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Abstract

In computational biology, modeling is a fundamental tool for formulating, analyzing and pre-

dicting complex phenomena. Most neuron models, however, are designed to reproduce

certain small sets of empirical data. Hence their outcome is usually not compatible or com-

parable with other models or datasets, making it unclear how widely applicable such models

are. In this study, we investigate these aspects of modeling, namely credibility and gener-

alizability, with a specific focus on auditory neurons involved in the localization of sound

sources. The primary cues for binaural sound localization are comprised of interaural time

and level differences (ITD/ILD), which are the timing and intensity differences of the sound

waves arriving at the two ears. The lateral superior olive (LSO) in the auditory brainstem is

one of the locations where such acoustic information is first computed. An LSO neuron

receives temporally structured excitatory and inhibitory synaptic inputs that are driven by

ipsi- and contralateral sound stimuli, respectively, and changes its spike rate according to

binaural acoustic differences. Here we examine seven contemporary models of LSO neu-

rons with different levels of biophysical complexity, from predominantly functional ones

(‘shot-noise’ models) to those with more detailed physiological components (variations of

integrate-and-fire and Hodgkin-Huxley-type). These models, calibrated to reproduce known

monaural and binaural characteristics of LSO, generate largely similar results to each other

in simulating ITD and ILD coding. Our comparisons of physiological detail, computational

efficiency, predictive performances, and further expandability of the models demonstrate (1)

that the simplistic, functional LSO models are suitable for applications where low computa-

tional costs and mathematical transparency are needed, (2) that more complex models

with detailed membrane potential dynamics are necessary for simulation studies where

sub-neuronal nonlinear processes play important roles, and (3) that, for general purposes,

intermediate models might be a reasonable compromise between simplicity and biological

plausibility.
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Author summary

Computational models help our understanding of complex biological systems, by identify-

ing their key elements and revealing their operational principles. Close comparisons

between model predictions and empirical observations ensure our confidence in a model

as a building block for further applications. Most current neuronal models, however, are

constructed to replicate only a small specific set of experimental data. Thus, it is usually

unclear how these models can be generalized to different datasets and how they compare

with each other. In this paper, seven neuronal models are examined that are designed to

reproduce known physiological characteristics of auditory neurons involved in the detec-

tion of sound source location. Despite their different levels of complexity, the models

generate largely similar results when their parameters are tuned with common criteria.

Comparisons show that simple models are computationally more efficient and theoreti-

cally transparent, and therefore suitable for rigorous mathematical analyses and engineer-

ing applications including real-time simulations. In contrast, complex models are

necessary for investigating the relationship between underlying biophysical processes and

sub- and suprathreshold spiking properties, although they have a large number of uncon-

strained, unverified parameters. Having identified their advantages and drawbacks, these

auditory neuron models may readily be used for future studies and applications.

Introduction

Concepts of scientific modeling

"All models are wrong but some are useful" [1]. A scientific model can never be ‘true’ or ‘per-

fect’, since it is, at best, a close approximation of reality. Hence the outcome of a model should

not be judged with a simple dichotomy of correct or incorrect, but instead with a graded scale

of credibility [2]. Although any scientific theory must be falsifiable [3], it is not falsification

itself but the careful scrutiny of the difference between theoretical predictions and empirical

data that actually advances our understanding of the modeled system [4,5].

Conventionally, scientific modeling of a complex system is characterized by several guiding

principles [4,6,7]: First, a model provides a comprehensive description of the system; second, a

model helps in identifying key factors of the system and improves our understanding of its

operational rules; third, a model simulates and predicts the outcome of the system; fourth, the

outcome of a model simulation confirms or disproves the current hypothesis about the system.

In addition to these characteristics, simulations with a well-established model can complement

empirical studies. Namely, a theoretical model can guide future experimental research by pro-

ducing testable predictions [8,9]. Furthermore, components of a model can be easily manipu-

lated in a way that may not be possible with a real system for technical, ethical, or cost-related

reasons [4,10]; such efforts include exploratory studies of medical interventions [5]. In order

for a model to be credible, it needs to be validated with empirical observations. Validations

that are done both with the fundamental (low-level) structure of a model and with its emerging

(high-level) outcome ensure our confidence in the predictions of the model [2].

Lateral superior olive and acoustic information processing

Here we explore these aspects of computational models with a specific focus on a neuronal cir-

cuit that is known to be crucial for sound localization, the auditory function to determine the

location of the source of acoustic signals. The two primary cues for sound localization are the

Physiological models of LSO

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005903 December 27, 2017 2 / 50

https://doi.org/10.1371/journal.pcbi.1005903


timing and intensity differences of the sound arriving at the two ears [11], called interaural

time and level differences (ITD/ILD), respectively. Many vertebrates have specialized neuronal

circuits in the brainstem for detecting ITDs and ILDs. In mammals, including humans, the lat-

eral superior olive (LSO) is one of such locations where binaural neurons receive inputs origi-

nating from the two ears and encode relevant information for sound localization [12]. The

principal neuron of the LSO receives excitatory inputs from the spherical bushy cells of the

anteroventral cochlear nucleus (AVCN: Fig 1A) [13–21], whose spiking patterns encode tim-

ing and intensity information of sounds arriving at the ipsilateral ear. The LSO neuron also

receives inhibitory synaptic inputs from neurons in the ipsilateral medial nucleus of the trape-

zoid body (MNTB: Fig 1A)[17,22–26], which are excited by globular bushy cells in the contra-

lateral AVCN [19,22,24,27–29]. Because of this excitatory-inhibitory interaction, LSO neurons

typically show sensitivity to ILDs [30,31]. Namely, the spike rate of an LSO neuron becomes

high when the sound source is located in space towards the ipsilateral ear and low when the

source is located towards the contralateral ear [32,33]. In addition to this intensity coding,

LSO neurons are also sensitive to the timing of sound stimuli; the output spike rate of LSO

varies according to the modulation frequency of monaural AM sounds [34] as well as to the

ITD of the fine structure [35,36] and envelope of binaural amplitude-modulated (AM) sounds

[37–39].

Examples of such timing and intensity coding in the LSO are shown in Fig 1. Although

responses of LSO neurons to monaural AM sounds show relatively large variabilities, a

majority of neurons presented low- or band-pass characteristics frequently with a mild peak

at 100–400 Hz (Fig 1B). This response property can be explained by monaural coincidence

detection of excitatory inputs and its variability originates from unit-to-unit differences of

biophysical parameters of coincidence detection [40]. The spike rate of the LSO neuron var-

ies periodically with the envelope ITD of AM sounds, with its period being the reciprocal

to the modulation frequency (Fig 1C). ITD-tuning curves of LSO neurons to binaural AM

sounds at different modulation frequencies are usually aligned at or near their troughs,

which is a signature of ‘anti-coincidence detection’ of excitatory and inhibitory synaptic

inputs [36,38,40]. The classical ILD-tuning curve of the LSO neuron shows a monotonic sig-

moidal decrease of spike rates according to ILDs (Fig 1D). The peak and trough rates as well

as the location of the mid-point of the ITD-tuning curve generally depend on the overall

input level [31].

Modeling studies of LSO

A large variety of models have been used to study the functions of LSO. Previous neuronal

models of LSO ranged from abstract ones that dealt with the input-output statistics of LSO

using point processes [41–44], to a detailed multi-compartment model that incorporated neu-

ronal morphology and spatial distribution of ion channels [45]. Between these two ends of the

spectrum, single-compartment (point neuron) models with various internal dynamics have

been created, such as simple comparison [46] or temporal summation [47] of excitatory and

inhibitory inputs, an electric circuit model of resonating membrane potentials [48], a leaky

integrate-and-fire model with standard configurations [49], with synaptic plasticity [50] or

with afterhyperpolarization [51], and a Hodgkin-Huxley (HH)-type conductance-based model

with several types of ion channels [52,53]; see [54] for a more detailed review of earlier model-

ing approaches. Recently, LSO models (either abstract or physiology-based) have been incor-

porated with larger scale simulations, for example, to study psychophysical outcomes [55,56],

to develop bio-inspired neural networks of sound localization [57], and to evaluate binaural

hearing of cochlear implant users [58,59].

Physiological models of LSO
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Fig 1. Recorded responses of cat LSO neurons. A: Schematic drawing of the LSO circuit. AN: auditory nerve; AVCN: anteroventral cochlear

nucleus; MNTB: medial nucleus of the trapezoid body; LSO: lateral superior olive. Excitatory inputs are shown in black and blue, while inhibitory inputs

are indicated by red. B: Spike rates of LSO neurons in response to monaural AM tones with varied modulation frequencies. Different lines are used for

different units; different colors correspond to different response types. Figure taken from [40]; original data collected by Joris and Yin [34]. C: Spike

rates of an LSO neuron in response to binaural AM tones with varied ITDs. Different lines correspond to different modulation frequencies. Figure taken

from [40]; original data collected by Joris and Yin [34]. D: Spike rates of LSO a neuron in response to binaural unmodulated tones with varied ILDs.

Different colors correspond to different ipsilateral sound levels. Adapted and redrawn from Fig 1A of Tsai et al. [31] with permission.

https://doi.org/10.1371/journal.pcbi.1005903.g001
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In light of such applications, ‘reproducibility’, ‘credibility’, and ‘generalizability’ comprise

fundamental principles of computational models. Reproducibility refers to the ability of the

model to (re-)generate sufficiently similar (if not identical) results to the original implementa-

tion. Since the importance of reproducible models has been extensively discussed recently

(see, e.g., [60,61] and references therein), we do not investigate this issue in the present paper.

Credibility refers to the ability of the model to reliably simulate empirical observations. Only

with sufficient credibility can a model be reliably used as a building block to construct higher

level models [4]. To ensure the credibility of a model, simulated outcome of the model must be

validated against corresponding experimental data (see, e.g., [62–64] for the concept of model

validation in various scientific fields). Generalizability refers to the applicability of the model

to a wide range of contexts including ones that the model was not primarily designed for. In

principle, simplistic models with a small number of components are less flexible and less

expandable than complex models, resulting in lower generalizability. In the field of neuro- and

sensory science, however, most models are tuned to simulate specific sets of experiments. It is

therefore normally unclear how a model may or may not reproduce empirical results that are

beyond the initial scope of the modeling approach [5,65–67]. The problem of credibility and

generalizability also applies to modern LSO modeling; different LSO models are rarely com-

pared with each other, and thus potential users who want to incorporate an LSO model into

their simulation framework usually have little or no clue which model to use.

Models compared in this study

In this study, we introduce, (re-)examine and compare several types of single-compartment

LSO neuron models. The complexities of the models, spanning from functional ones that sim-

ply compare their excitatory and inhibitory inputs to biophysically detailed conductance-

based models whose membrane potential dynamics are determined by nonlinear kinetics of

ion channels. Our selection largely covers the spectrum of physiological point neuron models.

More specifically, we examine seven LSO models of different levels of complexity: three shot-

noise models (coincidence counting model, exponential and alpha Stein models) that simply

simulate the excitatory-inhibitory interaction in LSO, and four conductance-based models

that describe the membrane potential dynamics of LSO neurons. The conductance-based

models can be further subdivided into two classes: integrate-and-fire (IF)-type (passive and

active IF models) with explicit threshold parameters, and HH-type (original and adjusted

Wang-Colburn models) whose thresholds are determined by the interaction of voltage-depen-

dent conductances.

Among these seven models, the coincidence counting model [40], exponential Stein model

[47,54], passive IF model [49–51], and the original Wang-Colburn model [53] were already

used in previous modeling studies to simulate monaural or binaural computation of LSO. The

alpha Stein and adjusted Wang-Colburn models are modifications of their original counter-

parts with better biological plausibility or predictive credibility. The active IF model, which is

an enhanced version of the standard (passive) IF model with an additional nonlinear conduc-

tance, had first been introduced to replicate the activity of auditory coincidence detectors [68],

and has been revised here to fit the response properties of LSO.

The parameters of the selected models were tuned to reproduce known in vivo and in vitro
recording results including the monaural and binaural tunings of LSO neurons (as shown in

Fig 1), which we considered to be the most representative response properties of LSO (see Dis-

cussion). For conductance-based models, sub- and suprathreshold responses of their mem-

brane potentials are also tuned with available physiological data. Since not all models were

constructed to replicate all these response properties, calibrating the models at this stage is

Physiological models of LSO
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already part of the generalization process of modeling. After fitting the models, additional

model responses and computational performances are compared to further characterize the

models. Construction, parameter selection and justification of each model, as well as the

response characteristics we examined, are fully described in Materials and Methods with cor-

responding references.

Goals of this study

The main goals of this study are to provide several different types of LSO models that are

confirmed to be capable of reproducing a pre-defined set of empirical data, and to reveal the

fundamental characteristics of these models, so that they can readily be used for future applica-

tions. Envisioned usage scenarios range from fundamental biophysical studies to biomedical

and engineering applications. Example of fundamental studies include investigating the roles

of various ion channels and nonlinear dynamics that determine the excitatory-inhibitory inter-

action of LSO (e.g., [45,51,53]) and mathematically formulating the input-output relationship

of auditory coincidence detectors (e.g., [69,70]). Simulating the binaural hearing of normal lis-

teners [55] and cochlear implant users [58,59,71] is part of possible biomedical applications,

while constructions of bio-inspired binaural neuronal networks for mobile robots [72] and cell

phone noise reduction [73] are engineering applications that require real-time computation.

Since there is a general trade-off between simplicity and biological plausibility [9], selecting

the most suitable model should depend on the purposes of a specific application. The present

study thus aims to reveal the advantages and disadvantages of each LSO model to help future

users select an appropriate model for their envisaged use.

In the following sections, we examine each LSO model in detail. Based on our comparison

results of the seven LSO models that are tuned (generalized) with the common criteria, we

conclude that the simplistic shot-noise models are suitable for applications where computa-

tional efficiency or theoretical transparency is desired, while the more complex conductance-

based models are generally required for investigating the underlying sub-neuronal mecha-

nisms of binaural computation. Within the conductance-based models, either HH-type mod-

els or IF-type models should be selected by the user, depending on the required details of

discharging mechanisms and morphological expandability [74].

Results

Comparison of LSO models: General setup

In this study, we compare the seven physiological models of LSO that were briefly introduced

in the last section. The full definitions of the models and the detailed criteria for selecting their

parameters are provided in Materials and Methods. In this section, we briefly describe the

underlying ideas of calibration and evaluation of the models. In next sections, systematic

examinations of each model will follow.

Following our previous work [40], the input stage of the modeling framework consists of 20

excitatory fibers and 8 inhibitory fibers, which correspond to bushy cells in the AVCN and

principal neurons in the MNTB, respectively (Fig 1A). The spiking patterns of these input

fibers are modeled with an inhomogeneous Poisson process to simulate empirical spike rates

and degree of phase-locking, both of which varied with the modulation frequency and the

sound level (Fig 2; see Materials and methods for relevant references). To enable direct com-

parisons across LSO models, the same set of simulated inputs is fed to all the model neurons;

namely, excitatory and inhibitory presynaptic spikes generated by Poisson processes with the

identical random seed are commonly given to each model as its input.

Physiological models of LSO
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Each LSO neuron model has its own set of parameters, some of which are experimentally

constrained (i.e., corresponding empirical data exist) and others are not. We used data from

cats, gerbils, guinea pigs, rats, and mice to calibrate and justify the parameters of each LSO

model (see specific section for each model in Materials and methods). Experimental measure-

ments, however, are generally subject to random noise, trial-to-trial variability, and unit-to-

unit variability. Therefore, empirical data for any specific parameter are usually reported as a

range, but not as a single value. Wherever possible, we tried selecting parameters from empiri-

cally measured ranges. In conductance-based models, we first fit the parameters for subthresh-

old responses, and next tuned the remaining parameters for spiking output.

To facilitate comparisons across models, we selected the parameters so that the model

output resembled empirical results. The output measures we used are fully described in

Materials and Methods with relevant references. In brief, we calibrated the model with the

monaural AM frequency tuning curve for the modulation frequency between 50 and 1200

Hz (Fig 3A), the binaural AM phase tuning curve at the modulation frequency of 300 Hz

Fig 2. Modeled input rates. A: Modeled modulation-frequency dependence of spike rates of bushy cells and MNTB

neurons driven by AM tones. B: Modeled modulation-frequency dependence of phase-locking of bushy cells and MNTB

neurons driven by AM tones. C: Modeled level-dependence of spike rates of bushy cells and MNTB neurons driven by

unmodulated tones. See "Common input" in Materials and methods for the equations.

https://doi.org/10.1371/journal.pcbi.1005903.g002

Fig 3. Targeted output rates. A: Targeted modulation-frequency dependence response of LSO models driven by monaural AM

tones. B: Targeted phase-difference-dependent response of LSO models driven by binaural AM tones. C: Targeted ILD-dependent

response of LSO neurons driven by binaural unmodulated tones. In A-C, ‘targeted’ values are shown in bold, and ‘accepted’ values

are in non-bold (see ‘Output measures’ in Materials and methods for their definitions and relevant descriptions).

https://doi.org/10.1371/journal.pcbi.1005903.g003
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(Fig 3B), and the binaural level tuning curve at the ipsilateral level of +35 dB (Fig 3C). For

each of these tuning curves, the peak rate, trough rate, and the modulation depth (defined as

peak rate minus trough rate) were determined. For each of these three rates in each of the

three tuning curves, we defined a ‘target’ range (bold numbers in Fig 3). Model parameters

were selected such that the resulting spike rates fell within these target ranges. If we did not

find a combination of parameters that satisfies all the target ranges, we loosened the criteria

by adopting the ‘accepted’ ranges (non-bold numbers in Fig 3), and re-selected the model

parameters. In searching parameters, we did not use fully automated methods such as genetic

algorithms, but chose one of the proper parameter sets in a semi-manual way by dividing the

parameter space into grids (see Discussion). After generalizing the models with the common

tuning criteria, we also calculated the binaural tuning curves at different modulation fre-

quencies (150 and 450 Hz) or at different ipsilateral sound levels (+25 to +45 dB) to further

characterize the model.

Coincidence counting model

The coincidence counting model was introduced to explain how ‘anti-coincidence’ of excit-

atory and inhibitory synaptic inputs affects the monaural and binaural coding in the LSO [40].

The model simply counts the number of synchronized excitatory inputs arriving within the

coincidence window and generates a spike if this number reaches or exceeds the threshold (Fig

4A). Effects of inhibition are modeled as a subtraction of excitatory inputs (or equivalently as

an increase of the threshold) within the inhibition time window. Excitation and inhibition

have different amplitudes and time scales (Fig 4B), which were selected to fit the target output

rates.

Sample traces of the model are shown in Fig 4C and 4D; since each synaptic input was mod-

eled as a rectangle with an abrupt onset and offset (Fig 4B), simulated subthreshold model

traces were generally jaggy (Fig 4C, left; Fig 4D, left). For phase-locked inputs driven by AM

sounds, the intensity of summed synaptic inputs changed periodically at the modulation fre-

quency of the sound. When the excitatory and inhibitory inputs were out of phase, the sub-

threshold response (virtual membrane potential) of the model showed large oscillations and

the resulting output rate becomes high (Fig 4C, top left). When the excitation and inhibition

arrived in phase, they canceled each other, resulting in a low output rate (Fig 4C, bottom left).

Because of this excitation-inhibition interaction, the output rate of the model neuron changed

according to the phase difference of simulated excitatory and inhibitory synaptic inputs (Fig

4C, right). For non-phase-locked inputs (corresponding to non-modulating sound stimuli as

in Fig 1D), the output rate of the model neuron depended on the relative intensities of excit-

atory and inhibitory inputs (Fig 4D, right). When the sound level was higher at the ipsilateral

ear than at the contralateral ear, excitatory inputs strongly drove the model neuron, leading to

a high output spike rate (Fig 4D, top left). As the sound level at the contralateral ear increased,

intensity of inhibitory inputs became stronger, making the virtual membrane potential stay

away from the spike threshold (Fig 4D, bottom left).

The simulated monaural tuning curve (rate modulate transfer function: rate-MTF) for the

coincidence counting model showed a mild peak at 200–300 Hz (Fig 4E), corresponding to the

‘peak & decrease’ type of empirical tuning curves (Fig 1B). This peak was explained by monau-

ral coincidence detection of excitatory inputs [40]. The degree of phase-locking, measured by

modulation gain (synchrony modulation transfer function: synch-MTF), showed similar pat-

terns to experimental data [34], with a mild peak found at 200–500 Hz (Fig 4E, inset). How-

ever, the synch-MTF showed a rebound at above 1 kHz (Fig 4E, inset, arrow), which was not

seen in previous recordings (e.g., [34]).

Physiological models of LSO
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Fig 4. Coincidence counting model of LSO. A: Schematic drawing of the coincidence counting model. Each vertical bar corresponds to a spike (red:

inhibitory inputs; blue: excitatory inputs; black: detected coincidence; green: spike output of the model). An input coincidence is counted when the number of

inputs in the coincidence window Wex (shaded vertical rectangle) reaches or exceeds the threshold θ (θ = 3 in this particular example). The small black arrow

indicates an output spike rejected by the refractory period T. Each inhibitory input removes H excitatory input in the inhibition window Winh (dotted vertical

rectangle). B: Modeled excitatory and inhibitory synaptic inputs. The duration of an excitatory input is described as the coincidence window of Wex, whereas

the duration of an inhibitory input is modeled as the inhibition window of Winh. The effect of inhibitory inputs is modeled as twice as that of an excitatory input

(i.e., H = 2). Actual parameters used are summarized in Materials and Methods. C: (Left) Modeled traces of the coincidence counts driven by binaural AM

tones with two different input phase differences. (Right) Output rates of the model in response to binaural AM tones with varied input phase differences. Bold

numbers show the peak and trough rates. D: (Left) Modeled traces of the coincidence counts driven by binaural unmodulated tones with two different ILDs.

(Right) Output rates of the model in response to binaural unmodulated tones with varied ILDs. Bold numbers show the rates at -45 dB and +15 dB. In panels

C (Left) and D (Left), horizontal dotted gray lines and broken black lines indicate the zero input level and the threshold, respectively. At each threshold

crossing, a vertical line was manually added to show the generation of an output spike. E: Monaural AM-tuning curve (rate-MTF) of the coincidence counting

model. Bold numbers show the peak rate and the rate at 1200 Hz. (Inset) Monaural phase-locking (synch-MTF) of the model. Blue rectangular shading in

C-E indicates the targeted ranges, while green shading in C-D shows the accepted ranges. F: Binaural AM phase-tuning curves of the model at three

modulation frequencies. G: Binaural ILD-tuning curves of the model at five ipsilateral sound levels.

https://doi.org/10.1371/journal.pcbi.1005903.g004
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Simulated binaural phase-tuning curves at 150, 300 and 450 Hz (Fig 4F) all resembled

empirical data (Fig 1C), with troughs aligned at a positive time difference. Simulated binaural

level-tuning curves at different ipsilateral levels (Fig 4G) were also similar to empirical data

(Fig 1D), with level-dependent peak rates and midpoint positions. In the following sections,

we compare these monaural and binaural tuning properties between LSO models.

Stein models

The Stein model is named after Richard B. Stein [75,76], who introduced the model to theoret-

ically investigate the variability of neuronal spiking activity. This model was later adopted for

the study of the binaural function of LSO [47]. The type of model is also called the ‘shot-noise’

model [54], but we use this term for a wider category that includes both the coincidence count-

ing model and the Stein models. In this paper, we compare two types of Stein models that are

distinguished by the function used for synaptic inputs; namely, the conventional version

named the ‘exponential Stein model’ with exponentially decaying functions, and the revised

version, the ‘alpha Stein model’, using alpha functions. These Stein models have more flexibil-

ity than the coincidence counting model, since they have decaying synaptic inputs and thus

allow for non-integer thresholds. The internal state of the model reflecting the decaying synap-

tic inputs is here called the ‘virtual membrane potential’. The term ‘virtual’ is used to indicate

the fact that a shot-noise model does not have an explicit membrane potential (in mV) but

instead counts the number of input spikes as an analog of the membrane response.

Exponential Stein model. In the original type of the Stein model, which we here call the

‘exponential Stein model’, each synaptic input is converted into an exponential function (Fig

5A). Excitatory and inhibitory inputs are represented as positive and negative changes in the

virtual membrane potential, respectively (Fig 5B). An output spike is generated when the vir-

tual membrane potential reaches or exceeds the threshold. The amplitude and the time con-

stant of exponential curves for unitary synaptic inputs were tuned to fit the output criteria of

monaural and binaural responses (Fig 5C, right; Fig 5D, right; and Fig 5E, main panel). It

should be noted, however, that the threshold level found in our parameter search (5.5 inputs)

was considerably lower than the corresponding empirical data (9.6 ± 2.8 inputs in gerbils [77])

(see Materials and methods for more detail on parameter selection). This discrepancy was pri-

marily due to the unrealistic shape of the modeled synaptic input that is extremely steep at the

onset and decays rather slowly afterwards. Due to this sharp onset, the simulated traces are jag-

ged with synaptic inputs (Fig 5C and 5D, left).

Simulated monaural and binaural tuning curves (Fig 5E–5G) were roughly similar to

empirical data (Fig 1B–1D). However, some of the tuning properties were different from

the coincidence counting model. The rate-MTF (Fig 5E) for the exponential Stein model

decreased slightly more slowly with the modulation frequency than for the coincidence count-

ing model. The synch-MTF (Fig 5E, inset) did not decay at the modulation frequencies below

1 kHz. The trough positions of the binaural phase tuning curves did not perfectly align (Fig

5F) because of the temporally asymmetric synaptic inputs. Peak spike rates of the binaural

level tuning curve (Fig 5G) tended to be higher than for the coincidence counting model. This

is explained by the temporal summation of synaptic inputs: i.e., in the coincidence counting

model, the effects of each excitatory synaptic inputs lasts only for the time window of Wex =

0.8 ms (Fig 4B), whereas, in the exponential Stein model, synaptic inputs may sum up for a

considerably longer time scale (Fig 5B). These simulation results suggest that the modeled syn-

aptic inputs of the exponential Stein model may have to be revised to achieve a better fit with

empirical data, although the general principle of the excitatory-inhibitory interactions is cap-

tured by the model [54]. This motivated us to introduce the alpha Stein model (next section).
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Fig 5. Exponential Stein model of LSO. A: Schematic drawing of the exponential Stein model. Each vertical bar corresponds to a spike (red: inhibitory

inputs; blue: excitatory inputs; black: internal state (i.e., virtual membrane potential) of the model; green: spike output of the model). Synaptic inputs are

modeled as exponentially decaying functions and linearly summed to produce the internal state of the model. An output spike is generated when the sum of

inputs reaches or exceeds the threshold. The internal state is reset to and fixed at zero during the refractory period after each spike. B: Excitatory and

inhibitory synaptic inputs modeled as exponentially decaying functions with different amplitudes and time constants. C: (Left) Traces of the internal state of

the model driven by binaural AM tones with two different input phase differences. (Right) Output rates of the model in response to binaural AM tones with

varied input phase differences. Bold numbers show the peak and trough rates. D: (Left) Traces of the internal state driven by binaural unmodulated tones

with two different ILDs. (Right) Output rates of the model in response to binaural unmodulated tones with varied ILDs. Bold numbers show the rates at -45 dB

and +15 dB. In panels C (Left) and D (Left), horizontal dotted gray lines and broken black lines indicate the zero input level and the threshold, respectively. At

each threshold crossing, a vertical line was manually added to show the generation of an output spike. E: Monaural AM-tuning curve (rate-MTF) of the

exponential Stein model. Bold numbers show the peak rate and the rate at 1200 Hz. (Inset) Monaural phase-locking (synch-MTF) of the model. Blue

rectangular shading in C-E indicates the targeted ranges, while green shading in C-D shows the accepted ranges. F: Binaural AM phase-tuning curves of the

model at three modulation frequencies. G: Binaural ILD-tuning curves of the model at five ipsilateral sound levels.

https://doi.org/10.1371/journal.pcbi.1005903.g005
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Alpha Stein model. In the alpha Stein model, unitary synaptic inputs are formulated as

an alpha function (Fig 6A and 6B), while the other operations remain unchanged from the

exponential Stein model (see Materials and methods). The selected threshold of this model

(7.3 inputs) was higher than that of the exponential Stein model (5.5 inputs) and better

matched corresponding empirical data (9.6 ± 2.8 inputs [77]). Simulated traces (Fig 6C and

6D, left) were smoother than those of the coincidence counting and exponential Stein models,

although the simulated monaural and binaural tuning curves did not greatly differ (Fig 6C–

6E). The synch-MTF started to decay at a lower modulation frequency than for the exponential

Stein model (Fig 6E, inset). Because the modeled synaptic input has a steeper onset than the

decay, there was a slight offset between the trough positions (Fig 6F). Relatively higher peaks

for high-intensity inputs (Fig 7G) were found, as similarly seen in the exponential Stein model.

Integrate-and-fire models

The integrate-and-fire (IF) model and its variations have been widely used in theoretical and

computational neuroscience [78–80], including modeling studies of LSO [49–51]. Compared

to the shot-noise models examined above, IF-type models can be more directly related to bio-

logical membranes by having variables and parameters with clear biophysical meanings, such

as the membrane potential, input resistance, and the membrane time constant. Here we exam-

ine two IF-type models: the standard leaky (linear) IF model, which we call the ‘passive IF

model’, and an enhanced version with a nonlinear subthreshold current, which we call the

‘active IF model‘. The general idea of the active IF model was previously presented in [68], but

its membrane properties and spike-associated current were revised to fit known physiological

characteristics of LSO. In both models, we first tuned the subthreshold membrane parameters

using empirical data, and then selected the threshold to reproduce monaural and binaural

responses (see Materials and methods for details).

Passive integrate-and-fire model. In the passive IF model, the subthreshold response of

the membrane is described as an RC circuit (Fig 7A). Therefore its impedance profile is low-

pass (Fig 7B), and its I-V relationship is linear (Fig 7C). In response to step (rectangular) cur-

rent injections, the model produced either no spikes (Fig 7D, left) or repetitive spikes (Fig 7D,

middle and right), depending on the amplitude of the current. Summation of inhibitory synap-

tic inputs (Fig 7E, bottom) was sublinear because its reversal potential was only about 15 mV

below the resting potential (i.e., Einh = -75 mV). In contrast, since the excitatory reversal poten-

tial was far above the resting potential (Eex = 0 mV), excitatory inputs summed almost linearly

(Fig 7E, top).

Responses to modeled synaptic inputs in the passive-IF model (Fig 7F and 7G, left) resem-

bled those in the alpha Stein model, but slightly less noisy because the low-pass membrane fil-

tered out high-frequency fluctuations. Simulated monaural and binaural tuning curves (Fig 7F

and 7G, right; Fig 7H) also had similar shapes. The trough positions of the phase-tuning curves

(Fig 7I), however, showed a better alignment than the Stein models, since the low-pass mem-

brane resulted in somewhat more symmetrical shapes in synaptic potentials. The level-tuning

curves (Fig 7J) were almost identical to the alpha Stein model, with peaks higher than empiri-

cal data (Fig 1D), since the model lacks mechanisms to compress high intensity inputs (see

Discussion).

Active integrate-and-fire model. In addition to the membrane capacitance and the linear

leak conductance, the active IF model has a non-linear low-voltage-activated potassium

(KLVA) conductance (Fig 8A). KLVA channels are commonly found along the auditory path-

way and play an important role in determining the temporal response properties of auditory

neurons (see [81,82] for reviews). The impedance profile of the membrane was still low-pass
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Fig 6. Alpha Stein model of LSO. A: Schematic drawing of the alpha Stein model. Each vertical bar corresponds to a spike (red: inhibitory inputs; blue:

excitatory inputs; black: internal state (i.e., virtual membrane potential) of the model; green: spike output of the model). Synaptic inputs are modeled as alpha

functions and linearly summed to produce the internal state of the model. An output spike is generated when the sum of inputs reaches or exceeds the

threshold. The internal state is reset to and fixed at zero during the refractory period after each spike. B: Modeled excitatory and inhibitory synaptic inputs.

Excitatory and inhibitory synaptic inputs are both converted into alpha functions, but with different amplitudes and time constants. C: (Left) Traces of the

internal state of the model driven by binaural AM tones with two different input phase differences. (Right) Output rates of the model in response to binaural

AM tones with varied input phase differences. Bold numbers show the peak and trough rates. D: (Left) Traces of the internal state driven by binaural

unmodulated tones with two different ILDs. (Right) Output rates of the model in response to binaural unmodulated tones with varied ILDs. Bold numbers

show the rates at -45 dB and +15 dB. In panels C (Left) and D (Left), horizontal dotted gray lines and broken black lines indicate the zero input level and the

threshold, respectively. At each threshold crossing, a vertical line was manually added to show the generation of an output spike. E: Monaural AM-tuning

curve (rate-MTF) of the alpha Stein model. Bold numbers show the peak rate and the rate at 1200 Hz. (Inset) Monaural phase-locking (synch-MTF) of the

model. Blue rectangular shading in C-E indicates the targeted ranges, while green shading in C-D shows the accepted ranges. F: Binaural AM phase-tuning

curves of the model at three modulation frequencies. G: Binaural ILD-tuning curves of the model at five ipsilateral sound levels.

https://doi.org/10.1371/journal.pcbi.1005903.g006
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Fig 7. Passive integrate-and-fire model of LSO. A: Circuit diagram of the passive IF model.Θ denotes the threshold crossing detector. B: Membrane

impedance of the model. C: Current-potential (I-V) relationship of the model. D: Model responses to step current input with three varied sizes. E:

Membrane responses to modeled excitatory and inhibitory synaptic inputs. F: (Left) Modeled membrane potentials driven by binaural AM tones with two

different input phase differences. (Right) Output rates of the model in response to binaural AM tones with varied input phase differences. Bold numbers
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(Fig 8B), whereas a much larger amount of KLVA conductance in other auditory coincidence

detector models was found to make the membrane weakly band-pass [83,84]. KLVA current is

activated near or slightly above the resting potential, resulting in lower membrane impedances

at depolarized potentials (Fig 8C) and a phasic (onset) spiking response to a step current of an

intermediate amplitude (Fig 8D, middle). The transition from phasic to tonic spiking was seen

in slice recordings from rat LSO [85] corresponding to the tonotopic distribution of KLVA

conductance [86].

Instead of the simple potential reset, an additional spike-associated current was injected

after each threshold crossing (Fig 8E) in our active IF model. This spike-mimicking current

was introduced to make the simulated potential traces (Fig 8F and 8G, left) more realistic than

other simpler models. Monaural (Fig 8H) and binaural responses (Fig 8F and 8G right) of

the active IF model were all within the targeted ranges (Fig 3). The rate-MTF (Fig 8H, main

panel), synch-MTF (Fig 8H, inset) and binaural phase-tuning curve (Fig 8I) resembled those

of the passive IF model. The binaural level-tuning curve (Fig 8J), however, showed lower peak

rates especially with high ipsilateral levels, better replicating the empirical data (Fig 1D). This

was achieved by the KLVA conductance, which compressed the accumulated input by making

the input resistance low at depolarized membrane potentials (Fig 8C).

Wang-Colburn models

The Wang-Colburn model [53] is a conductance-based, HH-type model with several nonlin-

ear conductances (Fig 9A). The leak and KLVA currents characterize the subthreshold

responses, whereas the high-voltage activated potassium (KHVA) and sodium (Na) currents

are responsible for spike initiation and after-spike repolarization. The kinetic equations for the

Wang-Colburn model was taken from the Rothman-Manis model [87], which was based on

physiological recordings of guinea pigs and has been widely used in computational studies of

auditory neuroscience. The model does not have an explicit spike threshold as a parameter,

since the spike threshold of a HH-type model is determined by nonlinear interactions of the

ionic conductances. Because of these characteristics, the Wang-Colburn model has more plau-

sible biological grounds than other simpler models that we have examined so far. It neverthe-

less has a number of parameters that are not physiologically well-constrained (i.e., not all

parameters were empirically measured, or even measurable). In the present study, we examine

two types of the Wang-Colburn models: the original version [53] and an adjusted version to

better fit empirical data (see Materials and methods for detailed definitions).

Original Wang-Colburn model. In the original Wang-Colburn model, the values for the

membrane capacitance and the leak conductance were taken from their prior study using an

IF-type model [51], and were considerably larger than the values used for the other models in

our present study. The resulting membrane constant of the Wang-Colburn model was 1.0 ms,

comparable to the empirical values in gerbils (1.1 ± 0.4 ms: [77]), while the input resistance of

21.1 MO was relatively lower than the measured values in the same species (42 ± 21 MO: [77]).

Because of the large amount of potassium conductances, the impedance was highest at 100–

200 Hz, although the overall shape of the impedance curve was nearly low-pass (Fig 9B). The

show the peak and trough rates. G: (Left) Modeled membrane potential driven by binaural unmodulated tones with two different ILDs. (Right) Output rates

of the model in response to binaural unmodulated tones with varied ILDs. Bold numbers show the rates at -45 dB and +15 dB. In panels F (Left) and G

(Left), horizontal dotted gray lines indicate the resting potential. In panels D-G, vertical bars were manually added to show the generation of an output spike

at each spike crossing. H: Monaural AM-tuning curve (rate-MTF) of the passive IF model. Bold numbers show the peak rate and the rate at 1200 Hz.

(Inset) Monaural phase-locking (synch-MTF) of the model. Blue rectangular shading in F-H indicates the targeted ranges, while green shading in F-G

shows the accepted ranges. I: Binaural AM phase-tuning curves of the model at three modulation frequencies. J: Binaural ILD-tuning curves of the model

at five ipsilateral sound levels.

https://doi.org/10.1371/journal.pcbi.1005903.g007
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Fig 8. Active integrate-and-fire model of LSO. A: Circuit diagram of the active IF model.Θ denotes the threshold crossing detector and spike current

generator. B: Membrane impedance of the model. C: Current-potential (I-V) relationship of the model. D: Model responses to step current input with three

varied sizes. E: Membrane responses to modeled excitatory and inhibitory synaptic inputs. F: (Left) Modeled membrane potentials driven by binaural AM

tones with two different input phase differences. (Right) Output rates of the model in response to binaural AM tones with varied input phase differences.
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I-V curve showed an outward rectification (Fig 9C). Due to the activation of KLVA and inacti-

vation of Na conductances near the resting potential, the excitability of this model was sub-

stantially lower than other models, showing phasic spiking even in response to a large step

current (Fig 9D, middle).

Since the resting potential (around -65 mV) was close to the inhibitory reversal potential

of this model (Ein = -70 mV), simulated inhibitory inputs (Fig 9E, bottom; unitary ampli-

tude = 0.6–0.7 mV) were much smaller than the measured inhibitory inputs (1.6–8.3 mV:

[77]). Spike peaks of the original Wang-Colburn model reached +10 to +30 mV (Fig 9E, top;

Fig 9F, left; Fig 9G, left), resembling LSO neurons in mice [88] and rats [85], rather than gerbil

LSO neurons that rarely showed overshooting [77]. Because of the weak inhibitory inputs, the

output rate did not fall below 20 spikes/s, even when inhibitory input arrived in-phase with

excitatory inputs (Fig 9F, right). Furthermore, because of the low excitability of the model neu-

ron, the simulated maximum rate was only about 60 spikes/sec when driven by non-phase-

locked excitatory inputs (Fig 9G, right).

As reported previously [53], simulated monaural AM tuning curve showed a peak around

200 Hz (Fig 9H). Synch-MTF decreased more rapidly even below 1 kHz (Fig 9H, inset) than

other models. The binaural AM phase tuning curves roughly aligned at the troughs (Fig 9I),

but the depths were generally shallow. The most notable difference from other models (and

from empirical data) was the low output rates in the binaural level tuning curves (Fig 9J). This

was due to the large potassium conductance in combination with the strong sodium inactiva-

tion, both of which hinder repetitive spiking when driven by continuous inputs, as seen with

step currents (Fig 9D, middle).

Adjusted Wang-Colburn model. The major discrepancies found between the original

Wang-Colburn model and empirical data necessitated a revision of the model. We thus made

the following changes to obtain an adjusted version of the Wang-Colburn model. First, we

shifted the voltage dependence of the ion channel kinetics to reduce the effects of KLVA acti-

vation and Na inactivation. Next, we revised the membrane capacitance, leak and KLVA con-

ductances, and reversal potentials to gain a better fit to corresponding experimental data.

Finally, the values of Na and KHVA conductances were selected to achieve our output criteria

of monaural and binaural tunings. More detailed descriptions of the model adjustment are

provided in Materials and Methods.

The adjusted Wang-Colburn model has the same type of ion channels (Fig 10A) as the orig-

inal version with a voltage shift of +5 mV. The membrane capacitance and resistance were

reduced to fit corresponding data [77]. The membrane impedance profile (Fig 10B) and I-V

curve (Fig 10C) resembled those for the active IF model. The adjusted model showed tonic

(repetitive) spiking for a lower step current input (Fig 10D, right) than the non-adjusted

model. Shapes of inhibitory inputs (Fig 10E, bottom) better resembled the in vitro data [77].

The model still shows large, overshooting spikes (Fig 10E, top), as the reversal potential of the

sodium conductance was unchanged from the original version (see Discussion). With these

revisions, subthreshold traces were not greatly altered (compare traces in Fig 10F and 10G

with traces in Fig 9F and 9G), but the binaural tuning curves yielded a larger modulation

depth in phase coding (Fig 10F, right) and a higher peak for level coding (Fig 10G, right).

Bold numbers show the peak and trough rates. G: (Left) Modeled membrane potential driven by binaural unmodulated tones with two different ILDs. (Right)

Output rates of the model in response to binaural unmodulated tones with varied ILDs. Bold numbers show the rates at -45 dB and +15 dB. In panels F

(Left) and G (Left), horizontal dotted gray lines indicate the resting potential. H: Monaural AM-tuning curve (rate-MTF) of the active IF model. Bold numbers

show the peak rate and the rate at 1200 Hz. (Inset) Monaural phase-locking (synch-MTF) of the model. Blue rectangular shading in F-H indicates the

targeted ranges, while green shading in F-G shows the accepted ranges. I: Binaural AM phase-tuning curves of the model at three modulation frequencies.

J: Binaural ILD-tuning curves of the model at five ipsilateral sound levels.

https://doi.org/10.1371/journal.pcbi.1005903.g008
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Fig 9. Original Wang-Colburn model of LSO. A: Circuit diagram of the original Wang-Colburn model. B: Membrane impedance of the model. C:

Current-potential (I-V) relationship of the model. D: Model responses to step current input with three varied sizes. E: Membrane responses to modeled

excitatory and inhibitory synaptic inputs. F: (Left) Modeled membrane potentials driven by binaural AM tones with two different input phase differences.

(Right) Outputs rate of the model in response to binaural AM tones with varied input phase differences. Bold numbers show the peak and trough rates.
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Simulated monaural AM tuning curve (Fig 10H), binaural phase-tuning curves at different

modulation frequencies (Fig 10I), and binaural level tuning curves with varied ipsilateral levels

(Fig 10J) all resembled empirical data (Fig 1B–1D), although there were still some minor dis-

crepancies. The monaural spike rate at 1.2 kHz (Fig 10H), for example, was higher than most

units in cat LSO (Fig 1B). The peak of the monaural tuning curve (Fig 10H) was steeper than

other models. Furthermore, the peak height for the binaural level tuning curves had a ‘ceiling’

at about 130 spikes/s (Fig 10J), because the outward rectification and Na inactivation still had

considerable effects in the adjusted model.

Comparison of credibility and computational efficiency

In previous sections, we have characterized the response properties of seven LSO neuron

models. Mutual relations of the models are shown in Fig 11A. Monaural and binaural tuning

properties of the models are summarized in Table 1. We used monaural AM tuning, binau-

ral phase tuning, and binaural intensity tuning curves for selecting the parameters. In order

to quantify model performance for comparison, we set a criterion for the peak, trough, and

depth of these three curves, yielding nine targeted ranges in total (see Materials and meth-

ods for their definitions). All models satisfied the target ranges for monaural AM tuning

showing similar band-pass curve shapes with a peak at around 200–300 Hz (Fig 11B). Binau-

ral phase tuning curves of the models were also similar to each other with some variations in

modulation depths (Fig 11C), while their binaural intensity tuning curves considerably

differed particularly in peak amplitudes (Fig 11D; see also Discussion). The coincidence

counting model, the active IF model and the adjusted Wang-Colburn model satisfied all the

targeted ranges (as shown by the bold numbers in Table 1). For the other models, we weak-

ened the criteria by introducing wider accepted ranges. All models except the original

Wang-Colburn model achieved the accepted ranges for the nine output rates (non-bold

numbers in Table 1).

In addition to the credibility of the model, which is characterized by how well the model

reproduces corresponding empirical data, computational performance is another important

factor to evaluate a model. Relative computational time increased with the complexity of the

model (Table 1, rightmost column, from top to bottom). The coincidence counting model was

more than 100 times faster than the Wang-Colburn model, followed by the Stein models (40–

70 times faster) and the passive IF model (about 20 times faster). Calculation of the nonlinear

dynamics of KLVA conductance considerably reduced the speed for the active IF model,

because the model became a system of two differential equations, making it more than 4 times

slower than the passive model. Additional nonlinear conductances made the computation

even slower by another factor of over 4 in the Wang-Colburn models. It should be noted that

we used the simple forward Euler method with a fixed time step to measure the relative

computational time. Selection of a proper integration method in combination with an adaptive

time step may reduce the computational time without losing the computational accuracy [89].

Therefore the relative computational time shown here should be regarded as one possible mea-

sure for evaluating the computational performances of the models.

G: (Left) Modeled membrane potential driven by binaural unmodulated tones with two different ILDs. (Right) Output rates of the model in response to

binaural unmodulated tones with varied ILDs. Bold numbers show the rates at -45 dB and +15 dB. In panels F (Left) and G (Left), horizontal dotted gray

lines indicate the resting potential. H: Monaural AM-tuning curve (rate-MTF) of the original Wang-Colburn model. Bold numbers show the peak rate and

the rate at 1200 Hz. (Inset) Monaural phase-locking (synch-MTF) of the model. Blue rectangular shading in F-H indicates the targeted ranges, while

green shading in F-G shows the accepted ranges. I: Binaural AM phase-tuning curves of the model at three modulation frequencies. J: Binaural ILD-

tuning curves of the model at five ipsilateral sound levels.

https://doi.org/10.1371/journal.pcbi.1005903.g009
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Fig 10. Adjusted Wang-Colburn model of LSO. A: Circuit diagram of the adjusted Wang-Colburn model. B: Membrane impedance of the model. C:

Current-potential (I-V) relationship of the model. D: Model responses to step current input with three varied sizes. E: Membrane responses to modeled

excitatory and inhibitory synaptic inputs. F: (Left) Modeled membrane potentials driven by binaural AM tones with two different input phase
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In summary, the coincidence counting model yielded better fit to the targeted ranges with

less computational costs than the Stein models and the passive IF model, whereas the active IF

and adjusted HH model required more computational time to make similarly good physiologi-

cal predictions. In Discussion, we re-examine the physiological and computational perfor-

mances of each model, and provide our suggestions on possible applications of these models.

differences. (Right) Output rates of the model in response to binaural AM tones with varied input phase differences. Bold numbers show the peak and

trough rates. G: (Left) Modeled membrane potential driven by binaural unmodulated tones with two different ILDs. (Right) Output rates of the model in

response to binaural unmodulated tones with varied ILDs. Bold numbers show the rates at -45 dB and +15 dB. In panels F (Left) and G (Left),

horizontal dotted gray lines indicate the resting potential. H: Monaural AM-tuning curve (rate-MTF) of the adjusted Wang-Colburn model. Bold

numbers show the peak rate and the rate at 1200 Hz. (Inset) Monaural phase-locking (synch-MTF) of the model. Blue rectangular shading in F-H

indicates the targeted ranges, while green shading in F-G shows the accepted ranges. I: Binaural AM phase-tuning curves of the model at three

modulation frequencies. J: Binaural ILD-tuning curves of the model at five ipsilateral sound levels.

https://doi.org/10.1371/journal.pcbi.1005903.g010

Fig 11. Summary of simulated tuning curves of the models. A: Interrelations of the seven LSO models used in this study. B: Monaural AM-tuning

curves (rate-MTFs) of the models. C: Binaural AM phase-tuning curves of the models at the modulation frequency of 300 Hz. D: Binaural ILD-tuning

curves of the models at the ipsilateral sound level of 35 dB. Line colors in B-D correspond to the text color in A. Blue rectangular shadings indicate the

targeted ranges, while green shading show the accepted ranges.

https://doi.org/10.1371/journal.pcbi.1005903.g011
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Discussion

Comparing models

Having multiple working hypotheses has long been suggested to be advantageous in scientific

studies over sticking to only one (possibly flawed) ‘ruling’ hypothesis, because comparison of

hypotheses is more likely to reveal various causes of a complex phenomenon by encompassing

it from several sides [90–92]. Comparative research across animal species, for example, allows

us to identify general functions of the subjects under study [93,94]. Similarly, comparison of

different models helps us reveal which specific assumption results in what outcome, providing

insights about the common operating principles of the system. In this study, we examined

seven physiological models of LSO, which simulated neuronal processing of monaural and

binaural acoustic information relevant to sound localization. The outcome of each model was

compared with available empirical data as well as with simulation results of other models.

Comparison of model with empirical knowledge. Discrepancies between model out-

come and empirical observations indicate that some of the original model assumptions are

inappropriate and suggest what additional factors need to be considered in a revised model

[4,5]. In our LSO modeling framework, the structure and most of the parameters of each

model were determined from corresponding empirical data that were taken in prior physiolog-

ical (mostly in vitro) studies. Parameters for which no experimental data were available were

subject to fitting, in which simulation outcome was compared against known spiking output

of LSO neurons recorded in vivo. For example, the original Wang-Colburn model was capable

of reproducing a monaural AM tuning curve (Fig 9H) but not a binaural level tuning curve

(Fig 9J). However, by adjusting the model parameters and ion channel kinetics, an improved

fit to empirical results was achieved (Fig 10H–10J). To test whether the adjustments of ionic

conductances and channel kinetics are supported by empirical observations will be a subject of

future studies.

The plausibility of a model is generally judged by the agreement between its underlying

assumptions and corresponding empirical knowledge, but biological realism does not always

Table 1. Summary of model output measures.

Model Monaural AM frequency

coding

Binaural AM phase coding

(at 300 Hz)

Binaural intensity coding

(at ipsilateral level of 35

dB)

Relative computational time

Peak Trough Depth Peak Trough Depth Peak Trough Depth

Coincidence counting (9–9) 140.2 9.5 130.7 129.9 18.8 111.1 121.5 15.8 105.7 1.0

Exponential Stein (6–9) 145.1 22.5 122.6 106.1 27.5 78.6 146.0 24.1 121.9 1.9

Alpha Stein (6–9) 155.0 20.5 134.5 106.5 24.4 82.1 157.7 19.7 138.0 3.0

Passive IF (6–9) 144.3 21.4 122.9 92.3 13.5 78.8 156.6 13.1 143.5 6.3

Active IF (9–9) 149.6 15.0 134.6 113.8 17.3 96.5 123.0 14.7 108.3 29.4

Original Wang-Colburn (4–6) 137.9 9.0 128.9 95.6 30.6 65.0 57.6 16.4 41.2 137

Adjusted Wang-Colburn (9–9) 158.9 29.0 129.9 117.0 23.8 93.2 113.9 21.8 92.1 137

Accepted ranges (spikes/sec) 100–180 0–50 >90 90–160 0–40 >70 90–160 0–40 >70 - - -

Targeted ranges (spikes/sec) 120–160 0–30 >110 110–140 10–30 >90 110–140 10–30 >90 - - -

The unit of the spike rates (column 2–10) is spikes/sec. (Peak): peak rate; (Trough): trough rate; (Depth): modulation depth. Simulated spike rates that were

within the targeted range are shown in bold with blue background, while those out of the targeted range but still within the accepted ranges are shown with

regular fonts with green background. Simulated rates that were out of the accepted ranges are shown as italic with red background. The numbers in the

brackets after each model name show how many of the nine targeted-accepted ranges were attained. See Materials and methods for the definition of each

model and output measures.

https://doi.org/10.1371/journal.pcbi.1005903.t001
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equate with a good predictive performance. Models that were proven to be constructed on

wrong or inappropriate assumptions often produce good (or sometimes excellent) predictions

[65], which may be attributed to "trade-offs among model components" [2]. Many auditory

periphery models, for example, (incorrectly) assume that different frequency channels operate

independently of each other, but still generate more than reasonable results [67]. The spike

generation and succeeding potential reset of the IF model is far from empirical reality, but nev-

ertheless the IF model and its variations have served as an important means to study the spik-

ing behaviors of a wide variety of neurons [9]. In our modeling framework, the coincidence

counting model naively counts the number of incoming synaptic inputs for a fixed duration of

time with equal weights and discards all other inputs (Fig 4A and 4B). This assumption is bio-

logically unrealistic, but the model still predicts both monaural and binaural properties well

(Fig 4E–4G).

Comparison between models. In the study of complex systems, an increased confidence

on the underlying, universal mechanisms is achieved when multiple models yield similar or

identical predictions, whereas differences in model predictions implicate the necessity of fur-

ther investigations to falsify some of the model assumptions. Such comparisons were per-

formed, for example, with models of visual cortical maps [95], with myelinated auditory nerve

fiber models [96], with basilar membrane models of the cochlea [67], and with compartmental

models of neocortical pyramidal neurons [66]. A comparison of the leaky IF model with expo-

nential IF and HH-type models suggested that interspike intervals driven by fluctuating inputs

can be described by a gamma distribution, independently of detailed spike generation mecha-

nisms [97], whereas a variation of IF model was shown to reproduce spike initiation of cortical

neurons more realistically than detailed HH-type models [98].

Among our LSO models, the lack of compressive factor in the passive (linear) models led to

a higher output rate when driven by high intensity inputs (Figs 6G and 7J) than in models with

low voltage activated currents that lowers the membrane impedance at high membrane poten-

tials and thereby reduces the effect of summed synaptic inputs (Figs 8J and 10J). This compari-

son (as shown in Fig 11D) suggests that the nonlinear suppression may stabilize the ILD

processing of LSO by restricting the range of output spike rates. A prior study using a KLVA

channel model showed that the dynamic properties of KLVA current are indeed important for

auditory coincidence detection [99]. These results demonstrate that models with biophysical

details (such as HH-type) can be useful in identifying important mechanisms that cannot be

captured in simplified models.

The limit frequencies of phase-locking to monaural AM sounds differed between models:

synch-MTFs of the HH-type models decayed at lower modulation frequencies (Figs 9H and

10H, inset) than those of other simpler models (Figs 5E, 6E, 7E and 8E, inset), even though the

rate modulation transfer functions were similarly tuned. Future experimental studies may

prove which model predictions on synch-MTFs are more realistic, whereas further theoretical

investigations are needed to reveal the underlying mechanisms causing these discrepancies.

Physiological models of LSO

In most earlier modeling studies, the function of an LSO neuron was abstracted as an interac-

tion of excitatory and inhibitory inputs that determines the output spike rate [41–44,46]. In

contrast, as empirical data accumulated, more physiological modeling approaches became

prevalent [45,47–53]. These models were constructed on available in vivo and in vitro record-

ing data: e.g., the ionic conductances and time constant of the membrane, synaptic time scales,

spiking responses to monaural and binaural sound stimuli, and refractoriness. Such a physio-

logical model is sometimes called a ‘pinkbox’ model [54], making a contrast to functional,
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‘blackbox’ models that solely focus on the input-output statistics of a neuron [9]. The credibil-

ity of a physiological model is warranted by the solid connection between its underlying bio-

physical processes and resulting spiking behavior.

Within the category of physiological models, several levels of description may exist, result-

ing in a number of different models explaining the same phenomena. In the present study, we

presented the models in order of ascending complexity, from the most simplistic coincidence

counting model (Fig 4) to the elaborate HH-type models (Figs 9 and 10), having Stein and IF

models (Figs 5–8) in between. Previous theoretical studies connected several levels of descrip-

tion by using various techniques in reducing models: e g., the reduction of a HH model into a

threshold model [100], into a two-variable model [101] or into a variation of active IF models

[102–104], and the reduction of a spike neuron model into a rate model [105]. Our active IF

model of LSO is closely related to an MSO model with KLVA conductance and thresholding

[106], which was introduced as a reduced description of more-detailed conductance-based

model.

Simple vs. complex models. The balance between simplicity and reality is always a crucial

issue in modeling studies (e.g., [5,7,9,10,107]). A biophysical model needs to be detailed

enough to assure biological fidelity (and generalizability), while it should be sufficiently simple

(or abstract) to allow for theoretical analyses or interpretations. This trade-off is also described

as the philosophical debate between reductionism and holism [2]: a reductionist approach, fre-

quently seen in applied mathematics and physics, aims at decomposing the system into parts

to identify essential features, while a holist approach tries to include (almost) every component

to replicate the emerging integrative behaviour of the complex system. These two philosophies,

however, are not mutually exclusive, but complement each other to advance our scientific

knowledge [7]. The simplistic coincidence counting model highlights the LSO neuron as a

coincidence detector [40], while the detailed Wang-Colburn model describes how each bio-

physical element may play a role in temporal processing of auditory signals [53], together

revealing the computational principles of LSO from different aspects.

In constructing a model, a general rule-of-thumb is that the complexity of a model should

not exceed the complexity of the question that the model is addressing [8]. And according to

the "principle of parsimony" (e.g., [1,92]), simpler models are favored over complex models if

they have the same predictive capabilities, because simple models are more transparent and

easier to communicate, and usually require less effort for parameter optimizations and model

validation [2]. The meaning of each parameter of a simple model, however, tends to be more

abstract and thus harder to relate with its underlying processes. The coincidence window in

the coincidence counting model, for example, is determined by complex interactions of several

biophysical factors, such as the membrane and synaptic time constants and nonlinear activa-

tion kinetics of ion channels [40]. The contribution of each of these factors cannot be easily

evaluated separately from each other. Furthermore, it is difficult to directly incorporate mea-

sured nonlinear conductances into the shot-noise models, since these models lack detailed

membrane dynamics.

In theoretical studies, finding the minimal description of a system is important for revealing

its essential components [8,107]. The coincidence counting model, which simply counts the

number of synchronized inputs and generates a spike, is (close to being) minimal. Several ear-

lier studies mathematically formulated the spike statistics of the exponential Stein model

driven by random synaptic inputs [75,76,108,109]. The passive IF model has been widely used

in various fields of theoretical and mathematical neuroscience, including analyses of neurons

that receive phase-locked inputs [69,70].

Simple models, however, are usually less flexible than detailed models. In the coincidence

counting model, for example, the spike count is always an integer, and therefore any adaptive
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mechanisms that require a finer tuning of the threshold cannot be represented by this model.

Furthermore, the simple shot-noise models cannot be expanded with additional ion channels.

Related to this, the Stein models and the passive IF model are incompatible with subthreshold

nonlinearity, resulting in higher spike rates than more detailed models when driven by high

intensity synaptic inputs (Fig 11D). Detailed conductance based models are required, for

example, to investigate possible effects of neuronal morphology, ion channel distribution, and

locations of synaptic terminals on resulting binaural computation (e.g., LSO: [45]; MSO: [99]).

In light of applications, ‘medium-sized’ models are practically useful, because "they are

complex enough to have nontrivial and nonobvious results, but simple enough so that the

implications of the assumptions are readily apparent" [110]. Such an intermediate model

should retain essential features of more detailed models to gain important insights into the

modeled system [111]. Our active IF model (Fig 8) is an example of such medium-sized mod-

els, which ignores complex spike-generation mechanisms but still faithfully reproduces known

sub- and suprathreshold characteristics of LSO neurons. In order to reduce the computational

costs of the active IF model, the spike-associated current can be replaced by a simple potential

rest and a succeeding absolutely refractory period (as in the passive IF model), when the entire

spike waveform is not important.

Which model to choose? As already seen in Introduction, no model is perfect. Therefore

the question that a model user should ask is not "What is the best model?" but "What is the spe-

cial value of each model, and what is its advantageous applicability?" (see [90] for a similar

statement on selecting scientific methods). Table 2 summarizes major strengths and weakness

of the seven LSO models, which have been generalized and validated with the common set of

criteria. Here we note our suggested use of these models: in order to simulate the input-output

relationship of an LSO neuron without considering its biophysical details such as membrane

potential, we recommend the coincidence counting model; its computational efficiency also

Table 2. Summary of model characteristics.

Model Notes and recommendations

Coincidence

counting

Extremely fast. Good predictions. Least flexible. Limited to modulation frequencies

below ~1 kHz. Recommended for simulations where membrane potentials (and

adaptation) do not really matter. May also be suitable for large-scale and/or real-time

simulations.

Exponential Stein Very fast. Relatively good predictions. With some flexibility. Possibly suitable for

theoretical analyses. Not strongly recommended for explaining empirical data, as

the low threshold and the shape of inputs may be biologically unrealistic.

Alpha Stein Fast. Better biological plausibility than the exponential Stein model and with similarly

good predictions. Possibly suitable for theoretical analyses. Due to the lack of

subthreshold nonlinearity, recommended only with low-to-medium input intensities.

Passive IF Relatively fast. With good biological bases and flexibility including the membrane

potential. Similar predictive performance to Stein models. A number of analysis

techniques are already available. Recommended only with low-to-medium input

intensities.

Active IF Relatively slow. With solid biological plausibility including the subthreshold

nonlinearity. Better predictions than most other models. Expandable with additional

(subthreshold) conductances. Recommended for general use, especially when

subthreshold membrane potentials and/or spikes matter.

Original Wang-

Colburn

Slow. With established biological background (based on recordings from VCN

neurons), but with poor predictive performances. Not strongly recommended for

simulating binaural responses (especially ILDs). Parameters clearly need revisions.

Adjusted Wang-

Colburn

Slow. Good predictions. With solid biological bases, but with many unknown

(experimentally unconstrained) parameters. May need further optimizations.

Expandable with additional conductances. Suitable for studying how the kinetics of

each ion channel may play a role.

https://doi.org/10.1371/journal.pcbi.1005903.t002
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suits large-scale simulations that involve thousands of neurons or engineering applications

that require real-time computation. To theoretically formulate the function of a LSO neuron,

shot noise models (coincidence counting and Stein models) or the passive IF model would be

suitable, as there are number of relevant studies and techniques available. In order to study

how specific membrane properties and their interactions (e.g., ion channel kinetics and con-

ductance densities) may play a role in the excitatory-inhibitory interaction of an LSO neuron,

the adjusted Wang-Colburn model is clearly advantageous over other simpler models, because

of its well-founded biophysical details and potential expandability with additional ion channels

and neuronal morphology. For a general purpose, or when the user does not have a strong

preference on which model to choose, the active IF model would be a good compromise

among biological reality, computational efficiency, and predictive credibility.

Limitations of the modeling framework

Parameter selection. For a systematic searching of model parameters, a number of com-

puterized methods have been invented [66,112–115]. Selecting the parameters of a nonlinear

dynamical system, however, requires attention to various types of potential pitfalls. A small

change of a parameter may cause dramatic changes in the resulting behavior of the model,

referred to as a bifurcation (e.g., [116]). Conversely, different parameter sets sometimes lead

to practically indistinguishable results [113,117,118]. This is because the model can be highly

sensitive to parameter changes in certain directions and not to those in other directions, and

because changes in some model components can compensate each other [119] (see [120] for

a review of these issues). Furthermore, averaging ‘good’ parameter combinations occasion-

ally yield poor results [121], since the distribution of good parameters can be highly skewed

in the parameter space (i.e., mathematically speaking, the distribution is non-convex). As the

number of unconstrained parameter increases, the volume of the parameter space to search

rapidly increases, making the parameter search inefficient, which is so-called the ‘curse of

dimensionality’ [8,66]. In addition, since it is impossible to test a model completely with an

infinite amount of empirical data, the modeler needs to define the desired range of applica-

bility and to leave the model for further tests in domains where it was not optimized for

[2,66].

For our conductance-based LSO models (i.e., the passive and active IF models and the

adjusted Wang-Colburn model), we adopted a multi-step procedure for parameter tuning (as

suggested, for example, in [122]) instead of using a fully automated parameter optimization

technique, because corresponding empirical data were sparse and taken from various indepen-

dent (and qualitatively different) sources. First, we focused on the subthreshold (non-spiking)

responses of the neuron and tuned corresponding parameters (i.e., membrane conductances,

reversal potentials, synaptic time constants and amplitudes, etc.). We then selected the param-

eters for suprathreshold spiking responses (e.g., thresholds of the IF models, and Na and

KHVA conductances of the adjusted Wang-Colburn model) driven by simulated synaptic

inputs, to meet the output criteria for monaural and binaural tuning curves, which we consid-

ered the most important response characteristics of the LSO neuron. After parameter selec-

tion, all models except the original Wang-Colburn model satisfied the nine output criteria (i.e.,

within all the acceptable ranges shown in Table 1). It should be noted, however, that we did

not try to find the ‘best’ parameter combination for each model. In our preliminary simula-

tions, multiple parameter combinations resulted in virtually identical response properties for

the reasons discussed above. The model parameters we adopted in this study should thus be

regarded just as a reasonable option (see Materials and methods for more details about our

parameter selection).
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Availability of empirical data. In this study, we selected the parameters of each model so

that it replicates the three major response features of monaural AM tuning, and binaural phase

and intensity tunings (Fig 11B–11D). For conductance-based models, sub- and suprathreshold

responses were additionally used to calibrate their membrane properties. We focused on these

three response features for two reasons: First, considering the binaural nature of this nucleus

[12] and its behavioral relevance [123], we presumed that ITD and ILD tunings are the most

prominent characteristics of LSO, and that monaural AM stimulus should be used to further

characterize its responses to temporally structured excitatory inputs. Second, currently there is

only limited information available that can be used for constructing and validating an LSO

model. Except for the stimulus characteristics we adopted in this study, we practically do not

have sufficient amount of quantitative data taken from LSO and its primary input sources

(VCN and MNTB). It should also be noted that, in none of previous LSO experiments, were

the three response features altogether tested in the same single neuron. Therefore, our criteria

of simultaneously sufficing the nine targeted ranges (Table 1) might be too strict for a single

neuron model. As more empirical data become available in future measurements, the models

should be re-evaluated with a wider variety of stimuli (see also "Possible applications" below).

Earlier studies presented a ‘chopping’ behavior in the peristimulus time histogram (PSTH)

to be a distinctive response feature of LSO [30,41,124], guiding subsequent modeling studies

to replicate these activity patterns (e.g., [43,51]). However, we did not use PSTHs to tune or

evaluate LSO models, because the observed chopping patterns were found to be influenced by

anesthesia [125,126] and may further affected by time-delayed ipsilateral inhibition [126],

which is beyond the scope of our present study.

Difference across species. In order to sufficiently constrain the LSO models, we had to

borrow empirical data from various experimental studies. Most in vivo data that we used to

measure the output performances of the models had been obtained in cats, while most in vitro
data that we adopted to tune the subthreshold membrane properties had been taken from

rodents. This type of problem has been "well known among old-timers" [127], and is still com-

mon when a modeler tries to relate different levels of description: e.g., connecting in vitro slice

recording data with in vivo network dynamics; or connecting neuronal activity with behavioral

outcome. Moreover, cellular properties may be considerably different even between closely

related species and sometimes incompatible with each other. Measured membrane resistances

of LSO neurons of rodents, for example, were 42 ± 21 MO in gerbils [77] and 15–53 MO in

mice [88], while they were much higher in guinea pigs (73 ± 17 MO: [48]) and in rats

(109 ± 64 MO: [85]). Possibly related to this, action potentials in rats’ LSO neurons usually

overshot with amplitudes of 81.3 ± 15.3 mV [85], whereas those in gerbils were substantially

smaller (41 ± 14 mV: [77]). Furthermore, for technical reasons, in vivo recordings are per-

formed normally with adult animals, while in vitro patch clamp recordings are done with juve-

nile animals whose cellular and synaptic properties may still be under development [128–130].

These discrepancies suggest that our models could represent an LSO neuron of a ‘chimera’

that may not exist on earth, although the predictions of the models were at least qualitatively

consistent with known empirical data from real animals. Further experimental recordings and

model optimizations would therefore be necessary to create an animal-specific LSO model.

Difference within species. Even within the same species, LSO neurons show considerable

variations in monaural and binaural responses [37–39,124]. Previous physiological and ana-

tomical studies of LSO found tonotopic gradients in the number of inhibitory synaptic recep-

tors [131], the morphology of dendritic arbors [132], the KLVA conductance and resulting

spiking patterns [86], and the resonance property of the membrane [48]. These tonotopic dif-

ferences may explain some of the observed unit-to-unit variations among LSO cells. Our previ-

ous modeling study demonstrated that variations of the parameters for coincidence detection
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indeed affect the shape of the monaural and binaural tuning curves [40]. Nevertheless, earlier

physiological studies of LSO, either in vivo or in vitro, presented their data often without the

information of the estimated characteristic frequencies of the recorded units. Due to such lack

of data, we did not take tonotopic variations into account when we tuned the models. System-

atic recording, analysis and optimization will thus be needed for constructing frequency-spe-

cific LSO neuron models that can be used as a building block for future binaural network

simulations involving across-frequency integration.

Future directions

Possible extensions. In this study, we examined seven single-compartment LSO models

with varied levels of complexity (Table 2). Our list, however, is far from exhaustive. Between

the passive IF and HH-type models, for example, there would also be a number of nonlinear IF

models, including the quadratic IF [133,134], exponential IF [135] and generalized IF models

[136], which we expect to show similar response properties to our active IF model. In order to

make the model biologically more plausible, various types of ion channels that were found in

LSO and other auditory areas may be added to the Wang-Colburn model, such as persistent

and resurgent Na+ channels [137], a number of different low- and high-voltage-activated K+

channels [138], and hyperpolarization-activated cation channels [139,140].

The spike initiation site of a principal neuron in the gerbil MSO is located in the axon at a

distance of several tens of micrometers away from the cell body, where backpropagating, small

spikes were observed [141]. Considering the morphological similarities between LSO and

MSO neurons [13,132,142,143], remotely initiated action potentials could also explain non-

overshooting spikes observed in whole-cell recordings of gerbil LSO neurons [77]. In order to

simulate such backpropagating spikes, the model needs to have at least two compartments

(e.g., [83,107]). Segregation of the synaptic integration site from the spike initiation site may

also improve the biological plausibility of the model by reducing the (unrealistically) large

sodium conductance of the cell body in the Wang-Colburn models (see [66] for related discus-

sion with cortical neuron models). Furthermore, to incorporate the effects of dendritic integra-

tion of synaptic inputs mediated by active conductances, multicompartment models should be

considered, as was done with other auditory coincidence detector neurons (e.g., [99,144]).

Possible applications. In this study we focused on the steady-state responses of LSO mod-

els driven by Poissonian input spikes. By replacing the input stage of the modeling framework

with a more detailed model (e.g., [145,146]), responses to transient stimuli (such as click

trains) or naturalistic sounds (such as vocalization and speech) may be simulated [48]. In such

cases, the output stage (i.e., LSO model) might also have to be revised by incorporating an

adaptive threshold, so that the model could more faithfully compute the temporal information

of sounds [147,148]. These modifications would allow us to predict and examine how LSO

neurons may respond to more natural stimuli that simultaneously contain both ITD and ILD

information [36,37]. Further generalizability of the LSO models should be tested, when suffi-

cient empirical data become available in future physiological measurements with more com-

plex sound stimuli.

As discussed earlier, modeling enables us to simulate hypothetical situations that cannot be

easily reached with experimental approaches. Predicting the effects of pathological changes in

the auditory brainstem, for example, would be a subject of such modeling studies. Age-related

loss of inhibitory neurons is commonly found in various animal species (see [149,150] for

reviews); synaptic and membrane properties are also affected by aging [151]. Degraded locali-

zation performance for high-frequency sounds in aged animal models [152] and humans [153]

suggests that altered inhibitory inputs from the MNTB may affect the function of LSO. A
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modeling approach with a varied number and amplitude of synaptic inputs would reveal how

binaural phase- and level-tuning curves may be influenced by the loss of synaptic inputs, and

provide fundamental insights relating prior anatomical [154] and physiological [155,156] find-

ings in aged animals. For another example, potential effects of altered connectivity in a disease

model mouse on binaural coding [157] could also be simulated by incorporating observed

changes in the modeling framework.

Binaural information processing is critical for efficient acoustic communication both in

animals and in humans, especially in a noisy environment [11,54]. How to preserve and use

binaural cues in cochlear implant users has been actively investigated (see [158] for a review).

Combining electric hearing models with binaural neuron models [58,59] would be useful not

only to predict how bilateral implantation may or may not contribute to the improvement of

perceptual outcome, but also to highlight future directions towards the refinement of coding

technologies. Such an application would constitute an important step for a neuronal modeling

study, since it provides an opportunity to make ‘out-of-domain’ predictions beyond the initial

scope of the original modeling endeavor [122].

Conclusions

In this study, we examined and compared the biological grounds, simulated responses,

computational costs, and further expandability of seven neuronal models of the lateral superior

olive (LSO). Envisioned applications of these models may range from basic research for inves-

tigating biophysical mechanisms of binaural information processing, to biomedical and engi-

neering applications for better human and machine hearing. Based on our comparison results,

we obtained the following conclusions:

• A wide variety of single-compartment LSO models can be calibrated to fit known basic phys-

iological properties, including monaural AM coding, binaural phase and intensity coding.

• For applications where computational efficiency is required, the coincidence counting

model is most suitable.

• For mathematical analyses to study the input-output relationship of LSO, shot noise models

and/or the passive IF model are suggested.

• For a general purpose where no strong preference of models exists, the active IF model may

serve as a useful starting point because of its balance between simplicity and biological

plausibility.

• For simulations where biological details of ion channels kinetics, conductance densities, and

morphological expandability are required, the HH-type Wang-Colburn model should be

used.

• As more comprehensive empirical data sets become available in future experiments, the

models will have to be recalibrated and revalidated.

Materials and methods

Common input

Our LSO modeling framework consists of two stages, input and output. In the input stage,

sound stimuli are converted into simulated spike sequences of excitatory and inhibitory inputs

to the model LSO neuron. In the output stage, the model neuron ‘processes’ these inputs

according to its specific rules and produces output spikes. Since the main aim of this study was
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to compare various types of LSO neuron models, we fixed the input stage and evaluated the

output of each model neuron. In this section, we first define the common input stage to be

used with all LSO models. In next sections, evaluation criteria and detailed model descriptions

are provided.

The major input sources to the LSO neuron are spherical bushy cells in the AVCN and

principal neurons in the MNTB, which provide excitatory and inhibitory synaptic inputs,

respectively (Fig 1A). In our modeling framework, simulated excitatory and inhibitory spike

trains of these neurons were used as the common input to drive all LSO models. Other input

sources are not considered, although they might modify the neuronal activity of LSO neurons

[126]. We assumed that the activity of these AVCN and MNTB fibers (driven by modulated or

unmodulated tones) can be described as an inhomogeneous Poisson process [78,79] with a

time-varying intensity function λ(t). As in our previous study, we assumed that an LSO neuron

receives 20 excitatory input and 8 inhibitory inputs (see [40] for the justification of these num-

bers). The activities of these input fibers were assumed to be statistically independent from

each other.

Table 3 summarizes the equations we used for generating inputs to LSO models. Since the

spiking activity of bushy cells and MNTB neurons are generally similar to each other (e.g.,

[34]), we assumed the same frequency and level dependence for both types of neurons. For

AM tones, we considered the situation where the sound level was fixed and the modulation

frequency and relative phase of the envelope between the two ears were varied. The intensity

function λ(t) of input fibers are locked to the modulation frequency fm, with λ1(fm) being the

frequency-dependent average intensity and pk(x) being a 2π-periodic function. We used a

von-Mises distribution function [159] for pk(x), where the degree of phase-locking measured

as vector strength (VS) [160] was parameterized by the concentration factor k (Table 3). For

more detail about theoretical formulations, see [84]. As in our previous study [40], we adopted

monotonically decreasing functions (Fig 2A and 2B) to roughly mimic empirical frequency

dependence of intensity (λ1) and phase-locking (VS) of input fibers in gerbils [161] and cats

[34,162].

In our simulations, we first fixed the modulation frequency fm and calculated the corre-

sponding VS(fm); we then back-calculate the concentration factor k from the equation for

Table 3. Equations and parameters for common input.

Variable / Parameter Equation / Value

Periodic intensity function for inhomogeneous Poisson spike trains

driven by AM tones

λ(t) = 2πλ1(fm)pk(2πfmt)

Modulation-frequency dependent average intensity λ1(fm) = 180 − 0.03fm

von Mises distribution with concentration factor k pk(x) = exp(k cos(x)) / (2πI0(k))

Modified Bessel function of order n
InðkÞ ¼

1

2p

Z p

� p

expðk cosðxÞÞcosðnxÞdx

Relations between VS and concentration factor VSðkÞ ¼ I1ðkÞ
I0ðkÞ

Frequency-dependent phase-locking (fm<2000) VSðfmÞ ¼ 0:65�
ð1� expððfm � 2000Þ=500ÞÞ

ð1þexpððfm � 2000Þ=500ÞÞ

Spontaneous activity λ(t) = 30

Level dependent intensity function for Poisson spike trains driven by

non-modulating tones

λðSPLÞ ¼ 30þ 240

ð1þexpð� ðSPL� 20Þ=6:0ÞÞ

Number of excitatory input fibers Mex = 20

Number of inhibitory input fibers Minh = 8

fm is the modulation frequency in Hz. SPL is the sound level in dB. The unit for the intensities λ and λ1 is

spikes/s.

https://doi.org/10.1371/journal.pcbi.1005903.t003
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VS(k); and we finally obtained Poissonian spike trains with this time-varying intensity func-

tion pk(x). We assumed that all input fibers (either excitatory or inhibitory) are locked to the

same phase of the envelope when driven by AM tones. For ipsilateral monaural stimulation,

the spontaneous activity of MNTB neurons was simply modeled as homogeneous (time-inde-

pendent) Poisson trains without phase-locking.

To simulate ILD coding in the LSO (in response to non-modulated tones), we adopted a

sigmoidal level-dependent intensity function λ(SPL) of input fibers (Table 3; Fig 2C). This

equation roughly approximates known physiological recording results, which showed rela-

tively large variations across species (cat VCN: [34,163]; monkey VCN: [164]; gerbil VCN:

[165]; cat MNTB: [166,167]; rodent MNTB: [168]). We assumed that spiking activities of input

fibers were not phase-locked for non-modulating tones, and hence the intensity function λ of

the Poisson process used for ILD coding was intensity-dependent but time-independent.

Parameter selection: Overview

The main goal of this study was to compare different types of LSO models with similar monau-

ral and binaural tuning properties. Based on previous recording results (e.g., Fig 1), we deter-

mined a set of reference output, to which the parameters of our LSO models were tuned. For

each model, tuning curves for monaural AM frequency coding (Fig 3A), binaural AM phase

coding (Fig 3B), and binaural intensity coding (Fig 3C) were examined (see following subsec-

tions for their detailed descriptions). For each of these tuning curves, we set a ‘targeted range’

(bold numbers in Fig 3) and an ‘accepted range’ (non-bold numbers in Fig 3) of spike rates.

This means that we have nine criteria in total for each optimized model to satisfy (Table 1).

The performance of a model was measured by the number of targeted/accepted values

achieved. We did not use the detailed shapes of simulated tuning curves as a primary measure

of the performance, since no systematic data on corresponding curve shapes were available

from previous experimental studies. For each parameter set, we calculated the average spike

rates of the model neuron over 40 seconds.

It should be noted that multiple parameter combinations sometimes yielded virtually iden-

tical results, with the same number of targeted values attained (see Discussion). In such cases,

we selected parameters that were closer to the corresponding empirical mean or median (if

available), and had shorter digits (e.g., 1.2 rather than 1.2345). Care was also taken to ensure

that a small variation (typically a few percent) in a single parameter value did not lead to a

change in the hit/miss ratio of the target ranges, by avoiding parameter values with which sim-

ulated spike rates fell onto the ‘borderline’ of the targeted (or accepted) ranges. This means

that the set of model parameters we used may not be the ‘only best’, but should rather be

regarded as one of ‘reasonably good’ combinations of parameters that satisfy our target criteria

(see also Discussion).

Output measures

Monaural AM frequency coding. An LSO neuron changes its spike rate according to the

modulation frequency fm of ipsilateral AM tones (shown as an ‘AM-tuning curve’ in Fig 1B).

This rate-fm relation is also called the ‘rate modulation transfer function’ (rate-MTF)

[169,170]. We calculated the rate-MTF of LSO models at modulation frequencies between 50

and 1200 Hz. Monaural AM coding can additionally be examined by the phase-locked output

[34]. The ‘modulation gain’ was defined by 20log10(2R), where R is the VS of the LSO output

spikes at the modulation frequency fm. This gain-fm relation is also called the ‘synchrony mod-

ulation transfer function’ (synch-MTF) [170]. Since only insufficient empirical information
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is available, we did not use the synch-MTF for optimizing the model parameters, but used it as

one of the output measures to characterize the models.

Binaural AM phase coding. When simulated binaurally, LSO neurons change their spike

rates according to the interaural time (or phase) difference of the envelopes of the AM tones

(shown as a ‘phase-tuning curve’ in Fig 1C). The interaural time difference is modified and

compensated by several transduction factors, resulting in the time difference of bilateral synap-

tic input at each LSO neuron (e.g., [11,171]). We simulated this time difference at the LSO syn-

apse by changing the relative phase of simulated synaptic inputs. As stated above, excitatory

inputs were assumed to be locked to one particular phase of the envelope of the stimulus AM

tone, while inhibitory inputs are locked to another phase. We varied the difference of these

locking phases, and calculated the output spike rates of the models, first at the modulation fre-

quency of 300 Hz (for parameter fitting) and then at 150 and 450 Hz (for further characteriza-

tion). We defined a positive phase difference as inhibitory inputs preceding excitatory inputs

as in previous experimental studies [36,37].

Binaural intensity coding. Because of the excitatory-inhibitory interaction, LSO neurons

are generally sensitive to ILDs (shown as an ‘ILD-tuning curve’ in Fig 1D). Note that, by con-

vention, the ILD is defined as the sound level at the contralateral ear minus that at the ipsilat-

eral ear: i.e., a negative ILD means that the ipsilateral sound is louder. To simulate this ILD

coding, we changed the binaural stimulus sound levels (of non-modulating sound) which

drive excitatory and inhibitory inputs to the LSO model (Fig 2C). For parameter fitting, the

ipsilateral level was first fixed at +35 dB and the contralateral level was varied between -10 and

+50 dB, resulting in an ILD range between -45 and +15 dB. We then calculated the ILD-tuning

curves with ipsilateral levels of +25, +30, +40, and +45 dB for further characterization of the

model.

Additional measures for conductance-based models

For conductance-based models (integrate-and-fire models and Wang-Colburn models: see

subsequent sections for detailed descriptions), we used the following measures to tune the

model parameters and evaluate their resulting membrane properties.

Membrane impedance. Input impedance of the model membrane was calculated by

applying sinusoidal currents with a fixed amplitude of Iapp = 10 pA and varied frequencies of

0.01–40 kHz. The membrane potential was clamped at -60 mV by an additional constant DC

current. At each frequency fapp, the maximum (Vmax) and minimum (Vmin) values of the

steady state response (typically at>100 ms after the current onset) of the oscillating membrane

potential were measured and the impedance was obtained as R(fapp) = (Vmax-Vmin)/(2Iapp). In

previous in vitro measurements in rats and guinea pigs [48], most LSO neurons had low-pass

impedance profiles, while some other neurons that are found in the lateral (low-frequency)

edges of the LSO showed weakly band-pass properties.

Current-voltage relationship. Current-voltage relationship (I-V curve) of the model

membrane was obtained by applying step currents with varied amplitudes Iapp between -0.5

and 1.5 nA. The membrane potential was clamped at Vclamp = -60 mV by an additional con-

stant DC current. The spike generator (threshold-crossing detector) of the IF models and

sodium channels of the Wang-Colburn models were disabled to avoid spiking responses. For

each step current, the steady state response Vapp (typically at>100 ms after the current onset)

of the membrane potential was measured to plot an I-V curve. The DC input resistance of the

membrane was calculated as RDC = (Vapp-Vclamp)/Iapp. with Iapp = +10 pA.

In previous in vitro recordings, LSO neurons showed outward rectification [77,85]; i.e., the

membrane resistance was lower at holding voltages above the resting potential than at or
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below. In the passive and active IF models and the adjusted Wang-Colburn model (see follow-

ing sections for the definitions), we tuned the leak and other conductances so that the model

membrane had an input resistance of 37–40 MO at the holding potential of -60 mV. This

range corresponds to the measured values of 42 ± 21 MO in gerbils [77] and 15–53 MO in

mice [88].

Step-current response. Step-current responses of the model membrane were obtained by

applying rectangular currents with a fixed duration of 30 ms and varied amplitudes of 0 to 1

nA. The spike response was characterized as ‘phasic’ when the membrane stopped spiking

before the offset of the step current, and as ‘tonic’ when the spiking activity lasted until the end

of the step current.

Previous slice recordings in mice [88] and gerbils [77] reported that LSO neurons show

tonic spiking with step currents of a few hundreds of pA; LSO neurons in rats showed a combi-

nation of tonic and phasic spiking responses depending on the size of the injected current

[85]. This makes a contrast to other well-known auditory coincidence detectors of octopus

cells in the posteroventral cochlear nucleus and principal neurons in the MSO, which have a

large amount of low-threshold conductance and thus typically show only phasic spiking in

response to step current injections [82].

LSO models: Overview

In the following subsections, we provide the detailed descriptions of LSO models used in this

study. All of them are single compartment models, which lack morphological structures (such

as axons or dendrites) and thus receive synaptic inputs directly at the cell body (soma). Since

the models have no internal noise sources, the model responses are deterministic; i.e., the

model produces identical output for the fixed input. Trial-to-trial variability of the model out-

put is solely due to the stochastic nature of simulated inputs.

The models can be categorized into either ‘shot-noise models’, in which synaptic inputs

are directly reflected to the abstracted response of the model (virtual membrane potential), or

‘conductance-based models’, in which synaptic inputs and other ionic currents are described

as temporally-varying conductances that eventually lead to the change in the modeled mem-

brane potential (Fig 11A). The conductance-based models are further subdivided into two:

‘integrate-and-fire (IF) models’, in which spike generation process is abstracted as the detec-

tion of threshold crossing and succeeding reset of the membrane potential, and ‘Hodgkin-

Huxley (HH)-type models’, in which sub- and suprathreshold responses of the membrane are

fully described as the combined nonlinear dynamics of ionic conductances (Na+, K+, etc.). Of

the seven models described below, the coincidence counting model, exponential Stein model,

and alpha Stein model are shot-noise models; the passive and active IF models are (conduc-

tance-based) IF models; the original and adjusted Wang-Colburn models are HH-type

models.

Coincidence counting model

Model structure. The coincidence counting model of LSO is an extension of spike-count-

based model of auditory coincidence detectors [172,173], and was fully described in [40]. In

brief, the model compares the weighted numbers of excitatory and inhibitory inputs in a pre-

set time window and generates an action potential when the total number reaches the thresh-

old. More particularly, a coincidence window of size Wex (Fig 4A, vertical gray band) slides

along the time axis, and the number of incoming excitatory synaptic inputs (Fig 4A, blue bars)

in this window is counted. If the number of input spikes in the window reached the pre-set

threshold θ (Fig 4A, black bar), an output spike is generated (Fig 4A, green bar). If multiple
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threshold crossings happen within the pre-set refractory period Tref, then only the first one

leads to an output spike and the others are discarded (Fig 4A, small arrow). When the model

receives an inhibitory input, the threshold is elevated by a fixed amplitude H for the time

length of Winh (Fig 4A, dotted vertical rectangle). In other words, each inhibitory input sub-

tracts the coincidence counts by H during the inhibitory time window of Winh. Note that the

threshold θ is always an integer (i.e., non-integer values of θ do not make sense), as the model

simply counts the number of synchronized inputs in the coincidence window.

Parameter selection and justification. The coincidence counting model has five free

parameters (Table 4). The values we used were the same as the default values used in our previ-

ous study [40], which examined how each parameter affects the output of the model. In previ-

ous physiological experiments, measured refractory periods Tref were 1.1–2.8 ms in cats [124];

measured length of inhibition window Winh were 0.8–2.0 ms (rats) [174]; and measured

thresholds θ were 9.6 ± 2.8 in gerbils [77]. In young gerbils [77], measured membrane time

constants were 1.1 ± 0.4 ms and minimum durations of excitatory synaptic inputs were

1.5 ± 0.8 ms, both of which are expected to limit the maximum width Wex of the coincidence

window. Furthermore, based on the measured durations of excitatory and inhibitory inputs in

gerbils [77], we assumed that the inhibition window Winh was twice as long as the coincidence

window Wex. Based on these experimental constraints, we determined the set of parameter val-

ues (Table 4) to satisfy the targeted criteria (Table 1) of output rates driven by simulated mon-

aural and binaural inputs (Fig 4C–4E). Since there was no measurement available that showed

how many excitatory inputs are cancelled by an inhibitory input, we choose the value of the

inhibition amplitude H such that the binaural phase-tuning curve yielded a sufficient modula-

tion depth (see Figs 11 and 12 in [40] for simulation results).

Exponential Stein model

Model structure. The exponential Stein model was adopted by Colburn and Moss [47] to

study the excitatory-inhibitory interaction of LSO neurons (see [54] for a review of relevant

earlier studies). In this model, each input gives rise to an exponentially decaying response of

the virtual membrane potential (Table 5). The response is positive for excitatory inputs and

negative for inhibitory inputs (Fig 5A); excitatory and inhibitory inputs generally have differ-

ent amplitudes and decay time constants. When the potential reaches or exceeds the pre-set

threshold θ, an output spike is generated. After each spike generation, the potential is reset and

fixed to zero for the pre-set refractory period of Tref. Respecting the pioneering work by Stein

[75,76], this type of model is called the ‘Stein model’ [109]. The term ‘exponential’ was added

to clarify that each synaptic input is converted into an exponential function. This model was

also called the ‘shot-noise model’ (e.g., [54]), but we leave this term for a more general category

including the coincidence counting model (Fig 11A).

Table 4. Parameters for the coincidence counting model.

Parameter Value

Refractory period Tref 1.6 ms

Coincidence threshold θ 8 inputs

Coincidence window Wex 0.8 ms

Inhibition amplitude H 2 inputs

Inhibition window Winh 1.6 ms

See text and [40] for justifications of the parameters and detailed examination of their effects.

https://doi.org/10.1371/journal.pcbi.1005903.t004
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Parameter selection and justification. The exponential Stein model has five free parame-

ters (Table 5). As in other models of this study, we used the refractory period Tref = 1.6 ms,

which was comparable to the measured values of 1.1–2.8 ms in cats [124]. Other parameters

were selected to fit the targeted monaural and binaural tuning curves. In our parameter selec-

tion, we initially explored the meshed four dimensional parameter space of θ (range: 6.8–12.4

inputs; step: 0.1), τex (range: 0.5–2.0 ms; step 0.1), H (range: 1.0–3.0 inputs; step 0.1), and τinh

(range: 1.0–3.0 times τex; step 0.2). The range of the model threshold θ was determined from

the mean ± SD of measured threshold values in gerbils [77], whereas other parameter ranges

were determined rather arbitrarily since there were no directly relevant data available for expo-

nentially decaying synaptic inputs. In this parameter space, however, we did not find a set of

parameters that satisfied all the nine accepted output criteria, primarily due to the low excit-

ability of the model. Therefore we then expanded the range of the threshold as 5.4–13.8 inputs,

which corresponded to the mean ± 1.5SD of measured values [77], and found parameter com-

binations (Table 5) that reproduced empirical monaural and binaural tuning curves (Fig 5C–

5E). Although the shapes of inputs were considerably different between the model (exponen-

tial function) and in vitro slice recording data, the time scales of the modeled inputs (shown in

Fig 5B) were roughly comparable to measured data (duration of excitatory inputs: 1.5–4.2 ms;

duration of inhibitory inputs: 3.2–8.1 ms: [77]).

Alpha Stein model

Model structure. The alpha Stein model is a direct modification of the exponential Stein

model by replacing the exponential function with an alpha function (Table 6, Fig 6A), which is

Table 5. Equations and parameters for the exponential Stein model.

Variable Equation

Unitary excitatory input Jex(t) = exp(−t/τex)(t� 0), = 0(t < 0)

Unitary inhibitory input Jinh(t) = −H exp(−t/τinh)(t� 0), = 0(t < 0)

Parameter Value

Refractory period Tref 1.6 ms

Threshold θ 5.5 inputs

Excitatory input time constant τex 0.70 ms

Inhibition amplitude H 1.8 inputs

Inhibitory input time constant τinh 0.98 ms

Note that the excitation amplitude was fixed to 1.

https://doi.org/10.1371/journal.pcbi.1005903.t005

Table 6. Equations and parameters for the alpha Stein model.

Variable Equation

Unitary excitatory input Jex(t) = (t/τex) exp(1 − t/τex) (t� 0), = 0(t < 0)

Unitary inhibitory input Jinh(t) = −H(t/τinh) exp(1 − t/τinh) (t� 0), = 0 (t < 0)

Parameter Value

Refractory period Tref 1.6 ms

Threshold θ 7.3 inputs

Excitatory input time constant τex 0.45 ms

Inhibition amplitude H 1.7 inputs

Inhibitory input time constant τinh 0.63 ms

Note that the excitation amplitude was fixed to 1.

https://doi.org/10.1371/journal.pcbi.1005903.t006
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often used for modeling synaptic inputs [78–80]. In contrast to the exponential function that

has a peak at the onset (i.e., at time zero) irrespectively to its decay time constant, the alpha

function with a time constant τ reaches its peak at time τ. The model synaptic inputs (Fig 6B)

showed similar shapes to empirical results [77,175]. Thus this modification makes the model

biologically slightly more realistic at some additional computational costs (Tables 1 and 2). For

other operations (such as the spike generation and refractoriness) of the alpha Stein model, the

same rules apply as the exponential Stein model.

Parameter selection and justification. The alpha Stein model has five free parameters

(Table 6). As in other models, the refractory period Tref was fixed to 1.6 ms. We then deter-

mined the excitatory and inhibitory time constants (τex, τinh) of the modeled synaptic inputs

so that their time courses became similar to empirical data [77] and to simulated synaptic

inputs in more detailed conductance-based models (compare Figs 6B and 7E). Finally we

selected the threshold θ (range: 6.8–12.4 inputs; step: 0.1) and inhibitory amplitude H (range:

1.0–3.0 inputs; step 0.1) from the two dimensional parameter space, so that the model output

satisfied the accepted output measures of monaural and binaural tunings (Fig 6C–6E).

Synaptic inputs in conductance-based models

Model description. In the conductance-based (IF and Wang-Colburn) models presented

below, alpha functions were commonly used to simulate synaptic conductances. Each synaptic

input was converted into an alpha function (αex, αinh), summed into the total conductance

(gex, gin), and then multiplied by the driving voltage to yield the resulting synaptic current

(Iex, Iinh) (Table 7). As noted before, modeled synaptic inputs are assumed to be injected

directly into the soma.

Parameter justification. The modeled excitatory Eex and inhibitory Einh reversal poten-

tials were determined, respectively, from the standard driving voltage of AMPA receptors [78]

Table 7. Equations and parameters for excitatory and inhibitory synaptic inputs commonly used with

conductance-based models.

Variable Equation

Unitary excitatory synaptic conductance αex(t) = Aex(t/τex) exp(1 − t/τex) (t� 0), = 0 (t < 0)

Total excitatory synaptic conductance
gexðtÞ ¼

XMex

m¼1

XI
m
ex

i¼1

aexðt � t
m
i Þ

Excitatory synaptic current Iex(t) = gex(t) (Eex-V)

Unitary inhibitory synaptic conductance αinh(t) = Ainh(t/τinh) exp(1 − t/τinh) (t� 0), = 0 (t < 0)

Total inhibitory synaptic conductance

ginhðtÞ ¼
XMinh

m¼1

XI
m
inh

i¼1

ainhðt � t
m
i Þ

Inhibitory synaptic current Iinh(t) = ginh(t) (Einh-V)

Parameter Value

Peak amplitude of excitatory input conductance Aex 3.5 nS

Peak amplitude of inhibitory input conductance Ainh 12 nS

Time constant of excitatory input conductance τex 0.16 ms

Time constant of inhibitory input conductance τinh 0.32 ms

Reversal potential for excitatory inputs Eex 0 mV

Reversal potential for inhibitory inputs Einh -75 mV

Iex
m (Iinh

m) is the number of spikes of the m-th excitatory (inhibitory) fiber, tmi is the timing of the i-th spike of

the m-th fiber, and V denotes the model membrane potential. Note that the original Wang-Colburn model

used different reversal potentials for synaptic inputs (see corresponding sections).

https://doi.org/10.1371/journal.pcbi.1005903.t007
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and from the measurement of inhibitory postsynaptic potentials in gerbil LSO [77]. To cali-

brate the amplitudes and time constants, we used a simple RC membrane that has similar sub-

threshold electrical properties to gerbil LSO neurons [77]. The equation and parameters of the

RC model was the same as the passive IF model (Table 8) but without any spiking thresholds.

With the parameters shown in Table 7, simulated unitary amplitudes of excitatory and inhibi-

tory postsynaptic potentials were about 2.3 mV and 2.7 mV, respectively, which were both

within the measured ranges of 1.5–8.7 mV and 1.6–8.3 ms [77]. See Fig 7E for the shapes of

modeled synaptic inputs.

Sanes [77] also measured the duration of synaptic inputs, which was defined as the time

length "from the rising latency to the time at which the signal returned to the baseline noise

level". Since our model lacks intrinsic noise sources, we calculated the difference of the two

time points where the simulated unitary postsynaptic potential crossed the 5% line of the peak

amplitude, and used it as a rough estimation of the duration. With the model parameters in

Table 7, the simulated durations of excitatory and inhibitory synaptic inputs were about 3.5

ms and 4.1 ms, respectively. These values corresponded to the measured durations of 1.5–4.2

ms (excitatory) and 3.2–8.1 ms (inhibitory inputs) [77]. It should be noted that these measured

amplitudes and durations of synaptic potentials showed considerable variations across LSO

neurons, suggesting that the model parameter values we chose may not be optimal. In our pre-

liminary simulations, however, we found that small variations in these input parameters (up to

a few tens of percents) did not greatly alter the output of the LSO model, if other parameters

were re-adjusted with the new input. Nevertheless, we also note that the duration of inhibitory

synaptic potential needed to be around 3–5 ms or less, to fully account for the binaural phase-

tuning curves.

Passive IF model

Model structure. The passive integrate-and-fire (IF) model is the same as the standard

leaky IF model used commonly in theoretical neuroscience [78–80]. We use the term ‘passive’

to make a contrast to the active IF model described below. The dynamics of the subthreshold

membrane response is formulated as a linear (passive) RC circuit (Table 8, Fig 7A) with a low-

pass impedance profile (Fig 7B) and a linear I-V relationship (Fig 7C). When the membrane

potential V(t) reaches or exceeds the pre-set threshold Vθ, an output spike is generated. After

each spike generation, the membrane potential is fixed to the reset potential Vreset for a refrac-

tory period of Tref. It should be noted that, despite its name ‘integrate-and-fire’, an IF model

Table 8. Equations and parameters for the passive IF model.

Variable Equation

Membrane potential V (subthreshold dynamics) C d
dtVðtÞ ¼ IL þ Iex þ Iinh þ Iext

Potential reset after spiking V(t+)! Vreset when V(t-)� Vθ

Leak current IL = gL (EL-V)

External current Iext = 0 (default)

Parameter Value

Membrane capacitance C 24 pF

Leak conductance gL 26.4 nS

Leak reversal potential EL -60 mV

Reset potential Vreset -60 mV

Threshold Vθ -45.3 mV

Refractory period Tref 1.6 ms

https://doi.org/10.1371/journal.pcbi.1005903.t008
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with a short membrane time constant behaves rather like a coincidence detector than as an

integrator of synaptic inputs [176].

Parameter selection and justification. The values of the six free parameters (Table 8) of

the passive IF model were selected with a two-step procedure. First, experimental data were

used to tune subthreshold membrane properties. As stated in the subsection titled "Current-

voltage relationship", we determined the leak conductance gL = 26.4 nS to obtain an input

resistance of Rmemb = 1/gL = 37.9 MO. We then fixed the membrane capacitance C = 24 pF,

based on previous physiological data [86], to obtain a membrane time constant of τmemb =

RmembC = 0.91 ms, which was comparable to the measured time constant of 1.1 ± 0.4 ms in

gerbil slices [77]. The reversal potential EL of the leak current was set at -60 mV, based on

empirical resting potentials [77,85,86]. As the second step of parameter fitting, we searched for

the value of the threshold Vθ, so that the model output satisfied the criteria for monaural and

binaural tunings (Table 1, Fig 7F–7H). The reset potential Vreset was the same as the resting

potential EL. The length of the refractory period Tref was the same as the shot-noise models,

comparable to the measured value in cats [124].

Active IF model

Model structure. The active integrate-and-fire model has a KLVA conductance (Fig 8A),

which is the major source of the subthreshold nonlinearity of LSO neurons [86]. The term

‘active’ indicates the existence of voltage-dependent subthreshold currents. The model com-

prises two differential equations that describe the dynamics of the membrane potential V(t)

and the KLVA activation variable d(t) (Table 9). Since the KLVA conductance increases at

depolarized membrane potentials, the I-V curve shows an outward rectification (Fig 8C). As in

the passive IF model, an output spike is initiated when the membrane potential reaches or

Table 9. Equations and parameters for the active IF model.

Variable Equation

Membrane potential V (subthreshold dynamics) C d
dtVðtÞ ¼ IL þ IKL þ Iex þ Iinh þ Ispike þ Iext

Spike initiation tsp ≔ t when V(t)� Vθ

Leak current IL = gL (EL-V)

KLVA current IKL = gKL d(V) (EK-V)

Spike-associated current (t�0) Ispike(t) = 24 exp(−t/0.15) − 12 exp(−t/0.30)

External current Iext = 0 (default)

KLVA activation variable d(t) d
dtdðtÞ ¼

d1ðVðtÞÞ� dðtÞ
td ðVðtÞÞ

Steady state for KLVA activation d1ðVÞ ¼
ad ðVÞ

ad ðVÞþbd ðVÞ

Time constant for KLVA activation tdðVÞ ¼
1

ad ðVÞþbd ðVÞ

Activation rate of KLVA αd(V) = 0.5 exp(+(V + 50)/16)

Deactivation rate of KLVA βd(V) = 0.5 exp(−(V + 50)/16)

Parameter Value

Membrane capacitance C 24 pF

Leak conductance gL 14.4 nS

KLVA conductance gKL 21.6 nS

Leak reversal potential EL -56 mV

Potassium reversal potential EK -75 mV

Threshold Vθ -45.8 mV

Refractory period Tref 1.6 ms

Units: t is in ms, V in mV, Ispike in nA, and αd and βd in 1/ms.

https://doi.org/10.1371/journal.pcbi.1005903.t009
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exceeds the pre-set threshold Vθ. After each spike (at time tsp), the model is in a refractory

period of length Tref, during which the model generates no more spikes. In addition, a spike-

associated current Ispike(t-tsp) is injected to create a spike-like trajectory in the membrane

potential to make the simulated responses somewhat more realistic than a simple potential

reset [68].

Parameter selection and justification. The activation αd(V) and deactivation βd(V) rates

determine the steady state activation d1(V) and the time constant τd(V) of the KLVA conduc-

tance (Table 9). Based on previous recordings from auditory neurons in various animals

(mice: [177]; rats: [178]; guinea pigs: [179,180]; chickens: [181]), we defined the activation and

deactivation rates using simple (and symmetric) exponential functions. As no data were avail-

able for the value of potassium reversal potential EK of LSO neurons in vivo, we rather arbi-

trarily set it as -75 mV, which nevertheless corresponded to the values used in previous

modeling studies of auditory neurons (e.g., -70 mV: [87,182]; -80 mV: [45]; -90 mV: [183]).

The values of the leak gL and maximum KLVA conductances gKL were determined to repro-

duce empirical I-V curves [77], with a resulting input resistance of ~38.2 MO at the holding

potential of -60 mV. The leak reversal potential EL was determined so that the resulting resting

membrane potential was between -61 and -60 mV.

After all the parameters for the subthreshold response were fixed, we selected the value of

the threshold Vθ to attain the targeted rates of monaural and binaural tuning curves (Table 1,

Fig 8F–8H). The shape of the spike-associated current Ispike(t) was determined to mimic

empirical spike shapes [77]. We used a sum of two exponential curves for Ispike(t) (Table 9),

because an exponential function enables exact calculations at discrete time steps [184]. The

first and second terms of the spike-associated current are responsible for the depolarization

and repolarization of the membrane potential, respectively. The length of the refractory period

Tref was the same as in the other models with thresholds.

Original Wang-Colburn model

Model structure. Wang and Colburn [53] employed a conductance-based model to study

the biophysical mechanisms of monaural frequency tuning of LSO neurons. Here we use the

term ‘original’ to indicate that the model equations and parameters were unchanged from

their original publication [53], except for the sodium reversal potential and the KLVA conduc-

tance (see below). The Wang-Colburn model has leak, KLVA, high-threshold-activated potas-

sium (KHVA), and fast sodium (Na) conductances (Fig 9A). The kinetic equations for these

conductances (Table 10) were directly taken from the Rothman-Manis model of guinea pigs’

VCN neurons [87]. The Wang-Colburn model is a variation of the HH model, and hence its

spike threshold is not explicitly represented as a parameter but determined by a nonlinear

interaction of ionic conductances. In our simulations, we counted a spike when the membrane

potential depolarized above -30 mV and successively repolarized below -45 mV.

Adopted parameters. Wang and Colburn [53] tuned the parameters of their LSO model,

focusing primarily on the monaural AM frequency coding (Fig 1B). The value of the maxi-

mum KLVA conductance gKL was presented as "varied" in their report [53]. We adopted a

value of gKL = 85 nS, which was one of the values that had been reported to approximate

empirical monaural tuning curves (Fig 9H). The sodium reversal potential ENa was revised

from 0 mV to +50 mV, because we found that the model with the old value failed to reproduce

their reported results and later confirmed that the new value was indeed correct (Le Wang,

personal communication, 2017). All other parameters shown in Table 11 are the same as the

published values [53]. No further optimizations were performed with the original Wang-Col-

burn model.
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Adjusted Wang-Colburn model

Model structure. Since the original Wang-Colburn model failed to reproduce binaural

tuning curves (Fig 9F and 9G), we revised the model by shifting the voltage dependence of the

channel kinetics and re-tuning the parameters. The term ‘adjusted’ indicates the revision from

the original model. The model equations are the same as the original Wang-Colburn model

(and thus the same as the Rothman-Manis model), except that an additional term Vshift was

introduced to simultaneously adjust the voltage dependence of the sodium and potassium

kinetics (Table 10). In our preliminary simulations, we found that, in the original Wang-Col-

burn model, activation of the large KLVA conductance in combination with the inactivation

of the Na conductance prohibited repetitive spiking, resulting in low output rates (Fig 9J). In

the adjusted model, we shifted the tuning curves of the ionic conductances by Vshift = +5 mV

to reduce these effects. As noted above, we counted a spike when the simulated membrane

potential exceeded -30 mV followed by an after-spike repolarization below -45 mV.

Parameter selection and justification. The sodium reversal potential ENa and the tem-

perature factor Q10 were the same as the original Wang-Colburn model (Table 12). For the

membrane capacitance C and the potassium reversal potential EK, we adopted the

Table 10. Equations for the original and adjusted Wang-Colburn models.

Variable Equation

Membrane potential V (subthreshold dynamics) C d
dt
VðtÞ ¼ IL þ IKL þ IKH þ INa þ Iex þ Iinh þ Iext

Leak current IL = gL (EL-V)

KLVA current IKL = gKL w4z (EK-V)

KHVA current IKH = gKH (0.85 n2 + 0.15 p) (EK-V)

Fast Na current INa = gNa m3h (ENa-V)

External current Iext = 0 (default)

Kinetic equations for channel variables d
dt xðtÞ ¼ �

x1ðVðtÞÞ� xðtÞ
tx ðVðtÞÞ

(x = w, z, n, p, m, or h)

Steady state for KLVA activation w w1ðVÞ ¼
1

1þexpð� ðV � Vshiftþ48Þ=6Þ

� �1=4

Time constant for KLVA activation w tzðVÞ ¼ 1:5þ 100

6expðþðV � Vshiftþ60Þ=6Þþ16expð� ðV � Vshiftþ60Þ=45Þ

Steady state for KLVA inactivation z z1ðVÞ ¼ 0:5þ 0:5

1þexpðþðV � Vshiftþ71Þ=10Þ

Time constant for KLVA inactivation z tzðVÞ ¼ 50þ 1000

expðþðV � Vshiftþ60Þ=20Þþexpð� ðV � Vshiftþ60Þ=8Þ

Steady state for KHVA fast activation n n1ðVÞ ¼
1

1þexpð� ðV � Vshiftþ15Þ=5Þ

� �1=2

Time constant for KHVA fast activation n tnðVÞ ¼ 0:7þ 100

11expðþðV � Vshiftþ60Þ=24Þþ21expð� ðV � Vshiftþ60Þ=23Þ

Steady state for KHVA slow activation p p1ðVÞ ¼
1

1þexpð� ðV � Vshiftþ23Þ=6Þ

Time constant for KHVA slow activation p tpðVÞ ¼ 5þ 100

4expðþðV � Vshiftþ60Þ=32Þþ5expð� ðV � Vshiftþ60Þ=22Þ

Steady state for Na activation m m1ðVÞ ¼
1

1þexpð� ðV � Vshiftþ38Þ=7Þ

Time constant for Na activation m tmðVÞ ¼ 0:04þ 10

5expðþðV � Vshiftþ60Þ=18Þþ36expð� ðV � Vshiftþ60Þ=25Þ

Steady state for Na inactivation h h1ðVÞ ¼
1

1þexpðþðV � Vshiftþ65Þ=6Þ

Time constant for Na inactivation h thðVÞ ¼ 0:6þ 100

7expðþðV � Vshiftþ60Þ=11Þþ10expð� ðV � Vshiftþ60Þ=25Þ

Voltage shift Vshift = 0 mV (original Wang-Colburn model)

Vshift = +5 mV (adjusted Wang-Colburn model)

Temperature correction � ¼ Q
ðTbody � 22Þ=10

10

The kinetic equations are common for both models (from Wang and Colburn [53]; based on Rothman and

Manis [87]), whereas the voltage shift was zero for the original model and +5 mV for the adjusted model. The

temperature correction was common for all ionic conductances.

https://doi.org/10.1371/journal.pcbi.1005903.t010
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corresponding values from the active IF model (Table 9). The synaptic reversal potentials Eex

and Ein were the same as the IF models (Table 7). The leak gL and maximum KLVA conduc-

tances gKL were determined to mimic empirical I-V curves [77] with a resulting input resis-

tance of ~38.4 MO at -60 mV. Note that the outward rectification observed at or above -40 mV

(Fig 10C) was also due to the large KHVA conductance. As in the active IF model, the leak

reversal potential EL was adjusted to obtain a resting membrane potential between -61 and -60

mV.

After fixing the above parameters, we selected the values of the sodium gNa and KHVA con-

ductances gKH to satisfy our rate criteria of monaural and binaural tuning curves (Table 1, Fig

10F–10H). The enormous value of the Na conductance (compared to other conductances) was

necessary to achieve a sufficient excitability of the model neuron, while the large value of KHVA

conductance was required to ensure the repolarization after each action potential generation.

Computational efficiency

We used the explicit (forward) Euler method for the numerical integration of the model equa-

tions. All simulations were performed with a time step 2 μs, although IF and shot-noise models

Table 12. Parameters for the adjusted Wang-Colburn model.

Parameter Value

Membrane capacitance C 24 pF

Leak conductance gL 24 nS

KLVA conductance gKL 15 nS

KHVA conductance gKH 440 nS

Na conductance gNa 4400 nS

Leak reversal potential EL -60 mV

Potassium reversal potential EK -75 mV

Sodium reversal potential ENa +50 mV

Temperature factor Q10 3.0

Body temperature Tbody 37˚C

The temperature factor Q10 was common for all ion channels.

https://doi.org/10.1371/journal.pcbi.1005903.t012

Table 11. Parameters for the original Wang-Colburn model.

Parameter Value

Membrane capacitance C 31.4 pF

Leak conductance gL 31.4 nS

KLVA conductance gKL 85.0 nS

KHVA conductance gKH 1200 nS

Na conductance gNa 8000 nS

Leak reversal potential EL -65 mV

Potassium reversal potential EK -70 mV

Sodium reversal potential ENa +50 mV

Reversal potential for excitatory synaptic Eex 0 mV

Reversal potential for inhibitory synaptic input Einh -70 mV

Temperature factor Q10 3.0

Body temperature Tbody 37˚C

The temperature factor Q10 was common for all ion channels.

https://doi.org/10.1371/journal.pcbi.1005903.t011
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generally allowed for longer time steps for stable and accurate calculations (see, e.g., [68]). In

order to evaluate the computational cost of each model, we calculated the average integration

time of twenty-five traces, each of which was 40-second long (i.e., 1000 seconds in total). To

yield relative computational costs, we normalized the average integration time of each model

by that of the coincidence counting model which required the shortest computation time.

Numerical algorithms were implemented in D [185] and simulations were carried out on a

desktop computer (Dell Precision T1700) with 64 bit Windows 7 Professional Operating Sys-

tem, Intel Xeon CPU E3-1270 v3 (4 core, 3.5 GHz) and a 16 GB memory. For readers’ conve-

nience, Matlab implementation of the models is publicly available online at https://github.

com/pinkbox-models.
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