PA, Tsai MY, Pankow JS, Hanson NQ, Wassel CL, et al. Hepatocyte
growth factor is associated with progression of atherosclerosis: the Multi-Ethnic
Study of Atherosclerosis (MESA). Atherosclerosis 2018;272:162–7.TaggedEnd

TaggedP[34] Nowak C, Carlsson AC, Ostgren CJ, Nystrom FH, Alam M, Feldreich T, et al. Multi-
plex proteomics for prediction of major cardiovascular events in type 2 diabetes.
Diabetologia 2018;61(8):1748–57.TaggedEnd

TaggedP[35] Forstermann U, Sessa WC. Nitric oxide synthases: regulation and function. Eur
Heart J 2012;33(7):829–37 37a-37d. TaggedEnd

TaggedP[36] Gummesson A, Stromberg U, Schmidt C, Kullberg J, Angeras O, Lindgren S, et al.
Non-alcoholic fatty liver disease is a strong predictor of coronary artery calcifica-
tion in metabolically healthy subjects: a cross-sectional, population-based study
in middle-aged subjects. PLoS ONE 2018;13(8):e0202666. TaggedEnd

http://www.snd.gu.se
https://doi.org/10.1016/j.ebiom.2020.103147
http://refhub.elsevier.com/S2352-3964(20)30523-5/sbref0001
http://refhub.elsevier.com/S2352-3964(20)30523-5/sbref0001
http://refhub.elsevier.com/S2352-3964(20)30523-5/sbref0002
http://refhub.elsevier.com/S2352-3964(20)30523-5/sbref0002
http://refhub.elsevier.com/S2352-3964(20)30523-5/sbref0002
http://refhub.elsevier.com/S2352-3964(20)30523-5/sbref0002
http://refhub.elsevier.com/S2352-3964(20)30523-5/sbref0002
http://refhub.elsevier.com/S2352-3964(20)30523-5/sbref0003
http://refhub.elsevier.com/S2352-3964(20)30523-5/sbref0003
http://refhub.elsevier.com/S2352-3964(20)30523-5/sbref0003
http://refhub.elsevier.com/S2352-3964(20)30523-5/sbref0004
http://refhub.elsevier.com/S2352-3964(20)30523-5/sbref0004
http://refhub.elsevier.com/S2352-3964(20)30523-5/sbref0005
http://refhub.elsevier.com/S2352-3964(20)30523-5/sbref0005
http://refhub.elsevier.com/S2352-3964(20)30523-5/sbref0005
http://refhub.elsevier.com/S2352-3964(20)30523-5/sbref0006
http://refhub.elsevier.com/S2352-3964(20)30523-5/sbref0006
http://refhub.elsevier.com/S2352-3964(20)30523-5/sbref0006
http://refhub.elsevier.com/S2352-3964(20)30523-5/sbref0006
http://refhub.elsevier.com/S2352-3964(20)30523-5/sbref0007
http://refhub.elsevier.com/S2352-3964(20)30523-5/sbref0007
http://refhub.elsevier.com/S2352-3964(20)30523-5/sbref0007
http://refhub.elsevier.com/S2352-3964(20)30523-5/sbref0008
http://refhub.elsevier.com/S2352-3964(20)30523-5/sbref0008
http://refhub.elsevier.com/S2352-3964(20)30523-5/sbref0009
http://refhub.elsevier.com/S2352-3964(20)30523-5/sbref0009
http://refhub.elsevier.com/S2352-3964(20)30523-5/sbref0009
http://refhub.elsevier.com/S2352-3964(20)30523-5/sbref0010
http://refhub.elsevier.com/S2352-3964(20)30523-5/sbref0010
http://refhub.elsevier.com/S2352-3964(20)30523-5/sbref0010
http://refhub.elsevier.com/S2352-3964(20)30523-5/sbref0011
http://refhub.elsevier.com/S2352-3964(20)30523-5/sbref0011
http://refhub.elsevier.com/S2352-3964(20)30523-5/sbref0011
http://refhub.elsevier.com/S2352-3964(20)30523-5/sbref0012
http://refhub.elsevier.com/S2352-3964(20)30523-5/sbref0012
http://refhub.elsevier.com/S2352-3964(20)30523-5/sbref0012
http://refhub.elsevier.com/S2352-3964(20)30523-5/sbref0013
http://refhub.elsevier.com/S2352-3964(20)30523-5/sbref0013
http://refhub.elsevier.com/S2352-3964(20)30523-5/sbref0013
http://refhub.elsevier.com/S2352-3964(20)30523-5/sbref0014
http://refhub.elsevier.com/S2352-3964(20)30523-5/sbref0014
http://refhub.elsevier.com/S2352-3964(20)30523-5/sbref0014
http://refhub.elsevier.com/S2352-3964(20)30523-5/sbref0014
http://refhub.elsevier.com/S2352-3964(20)30523-5/sbref0014
http://refhub.elsevier.com/S2352-3964(20)30523-5/sbref0015
http://refhub.elsevier.com/S2352-3964(20)30523-5/sbref0015
http://refhub.elsevier.com/S2352-3964(20)30523-5/sbref0015
http://refhub.elsevier.com/S2352-3964(20)30523-5/sbref0017
http://refhub.elsevier.com/S2352-3964(20)30523-5/sbref0018
http://refhub.elsevier.com/S2352-3964(20)30523-5/sbref0018
http://refhub.elsevier.com/S2352-3964(20)30523-5/sbref0018
http://refhub.elsevier.com/S2352-3964(20)30523-5/sbref0021
http://refhub.elsevier.com/S2352-3964(20)30523-5/sbref0021
http://refhub.elsevier.com/S2352-3964(20)30523-5/sbref0022
http://refhub.elsevier.com/S2352-3964(20)30523-5/sbref0022
http://refhub.elsevier.com/S2352-3964(20)30523-5/sbref0022
http://refhub.elsevier.com/S2352-3964(20)30523-5/sbref0023
http://refhub.elsevier.com/S2352-3964(20)30523-5/sbref0023
http://refhub.elsevier.com/S2352-3964(20)30523-5/sbref0023
http://refhub.elsevier.com/S2352-3964(20)30523-5/sbref0023
http://refhub.elsevier.com/S2352-3964(20)30523-5/sbref0024
http://refhub.elsevier.com/S2352-3964(20)30523-5/sbref0024
http://refhub.elsevier.com/S2352-3964(20)30523-5/sbref0024
http://refhub.elsevier.com/S2352-3964(20)30523-5/sbref0025
http://refhub.elsevier.com/S2352-3964(20)30523-5/sbref0025
http://refhub.elsevier.com/S2352-3964(20)30523-5/sbref0025
http://refhub.elsevier.com/S2352-3964(20)30523-5/sbref0025
http://refhub.elsevier.com/S2352-3964(20)30523-5/sbref0026
http://refhub.elsevier.com/S2352-3964(20)30523-5/sbref0026
http://refhub.elsevier.com/S2352-3964(20)30523-5/sbref0026
http://refhub.elsevier.com/S2352-3964(20)30523-5/sbref0026
http://refhub.elsevier.com/S2352-3964(20)30523-5/sbref0027
http://refhub.elsevier.com/S2352-3964(20)30523-5/sbref0027
http://refhub.elsevier.com/S2352-3964(20)30523-5/sbref0027
http://refhub.elsevier.com/S2352-3964(20)30523-5/sbref0027
http://refhub.elsevier.com/S2352-3964(20)30523-5/sbref0028
http://refhub.elsevier.com/S2352-3964(20)30523-5/sbref0028
http://refhub.elsevier.com/S2352-3964(20)30523-5/sbref0029
http://refhub.elsevier.com/S2352-3964(20)30523-5/sbref0029
http://refhub.elsevier.com/S2352-3964(20)30523-5/sbref0029
http://refhub.elsevier.com/S2352-3964(20)30523-5/sbref0030
http://refhub.elsevier.com/S2352-3964(20)30523-5/sbref0030
http://refhub.elsevier.com/S2352-3964(20)30523-5/sbref0030
http://refhub.elsevier.com/S2352-3964(20)30523-5/sbref0031
http://refhub.elsevier.com/S2352-3964(20)30523-5/sbref0031
http://refhub.elsevier.com/S2352-3964(20)30523-5/sbref0032
http://refhub.elsevier.com/S2352-3964(20)30523-5/sbref0032
http://refhub.elsevier.com/S2352-3964(20)30523-5/sbref0033
http://refhub.elsevier.com/S2352-3964(20)30523-5/sbref0033
http://refhub.elsevier.com/S2352-3964(20)30523-5/sbref0033
http://refhub.elsevier.com/S2352-3964(20)30523-5/sbref0034
http://refhub.elsevier.com/S2352-3964(20)30523-5/sbref0034
http://refhub.elsevier.com/S2352-3964(20)30523-5/sbref0034
http://refhub.elsevier.com/S2352-3964(20)30523-5/sbref0035
http://refhub.elsevier.com/S2352-3964(20)30523-5/sbref0035
http://refhub.elsevier.com/S2352-3964(20)30523-5/sbref0036
http://refhub.elsevier.com/S2352-3964(20)30523-5/sbref0036
http://refhub.elsevier.com/S2352-3964(20)30523-5/sbref0036
http://refhub.elsevier.com/S2352-3964(20)30523-5/sbref0036


TaggedEndA. Gummesson et al. / EBioMedicine 63 (2021) 103147 11
TaggedP[37] Chalasani N, Younossi Z, Lavine JE, Charlton M, Cusi K, Rinella M, et al. The diagno-
sis and management of nonalcoholic fatty liver disease: practice guidance from
the American Association for the Study of Liver Diseases. Hepatology 2018;67
(1):328–57. TaggedEnd

TaggedP[38] Atabaki-Pasdar N, Ohlsson M, Vinuela A, Frau F, Pomares-Millan H, Haid M, et al.
Predicting and elucidating the etiology of fatty liver disease: a machine learning
modeling and validation study in the IMI DIRECT cohorts. PLoS Med 2020;17(6):
e1003149. TaggedEnd

TaggedP[39] Piening BD, ZhouW, Contrepois K, Rost H, Gu Urban GJ, Mishra T, et al. Integrative
personal omics profiles during periods of weight gain and loss. Cell Syst 2018;6
(2):157–70 e8. TaggedEnd

TaggedP[40] Rena G, Hardie DG, Pearson ER. The mechanisms of action of metformin. Diabeto-
logia 2017;60(9):1577–85.TaggedEnd

TaggedP[41] Gerstein HC, Pare G, Hess S, Ford RJ, Sjaarda J, Raman K, et al. Growth differentiation
factor 15 as a Novel Biomarker for Metformin. Diabetes Care 2017;40(2):280–3.TaggedEnd
TaggedP[42] Day EA, Ford RJ, Smith BK, Mohammadi-Shemirani P, Morrow MR, Gutgesell RM,
et al. Metformin-induced increases in GDF15 are important for suppressing appe-
tite and promoting weight loss. Nat Metab 2019;1(12):1202–8.TaggedEnd

TaggedP[43] Coll AP, Chen M, Taskar P, Rimmington D, Patel S, Tadross JA, et al. GDF15 medi-
ates the effects of metformin on body weight and energy balance. Nature
2020;578(7795):444–8.TaggedEnd

TaggedP[44] Torres A, Pac-Sosinska M, Wiktor K, Paszkowski T, Maciejewski R, Torres K. CD44,
TGM2 and EpCAM as novel plasma markers in endometrial cancer diagnosis.
BMC Cancer 2019;19(1):401. TaggedEnd

TaggedP[45] Coyle C, Cafferty FH, Vale C, Langley RE. Metformin as an adjuvant treatment for
cancer: a systematic review and meta-analysis. Ann Oncol 2016;27(12):2184–95.TaggedEnd

TaggedP[46] Bao B, Wang Z, Ali S, Ahmad A, Azmi AS, Sarkar SH, et al. Metformin inhibits cell
proliferation, migration and invasion by attenuating CSC function mediated by
deregulating miRNAs in pancreatic cancer cells. Cancer Prev Res (Phila) 2012;5
(3):355–64.TaggedEnd

http://refhub.elsevier.com/S2352-3964(20)30523-5/sbref0037
http://refhub.elsevier.com/S2352-3964(20)30523-5/sbref0037
http://refhub.elsevier.com/S2352-3964(20)30523-5/sbref0037
http://refhub.elsevier.com/S2352-3964(20)30523-5/sbref0037
http://refhub.elsevier.com/S2352-3964(20)30523-5/sbref0038
http://refhub.elsevier.com/S2352-3964(20)30523-5/sbref0038
http://refhub.elsevier.com/S2352-3964(20)30523-5/sbref0038
http://refhub.elsevier.com/S2352-3964(20)30523-5/sbref0038
http://refhub.elsevier.com/S2352-3964(20)30523-5/sbref0045f
http://refhub.elsevier.com/S2352-3964(20)30523-5/sbref0045f
http://refhub.elsevier.com/S2352-3964(20)30523-5/sbref0045f
http://refhub.elsevier.com/S2352-3964(20)30523-5/sbref0039
http://refhub.elsevier.com/S2352-3964(20)30523-5/sbref0039
http://refhub.elsevier.com/S2352-3964(20)30523-5/sbref0040
http://refhub.elsevier.com/S2352-3964(20)30523-5/sbref0040
http://refhub.elsevier.com/S2352-3964(20)30523-5/sbref0041
http://refhub.elsevier.com/S2352-3964(20)30523-5/sbref0041
http://refhub.elsevier.com/S2352-3964(20)30523-5/sbref0041
http://refhub.elsevier.com/S2352-3964(20)30523-5/sbref0042
http://refhub.elsevier.com/S2352-3964(20)30523-5/sbref0042
http://refhub.elsevier.com/S2352-3964(20)30523-5/sbref0042
http://refhub.elsevier.com/S2352-3964(20)30523-5/sbref0043
http://refhub.elsevier.com/S2352-3964(20)30523-5/sbref0043
http://refhub.elsevier.com/S2352-3964(20)30523-5/sbref0043
http://refhub.elsevier.com/S2352-3964(20)30523-5/sbref0044
http://refhub.elsevier.com/S2352-3964(20)30523-5/sbref0044
http://refhub.elsevier.com/S2352-3964(20)30523-5/sbref0045
http://refhub.elsevier.com/S2352-3964(20)30523-5/sbref0045
http://refhub.elsevier.com/S2352-3964(20)30523-5/sbref0045
http://refhub.elsevier.com/S2352-3964(20)30523-5/sbref0045

	Longitudinal plasma protein profiling of newly diagnosed type 2 diabetes
	1. Introduction
	2. Methods
	2.1. Study design and subjects
	2.2. Ethics
	2.3. Clinical data
	2.4. Plasma protein measurements
	2.5. Statistics
	2.6. Role of funding source

	3. Results
	3.1. Clinical characteristics at baseline
	3.2. Protein profiles at baseline
	3.3. Metabolic improvement during diabetes treatment
	3.4. Changes in the plasma proteome during treatment
	3.5. Validation of the metformin-EPCAM association

	4. Discussion
	Declaration of Competing Interest
	Funding sources
	Data sharing
	Acknowledgments
	Supplementary materials
	References



