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ABSTRACT

Summary: We present Mutascope, a sequencing analysis pipeline

specifically developed for the identification of somatic variants present

at low-allelic fraction from high-throughput sequencing of amplicons

from matched tumor-normal specimen. Using datasets reproducing

tumor genetic heterogeneity, we demonstrate that Mutascope has a

higher sensitivity and generates fewer false-positive calls than tools

designed for shotgun sequencing or diploid genomes.

Availability: Freely available on the web at http://sourceforge.net/pro-

jects/mutascope/.

Contact: oharismendy@ucsd.edu

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

The accurate detection of somatic mutations in tumors is critical for

precise diagnostic and selection of targeted therapies (Boyd, 2013),

but the low-allelic fraction frequently encountered in heterogeneous

or poor cellularity clinical specimens renders this task challenging. In

current clinical assays, amplicons covering the exons of 10–100

cancer genes are amplified via polymerase chain reaction-based or

analogous approaches and sequenced at high depth to identify mu-

tations present in55% of a DNA sample (Harismendy et al., 2011).

Despite high coverage depth, the error rate resulting from systematic

sequencing bias (Harismendy et al., 2009), can hinder the detection

of mutations. Although experimental (Hiatt et al., 2013) or analytical

(McKenna et al., 2010) methods, or comparison with the normal

DNA (Cibulskis et al., 2013; Koboldt et al., 2012) can mitigate

this effect, most analysis strategies were developed for sequencing

of random shotgun DNA fragments, and thus do not take into ac-

count systematic errors specific to amplicon sequencing. In amplicon

sequencing, loci are covered by reads with identical genomic starting

positions, and because the error rate increases along the length of the

read (Fig. 1a), a variable consensus error rate exists over the target

(Fig. 1b). Analytical strategies specifically designed for amplicon

sequencing have the potential to enhance the mutation detection

accuracy of current clinical assays, especially at low-allelic fraction.

Here, we present Mutascope, a software dedicated to the detection

of mutations at low-allelic fraction from amplicon sequencing of

matched tumor-normal samples pairs. Mutascope determines the

amplicon of origin for each read and measures the specific experi-

mental error rate from sequencing the normal DNA. The mutations

in the tumor are then identified by comparison with the error rate

using a binomial statistics and classified as germ line or somatic by

comparison with the normal DNA. A set of filters adapted to ampli-

con sequencing then eliminates false-positive calls. We used two ex-

perimental datasets, a mixture of 8 normal DNA (MIX) and a set of

80 tumor-normal spiked-in (TNS) pairs derived from 38 different

normal germ line DNA samples to measure the performance of

the approach in comparison with other mutation callers.

2 METHODS

Data generation: The data from the MIX sample or used in the preparation of

the TNS pairs was generated using microdroplet polymerase chain reaction

amplification (Harismendy et al., 2011) of 1736 amplicons from 47 genes

clinically actionable for breast cancer (Supplementary Methods), followed

by high-throughput sequencing of 151 nt long paired-end reads on a MiSeq

sequencer (Illumina, San Diego, CA, USA) resulting in 981-fold average

coverage depth. The data are available through the Short Reads Archive

(SRA) at the NCBI (SRA067609 and SRA067610).

Analysis principle: Mutascope aligns the reads to the genome using BWA-SW

algorithm (Li and Durbin, 2009). Multi-mapping reads, reads with a low Smith–

Watterman score, or not aligning to the specified amplicons are removed.

Mutascope then determines the amplicon of origin for each read and measures

the error rate using the normal DNA sequencing, stratified by the major drivers

of sequencing errors: nucleotide, position in the read and read type (forward or

reverse). The allelic fraction of the mutation is compared with this error rate

using a binomial test for significance; the mutations are then classified as germ

line or somatic using a Fisher exact test. The germ line genotypes are determined

using a Bayesian likelihood method. Finally, Mutascope filters out false-positive

variants using, for example, read group bias, low-average mutant allele quality

or predicted false positive from non-specific amplification.

Benchmarking: The benchmarking was performed using ROCR package

(Sing et al., 2005). The prediction score used for the classification corres-

ponded to the binomial P-value for Mutascope, somatic P-value for

VarScan (Koboldt et al., 2012), tumor Fstar LOD score for MuTect

(Cibulskis et al., 2013) and VCF quality score for LoFreq, GATK and

Illumina MiSeq Reporter (McKenna et al., 2010; Wilm et al., 2012). All

false-negative prediction scores were set to 0. All benchmarked tools relied

on the same alignment performed by Mutascope, except for Illumina MiSeq

reporter that performs its own alignment. Whenever allowed, each tool was

run without extensive previous filtering to strictly compare the accuracy of the

mutation detection. Complete methods are available as Supplementary
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3 RESULTS

We benchmarked Mutascope against other mutation callers using

sequencing data generated from a mixture of 8 normal DNA samples

with known genotypes (MIX sample) resulting in ‘somatic mutations’

at variable allelic fraction. The classification of the 162 somatic mu-

tations at low-allelic fraction (0.01–0.1) by Mutascope was more ac-

curate than other standard tools (area under the curve: 0.97—Fig. 1c).

Not surprisingly, tools designed to identify heterozygotes in diploid

genomes were missing most mutations (GATK), whereas tools dedi-

cated to tumor-normal pairs performed better (VarScan and

MuTect). To estimate the impact of coverage depth, we selected

reads from the MIX sample down to 50 or 10% (490 and 98�,

respectively) of the maximum. As expected, the sensitivity decreased

equally for all the tools considered (Fig. 1d).

To expand the performance evaluation to additional mutations

and experimental conditions, we prepared a set of 80 TNS pairs by

mixing reads obtained from sequencing 38 normal DNA. Using

these, we interrogated 402 unique ‘somatic mutations’ (between 17

and 55 per pair) at an allelic fraction of 0.01 or 0.1 (40 pairs each).

Mutascope was more accurate to detect mutations at an allelic frac-

tion of 0.1 rather than 0.01 (Fig. 1e), and in the former case, its

performance was comparable with MuTect and superior to

VarScan or LoFreq.

Finally, we tested the effect of the empirical filters applied by each

tool after the classification. These filters are important to eliminate

false positives resulting from unpredictable sources of error and not

accounted for by the statistical model. Although Mutascope’s filters,

such as the read group bias and non-specific amplification, are spe-

cifically compatible with amplicons sequencing, we adjusted the par-

ameters of the other tools to ensure a fair comparison, such as strand

bias and minimum alternate allele frequency filters. When applied to

the mutations at low-allelic fraction in the MIX samples, these filters

increase the sensitivity and positive predictive value (Fig. 1f and

Supplementary Discussion). The set of high-confidence filters from

MuTect affects the sensitivity the most. This observation highlights

synergies between Mutascope’s two core statistical components: the

experimentally driven mutation detection (binomial test) and tumor-

normal comparison (Fisher test) resulting in a superior performance.

Therefore, by design, Mutascope specifically optimizes the muta-

tion detection and filtering for deep amplicon sequencing. The

resulting higher accurate detection of somatic mutations at low-

allelic fraction increases utility in cancer molecular diagnostics.

ACKNOWLEDGEMENTS

The authors thank Dr P. Carpenter, Dr H. Park and Dr H. Anton-

Culver for the collection of samples; Dr Bao and Dr Messer for

helpful discussions; RainDance Tech. (Lexington, MA, USA) for

technical assistance.

Funding: National Cancer Institute (1R21CA155615-01A1 and

1R21CA152613-01 to O.H. and K.A.F.); NCATS (UL1RR031980

to Dr Firestein); a pilot award from the NIH Center of Excellence

Grant to the San Diego Center for Systems Biology (P50

GM085764).

Conflict of Interest: none declared.

REFERENCES

Boyd,S.D. (2013) Diagnostic applications of high-throughput DNA sequencing.

Annu. Rev. Pathol., 8, 381–410.

Cibulskis,K. et al. (2013) Sensitive detection of somatic point mutations in impure

and heterogeneous cancer samples. Nat. Biotechnol., 31, 213–219.

Harismendy,O. et al. (2009) Evaluation of next generation sequencing platforms for

population targeted sequencing studies. Genome Biol., 10, R32.

Harismendy,O. et al. (2011) Detection of low prevalence somatic mutations in solid

tumors with ultra-deep targeted sequencing. Genome Biol., 12, R124.

Hiatt,J.B. et al. (2013) Single molecule molecular inversion probes for targeted, high

accuracy detection of low frequency variation. Genome Res., 23, 843–854.

Koboldt,D.C. et al. (2012) VarScan 2: Somatic mutation and copy number alter-

ation discovery in cancer by exome sequencing. Genome Res., 22, 568–576.

Li,H. and Durbin,R. (2009) Fast and accurate short read alignment with Burrows-

Wheeler transform. Bioinformatics, 25, 1754–1760.

McKenna,A. et al. (2010) The genome analysis toolkit: a MapReduce framework

for analyzing next-generation DNA sequencing data. Genome Res., 20,

1297–1303.

Sing,T. et al. (2005) ROCR: visualizing classifier performance in R. Bioinformatics,

21, 3940–3941.

Wilm,A. et al. (2012) LoFreq: a sequence-quality aware, ultra-sensitive variant caller

for uncovering cell-population heterogeneity from high-throughput sequencing

datasets. Nucleic Acids Res., 40, 11189–11201.

Fig. 1. Mutascope principle and performance. (a) The sequencing error

rate varies based on the read type (blue and red), position in the read

(x-axis) or reference base sequenced (lines). (b) Paired reads (red and blue)

from shotgun and amplicon sequencing distribute differently over the

targeted region (gray box) resulting in different consensus error rates

(right panel). (c–e) Comparison of 4–6 tools by ROC analysis showing

the classification of mutations at low-allelic fraction (1–10%) in the MIX

samples (c), after down-sampling reads to 50 or 10% of maximum cover-

age (d), or using 1 and 10% allelic fraction variants from TNS pairs.

(f) Evolution of the true-positive rate and positive predicted value from

the MIX sample low-allele frequency variants (1–10%) before (dotted

line) and after (continuous line) application of high-confidence filters
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