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Abstract: Compelling facial expression recognition (FER) processes have been utilized in very
successful fields like computer vision, robotics, artificial intelligence, and dynamic texture recognition.
However, the FER’s critical problem with traditional local binary pattern (LBP) is the loss of
neighboring pixels related to different scales that can affect the texture of facial images. To overcome
such limitations, this study describes a new extended LBP method to extract feature vectors from
images, detecting each image from facial expressions. The proposed method is based on the bitwise
AND operation of two rotational kernels applied on LBP(8,1) and LBP(8,2) and utilizes two accessible
datasets. Firstly, the facial parts are detected and the essential components of a face are observed,
such as eyes, nose, and lips. The portion of the face is then cropped to reduce the dimensions and an
unsharp masking kernel is applied to sharpen the image. The filtered images then go through the
feature extraction method and wait for the classification process. Four machine learning classifiers
were used to verify the proposed method. This study shows that the proposed multi-scale featured
local binary pattern (MSFLBP), together with Support Vector Machine (SVM), outperformed the
recent LBP-based state-of-the-art approaches resulting in an accuracy of 99.12% for the Extended
Cohn–Kanade (CK+) dataset and 89.08% for the Karolinska Directed Emotional Faces (KDEF) dataset.

Keywords: facial expression recognition system; computer vision; multi-scale featured local binary
pattern; unsharp masking; machine learning

1. Introduction

Facial expression recognition (FER) is a regular and incredible sign to decipher the state of
human feelings and expectations, expressing human emotion without saying anything, as faces
are considerably more than key to singular personalities. In a word, one can say that it is one of
the most natural, current, and robust means for communicating people’s intentions and emotions
with others. As it is related to human emotion, which differs from one to another, researchers
discovered many methods by both machine learning and deep learning techniques to obtain a critical
understanding of this matter. Nowadays, things are becoming more mechanized through computer
automation, where computer vision is playing a vital role in the automation process by training
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computers to interpret and understand the visual world. Thus, studies on FER show high demand in
computer vision, which can be utilized in autonomy, neuro-advertising, scholastics, and altogether in
security. Besides this, FER is one of the most challenging biometric recognition technologies due to its
characteristics of nature, intuition, etc.

FER has two essential stages: feature extraction (geometric and appearance-based) and
classification. While the geometrically-based feature extraction includes facial components like
eye, mouth, nose, and eyebrow, the appearance-based one comprises the exact section of the face.
On the other hand, the classification categorizes the expression, like a smile, sadness, anger, disgust,
surprise, or fear. Researchers have worked with many neural networking concepts like Convolutional
Neural Network (CNN), Recurrent Neural Network (RNN), and machine learning classifiers like
Support Vector Machine (SVM), K Nearest Neighbour (KNN) to find, relatively, the most accurate
FER technique. In connection to this, several researchers utilized the Neural Network based on
different kinds of popular methods like CNN [1], CNN-RNN [2], 3DCNN-DAP [3,4], Weighted Mixture
Deep Neural Network [5], CNN with attention mechanism (ACNN) where it empowers the model
to move consideration from the impeded patches to other unhampered ones, just as distinct facial
regions are dependent on patch-based ACNN (pACNN) and global-local based ACNN (gACNN) [6].
Although neural networks are easy to build with the latest programming languages like Python, R,
and tools like Matlab and Weka, nevertheless, when it comes to the computational power, especially
in facial image processing with many classes, it requires very high processing power with a high
amount of random access memory (RAM) and a graphics processing unit (GPU). Additionally, suppose
it is not a supercomputer. In that case, one needs hours to simply train a neural network model,
which calculates too many features, where most of them are non-object-orientated, making the model
prone to overfitting. However, since currently, the artificial intelligence (AI) receives a focal point
to replicate or simulate human intelligence in machines, the incorporation of a multimodal concept
(such as both machine learning and deep learning techniques) may produce a better FER compared to
the typical models and sub-processes.

Machine learning classifiers like SVM, KNN, and Tree cannot extract features automatically
from raw images like the Neural Network (NN). Moreover, many other classifiers such as Principal
Component Analysis (PCA), Extreme Learning Machine (ELM), Conditional Random Fields (CRF),
and so on can also be used to classify facial emotion. However, classifiers need a state-of-the-art
descriptor to extract a feature-set from natural images to classify into different classes. A wide range of
methods and innovations have been tested by many researchers to find the best way for the classification
of human disclosure. Features for FER are generally extracted with appearance-based methods like
local binary pattern (LBP), local derivative pattern (LDP), local geometric binary (GLBP), and geometric
methods like the histogram of oriented gradients (HOG), salient facial patches, classifier for salient
areas on the faces [7], local binary pattern from three orthogonal planes (LBP-TOP) [8], local texture
coding operator [9], and differential geometry. For instance, with the appearance-based method LBP,
Zhang et al. applied a new method named Multi-resolution Histograms of Local Variation Patterns
(MHLVP) on Gabor wavelets [10] and obtained a very impressive outcome on the Facial Recognition
Technology (FERET) dataset; however, the computational complexity and element measurement was
excessive. One of LBP’s universal drawbacks is relevant to its small 3 × 3 neighborhood, which cannot
capture dominant features with large scale structures [11–16]. Zhao and Pietik Ainen extended the LBP
operator to the spatiotemporal space, and they named it the volume local binary patterns model [17],
which has been generally embraced in catching powerful features by rotating and concatenating
different methods but worked with a single dataset, thus, the accuracy may fall for blurred images.
Coming out from regular filtered images, features extraction with noise, and partial occlusions,
a combined method of the histogram of oriented gradients (HOG) with the uniform-local ternary
pattern (U-LTP) [18] is described, which gives a good filtering process as well. More discriminative
features in higher-order derivative directions were captured by the LDP [19], which improved LBP.
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However, it is mostly limited to the surrounding eight-pixel values by avoiding more significant
dimensional relations.

Along with LBP, many geometric based methods were also used in FER. Images are partitioned
into blocks and sub-blocks, and an active appearance model was used for revealing the essential facial
portions and extracted by differential geometric features [20] which has more accuracy in FER than
the static geometric features, also provides valuable geometric data with the time and sequence of
facial expression images. For non-formed images, a method of cases that were out-of-plane head
revolutions was taken care of using the turn inversion invariant histogram of oriented gradients [21],
which has insufficient time complexity and improved the learning model of the cascade to collaborate
with the classification technique. Tsai and Chang have applied the filter of Gabor, discrete cosine,
change, and transformation of angular radial [22] to use HFs, consolidating with self-quotient image
(SQI) channels for improving FER accuracy under different light source environments. Typically,
there are some miss images in the examination, and it is essential to include a non-face class in outward
appearance classifications that are not clarified there. The facial illustration is to infer a gathering of
features from unique face images to viably speaking faces. It should limit the inside class varieties
of articulations while amplifying between class contrasts. In general circumstances, the geometric
method needs very well structured facial images. Practically, most of the time, it is not possible to
capture well-textured images to perform geometric methods.

In addition to the many geometric and appearance-based methods, there are some more methods
like the response method [23] that extracts features from directional texture and number patterns
where performance is tested in constrained and unconstrained situations. Researchers have not been
limited to static features only. There are some other methods for extracting dynamic and multilevel
features [24], which have coordinated into an end-to-end network to participate flawlessly with
one another. Moreover, to solve a small sample size (SSS) issue, using a novel method-directional
multilinear independent component analysis (ICA) technique was demonstrated in [25], which prompts
the dimensionality situation by encoding the input image or high dimensional data array as a general
tensor. A different methodology for facial expression analysis is the use of the Human-Computer
Interaction (HCI) context [26] disintegrated into smaller micro-decisions that are separately made by
particular binary classifiers with higher accuracy of the general model. Besides the above-described
methods, some methods are also used for the detection of real-time expressions such as embedded
systems [27], Radon Barcodes [28], and many more. Classifiers acquire characteristic features from the
above strategies as their sources as inputs. However, the classifier’s execution relies on the nature of
feature vectors. A summary of a few recent works in the field of FER is shown in Table 1.

Table 1. Key information on some similar recently studied methods on facial expression recognition (FER).

Year Classifier Features Databases

2015 [1] SVM CNN FER/SFEW
2017 [5] WMDNN LBP CK+/JAFFE/CASIA
2017 [7] PCA LBP/HOG CK+/JAFFE
2019 [8] SVM LBP-TOP CASME II/SMIC
2019 [9] ELM CS-LGC CK+/JAFFE

2005 [10] KNN MHLVP FERET
2007 [17] SVM VLBP/LBP-TOP DynTex/MIT/CK+
2017 [18] HOG Ri-HOG CK+/MMI/AFEW
2018 [20] SVM Differential Geometric Features CK+
2017 [21] HOG Ri-HOG CK+/MMI/AFEW
2017 [22] SVM FERS CKFI/FG-NET/JAFFE
2019 [28] SVM LBP/LTP/RBC Infant COPE

In light of the information mentioned above, one can observe a non-negligible limitation, especially
in appearance-based typical LBP methods. Therefore, this study proposes a feature extraction method
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based on a new extended LBP “Multi-Scale Featured Local Binary Pattern”, which can be used not
only in FER but also in various purposes to analyze an image. Since the automatic face expression
recognition requires two significant angles: facial illustration and classifier style, this study utilizes
four machine learning classifiers: SVM, KNN, Tree, and Discriminant Quadric Analysis. There are
so many datasets, for example, Japanese Female Facial Expression (JAFFE), Chinese Academy of
Sciences Institute of Automation (CASIA), Static Facial Expressions in the Wild (SFEW), Chinese
Academy of Sciences Micro-expression-II (CASME), Spontaneous Micro-expression (SMIC), Acted
Facial Expressions in the Wild (AFEW), and all are available in the literature. However, we used two
well-known facial image datasets: Extended Cohn–Kanade Dataset (CK+) and Karolinska Directed
Emotional Faces (KDEF) to verify our proposed method. Note that the Extended Cohn–Kanade Dataset
(CK+) [29] is an extended version of Cohn–Kanade (CK) [30] and finds greater use in developing and
evaluating facial expression analysis algorithms. It contains a better example of catching the sample
space than the CK dataset, which includes 304 labeled videos with 5521 frames of test subjects from
various ethnicities in varied age groups extending from 18 to 50.

On the other hand, the used KDEF dataset helps assess the emotional contents and appraise
intensity and arousal scale. Moreover, it contains a legitimate arrangement of feeling the full facial
images. More details about these datasets are shown in Table 2 and some sample faces are shown in
Figure 1.

Table 2. Used datasets in the proposed method.

Dataset No of
Expressions Used

Image
Size

No of
Subject

Total
Image

CK+ 7 640 × 490 123 593 video sequence

KDEF 7 562 × 762 70 4900 Images
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Figure 1. Sample face image from Extended Cohn–Kanade (CK+) and Karolinska Directed Emotional
Faces (KDEF) datasets.

2. Contribution

Based on the available literature, we observed that if the images are not well textured and blurred,
then the prediction value falls. Thus, we have proposed a new feature extraction process for images
that makes the texture of an image more machine-readable and converts the sub-region to 58 Uniform
LBP and gives a classifier friendly feature vector tested on four machine learning classifiers. In this
research, we have implemented three different angles where all the members are told to attempt
to inspire the feeling that should have been expressed and to make the expression sharp and clear.
The main contribution in the global LBP method is the process of calculating bitwise AND for two
neighboring pixel values to obtain the relation between them after applying two suggested kernel
matrices. Here, we have justified this method by detecting facial expression from an image that greatly
relies on the image texture.



Sensors 2020, 20, 5391 5 of 17

This manuscript is arranged with the proposed method in Section 3, including Section 3.1
pre-processing, Section 3.2: feature extraction, and Section 3.3: normalization. The result analysis is
discussed in Section 4, and the conclusion is in Section 5.

3. Proposed Method

3.1. Pre-Processing

As the colored image sensitively affects light impact, the images were converted into grayscale as
it has various shades of dark in the center, so to convert the image into grayscale, we used Equation (1)
where r is the pixel value of red, g is green, and b is blue.

gray = 0.3r + 0.59g + 0.11b (1)

The grayscale image may have an environmental and useless background as well, which increases
the computational complexity and misleading accuracy. From the CK+ and KDEF dataset of the raw
image, it was observed that the images are size 640 × 490 and 562 × 762 pixels on average. Therefore,
for better results and lower complexity, the facial part from the whole image was detected and the face
was cropped by Haar cascade frontal face-based on the Viola-Jones detection algorithm, which precisely
detects faces then crops and resizes them to 100 × 100 pixels. Each of the images was then compared
with a 5 × 5 table cell and it was observed that key portions of models such as eyes, nose, and lips
areas are in 3 × 3 table cells (60 × 60 pixels). Therefore, for avoiding the unnecessary parts, we have
cropped this to 3 × 3 cells, shown in Figure 2.
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Figure 2. Pre-processing steps.

After detecting and cropping the images, the unsharp masking kernel [31] (shown in Figure 3)
was used for sharpening the edges with Equation (2), which reduces some noises and gives a bright
look. Grinding the images are essential for better understanding and communicating nearby grayscale
change data by the contrast between each single points, and utilizes the weighted qualification in the
eight directions as the local shade change data in the path, which is commotion and light-delicate and
has no strength. The sharpening kernel was used in the side-by-side method where the Kernel moves
in every one pixel.

S(x, y) =
2∑

i=−2

2∑
j=−2

K(i, j) ×M(x− i, y− j) (2)

where K is the Kernel in Figure 3, and M is the pixel values of the given image, and S(x,y) is the central
pixel value, which creates a sharpened image. The unsharp masking kernel was chosen in this study
because it provides a good texture output in pixel values of different image datasets among many
variants of kernels.
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Figure 3. Unsharp masking kernel.

3.2. Feature Extraction

In this study, a method was developed for extracting features from an image to identify emotions.
We depend not only on the shadow effect of the grayscale images but also on using a new kernel-based
method to enhance the shadow effect to extract the features that are flexible and classifier friendly.
We have proposed two kernels on the LBP of an image to be more precise about the shadow and light
effect of the face parts, which mainly decides the face’s emotional states. In this step, the pre-processed
image was taken and applied to the serial process shown in Figure 4 to finally obtain the features using
the algorithm indicated in Figure 5.
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Figure 4. Feature extraction process.

Generally, LBP (P, R) is used in one radius on eight directional coordinates of the matrix value
where P is the number of pixels to be considered and R is the radius from the central pixel. However,
we used two LBP (LBP (8, 1) and LBP (8, 2)) and applied two kernel matrix to calculate the central pixel
of that cell. Considering the first stage of the image, we have divided it into sub-cells where 3 × 3 for
LBP (8, 1) and 5 × 5 for LBP (8, 2) with two proposed kernels. A sample 3 × 3 image segment has been
shown in Figure 6a and the model is shown in Figure 6b for the first Kernel, where each matrix is a
45◦ rotation, and the central matrix is the 3 × 3 cell of the pre-processed image. Considering that S1

denotes the grey estimation of the pixel point in the 3 × 3 neighborhood of the pre-processed image,
and the kernel value of pixel points in the area is K1, the central pixel can be obtained by applying the
first rotation kernel with Equation (3).

G(x, y) =
1∑

i=−1

1∑
j=−1

K1(i, j) × S1(x− i, y− j) (3)
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Here, K1 is eight rotational kernels with 45◦ rotations each. Therefore, Equation (3) was applied
eight times to obtain the value q0 to q7 in Figure 7, G (x, y) is the central pixel value, which will make
the pixel matrix for 1st Kernel. After the calculation is shown in Figure 7, converting the positive value
as one and the negative value as 0, we obtain the central decimal pixel value. By using the sample
image segment in Figure 6a, we used Equation (3) to show the calculation to find the central pixel
matrix values q0 to q7 (as shown in Figure 7). This same procedure has been followed with the 5 × 5
image segment and kernel are shown in Figure 8 to find the central pixel matrix of Figure 9.
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The model for the second Kernel is shown in Figure 8, where each matrix is a 45◦ rotation, and
the central matrix is 5 × 5 cells of the pre-processed image. Again, accepting that S2 denotes the grey
estimation of the pixel point in the 5 × 5 neighborhood of the pre-processed image, and the kernel
value of pixel points in the area is K2, the value of the central pixel can be obtained by applying the
second Kernel with Equation (4).

H(x, y) =
2∑

i=−2

2∑
j=−2

K2(i, j) × S2(x− i, y− j) (4)

Similarly, kernel K2 will have eight rotations with 45◦ each for obtaining q0 to q7 values in Figure 9.
H (x, y) is the central pixel which will make the pixel matrix for 2nd Kernel. Once again, converting
the positive value as one and negative value as 0, we acquire the central decimal pixel value which is
shown in Figure 9.

In the final stage, we have applied bitwise AND of G (x, y), H (x, y), where the binary output value
of a model is determined to utilize Equation (5), which tells to the nearby change data between the
center point and the 8-neighborhood pixels. It counts the number of spatial transitions from 0 to 1 or 1
to 0. In this stage, the equation will be as follows:

BM(x, y) = (
1∑

i=−1

1∑
j=−1

K1(i, j) × S1(x− i, y− j))AND(
2∑

i=−2

2∑
j=−2

K2(i, j) × S2(x− i, y− j)) (5)

Simplifying Equation (5) as:

BM(x, y) = G(x, y) AND H(x, y)

where BM (x, y) is the binary matrix, the values of which are defined as 1 if G (x, y) = H (x, y) = 1 or 0 if
any of G (x, y) or H (x, y) is 0.

We have used an assessment by applying a condition to find the output cell’s central pixel in
decimal in Equation (6).

MSLBP(xc,yc) =
7∑

n=0

BM(wn)2n (6)

where wn corresponds to the neighboring binary value of the eight surrounding pixels of the binary
matrix BM and MSLBP(xc,yc) is the final central decimal pixel value.

After calculating the MSLBP matrix, we have divided the whole image into 6 × 6 = 36 cells and
mapped each cell’s value to the uniform local binary pattern (ULBP) by Equation (7). For ULBP,
each cell pattern maps to 58-bin histograms. ULBP has unique 58 numbers where we will convert the
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MSLBP pixel matrix to a one-dimensional array by mapping pixel values to ULBP values. A single-cell
value of 255 will be converted to 58 by using ULBP.

FV = ULBP
(
MSLBP(x,y)

)
(7)

where FV is the feature vector, ULBP is the array of mapping values. MSLBP (x, y) is the pixel value of
the image, which will be used as an index.

For one image, neighbor pixels are generally related; thus, the binary sequences of MSLBP (p, r)
of the various radius can be seen as described. After ascertaining all values from left to right, we have
obtained a binary pattern for every cell of an image. Taking all weighted values into account, we have
found a decimal number in symmetric neighbor sets for various coordinates (x, y). The grey values
of neighbors that are not the focal region for matrices can be evaluated by commitment. After that,
we discovered one histogram for each cell, then we have concatenated all those histograms from
each cell into a one-linear histogram shown in Figure 10. There will be a two-dimensional matrix
for each image of seven classes where rows represent the image index, and the column represents
the features. This long concatenated histogram is the initially featured vector with many noises and
mismatched values within a class. We have normalized the histogram data to solve this kind of problem,
which shows good accuracy in validation test cases compared with the original feature vectors.
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Figure 10. Converting process of selected geographical features of a histogram.

3.3. Normalization

Due to the so many images with different expressions and features, it is challenging to maintain
continuity among the classes. Therefore, normalization of data becomes mandatory to handle within
a range of values so that each class keeps some kind of consistency. We have used the Generalized
Procrustes Analysis (GPA) [32] as normalization in our proposed method. It takes each level data
individually and utilizes a measure of variance. The GPA generates a weighting factor by analyzing
the differences in the scaling factor applied to respondent scale usages and individual scale usage.
As a result, the distance between different classes’ values was increased. Initially, we see the happy
class’s data situated on the scatter plot shown in Figure 11a (before normalization), then we can see
that the images are getting closer to each other in Figure 11b (after normalization). In brief, the GPA
takes all those features and reduces the fluctuation, and after using this, all related emotional state
values have become at a closer level which causes the classification to act more precisely as the variance
increases between different classes.



Sensors 2020, 20, 5391 11 of 17

Sensors 2020, 20, x FOR PEER REVIEW 11 of 17 

 

Figure 10. Converting process of selected geographical features of a histogram. 

3.3. Normalization 

Due to the so many images with different expressions and features, it is challenging to maintain 
continuity among the classes. Therefore, normalization of data becomes mandatory to handle within 
a range of values so that each class keeps some kind of consistency. We have used the Generalized 
Procrustes Analysis (GPA) [32] as normalization in our proposed method. It takes each level data 
individually and utilizes a measure of variance. The GPA generates a weighting factor by analyzing 
the differences in the scaling factor applied to respondent scale usages and individual scale usage. 
As a result, the distance between different classes’ values was increased. Initially, we see the happy 
class’s data situated on the scatter plot shown in Figure 11a (before normalization), then we can see 
that the images are getting closer to each other in Figure 11b (after normalization). In brief, the GPA 
takes all those features and reduces the fluctuation, and after using this, all related emotional state 
values have become at a closer level which causes the classification to act more precisely as the 
variance increases between different classes.  

 
Figure 11. (a) Regular data, (b) Normalized data. Axis values are two feature values before (a) and 
after (b) normalization. 

4. Results and Discussion 

4.1. Performance Analysis of the Proposed Method 

We have tested our proposed method on the CK+ and KDEF dataset. The given datasets are the 
most widely used for facial expression recognition, and this includes seven different facial expression 
labels or classes. We have used several machine-learning classifiers like K-nearest neighbors (KNN), 
Binary Tree, Quadric Discriminant Analysis (QA), and Support Vector Machine (SVM) shown in 
Figure 12. Among them, SVM gives the highest testing accuracy, which is shown in the confusion 
matrix for both dataset’s test set following the 80-20 train-test split rule in Tables 3 and 4, respectively. 
From the CK+ dataset, almost 6000 images are used for training and 2000 for validation and testing, 
and for the KDEF dataset, almost 2900 images are used for training and 1000 for validation and 
testing. A total of 10 iterations of K-Fold cross-validation was used in all four classifiers. All values 
are shown in percentage (%).  

0

5

10

15

20

25

30

35

0 5 10 15

(a)

Regular Data

-10

-5

0

5

10

15

20

-25-20-15-10-5

(b)

Normalized Data

Figure 11. (a) Regular data, (b) Normalized data. Axis values are two feature values before (a) and
after (b) normalization.

4. Results and Discussion

4.1. Performance Analysis of the Proposed Method

We have tested our proposed method on the CK+ and KDEF dataset. The given datasets are the
most widely used for facial expression recognition, and this includes seven different facial expression
labels or classes. We have used several machine-learning classifiers like K-nearest neighbors (KNN),
Binary Tree, Quadric Discriminant Analysis (QA), and Support Vector Machine (SVM) shown in
Figure 12. Among them, SVM gives the highest testing accuracy, which is shown in the confusion
matrix for both dataset’s test set following the 80-20 train-test split rule in Tables 3 and 4, respectively.
From the CK+ dataset, almost 6000 images are used for training and 2000 for validation and testing,
and for the KDEF dataset, almost 2900 images are used for training and 1000 for validation and testing.
A total of 10 iterations of K-Fold cross-validation was used in all four classifiers. All values are shown
in percentage (%).Sensors 2020, 20, x FOR PEER REVIEW 12 of 17 
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Figure 12. KDEF (KNN: 38.09, QA: 64.52, Tree: 68.33, SVM: 89.05), CK+ (KNN: 83.05, QA: 88.70, Tree:
96.01, SVM: 99.12).

The precision, recall, and F1 Score of the CK+ and KDEF dataset for SVM shows the outcome’s
excellent structure. For finding these values, we first have to analyze the confusion matrix. When the
actual class is positive, and the predicted class is also positive, it is counted as True Positive (TP)
value. When the actual class is negative, and the predicted class is too negative, it is counted as a True
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Negative (TN) value. Along with these, if the actual class is positive but predicted as negative, it is
counted as False Negative (FN). If the true class is negative but predicted as positive, it is counted as
False Positive (FP).

Table 3. Confusion matrix of the CK+ dataset (SVM).

Happy Surprise Sadness Anger Disgust Fear Neutral

Happy 100 0 0 0 0 0 0
Surprise 0 99.67 0 0 0 0.33 0
Sadness 2.3256 0 97.67 0 0 0 0
Anger 0 0 0 100 0 0 0

Disgust 0 0 0 1.78 98.22 0 0
Fear 0 0 0 0 0 100 0

Neutral 1.04 0 0.68 0 0 0 98.28

Table 4. Confusion matrix of the KDEF dataset (SVM).

Happy Surprise Sadness Anger Disgust Fear Neutral

Happy 90.28 0 0 0 9.72 0 0
Surprise 0 98.28 0 0 1.04 0 0.64
Sadness 0 0 76.72 8.56 0 9.44 5.28
Anger 0 0 4.17 88.89 0 4.17 2.78

Disgust 2.78 0 0 0 97.22 0 0
Fear 0 0 9.72 6.94 0 83.33 0

Neutral 0 0 6.94 1.39 0 2.78 88.89

Precision: It is the ration of TP and the total positive predictions. High precision means less
classification error.

Precision = TP/(TP + FP)

Recall: It is the ration of TP and the total true positive classes.

Recall = TP/(TP + FN)

F1 Score: F1 Score is sometimes more useful than accuracy. It is the weighted average of the values
of Precision and Recall. F1 Score is important here because we have an uneven number of classes.

F1 Score = 2 ∗ (Precision ∗ Recall)/(Precision + Recall)

Table 5 shows the precision, recall, and F1 Score for datasets. We have presented the precision,
recall, and F1 score comparatively in Figures 13 and 14 for CK+ and KDEF datasets for all the K-folding
cross-validations. Values are shown for SVM classifier because it has the highest accuracy.

Table 5. Pre (Precision), Rec (Recall), F1 (F1 Score) shown for dataset CK+, and KDEF. Values are shown
for the Support Vector Machine (SVM) classifier for seven classes.

Classes
CK+ KDEF

Pre Rec F1 Pre Rec F1

Happy 1 0.967 0.983 0.903 0.970 0.935
Surprise 0.996 1 0.998 0.983 1 0.992
Sadness 0.976 0.993 0.984 0.767 0.786 0.777
Anger 1 0.982 0.991 0.889 0.840 0.869

Disgust 0.982 1 0.991 0.972 0.900 0.935
Fear 1 0.996 0.998 0.833 0.836 0.835

Neutral 0.982 1 0.991 0.889 0.911 0.899
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4.2. Analyses and Discussion of Results

Throughout this study, it is observed that classical LBP works with every pixel, which is contrasted
and utilizes its eight surrounding 3 × 3 neighborhood by subtracting the center pixel value. Then,
the resulting negative values are encoded with 0, otherwise 1. Finally, the encoded binary value is
converted to decimal to obtain the center pixel value. The ongoing variety of LBP, for example, extended
local binary patterns (ELBP) [15] operator not only performs the binary comparison of the center pixel
and its neighbors but also encodes their exact grey-value differences (GDs) utilizing some extra binary
units. In the completed modeling of the local binary pattern (CLBP) [16], it includes both the sign
and the GDs between a given center pixel and its neighbors to improve the original LBP operator’s
discriminative intensity. The two strategies have utilized LBP (8,1) and compare the absolute value of
GD with the given central pixel again to create an LBP-liked code. In Ref. [8], the authors first used the
optical flow technique to obtain the Necessary Morphological Patches (NMPs) of micro-expressions;
then, they calculated LBP-TOP operators by cascading them with optical flow histograms to make
fusion features of dynamic patches. In local texture coding, the operator [9] enhances real-time system
performance, utilizing four directional gradients on 5 × 5 grids for reducing sensitivity to noise.
In Ref. [28], the authors present an observing framework using some features, such as LBP/LTP/red
blood cell (RBC) for children, which utilizes an automatic pain detection system, and it could be
accessed through wearable or mobile devices. A weighted fusion strategy [5] is proposed to completely
utilize the features that were separated from various image channels with a partial Visual Geometry
Group called the VGG16 network. Moreover, the method can develop consequently for extracting
features of images on account of an absence of successful pre-prepared models dependent on LBP.
The classical LBP and its varieties utilize pixel values of a different radius, but the relationships among
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them are missing. In this study, we have fulfilled the missing relational information among pixel
values of varying radii. This study utilized an image into sub-cells where 3 × 3 for LBP (8, 1) and 5 × 5
for LBP (8, 2) with two proposed kernels with 45◦ rotations. After applying these kernels, bitwise AND
operation occurred among the resulting matrices to establish the relation of different radii. Moreover,
in pre-processing, we used the unsharp masking kernel to obtain a sharp image so that the intensity of
pixel values can be more accurate. Compared with the neural network models, our method is a core
algorithm to extract features where a neural network like CNN is a stack of automatic extraction of
hidden layer features. Even though the latest neural network models are useful in the FER process,
they still show unavoidable limitations. Different features like AAM/Arithmetic Unit system (AUs) [33]
and Active Appearance Model (AAM)/Gabor [34] were used the CK+ dataset, and some other features
like Gabor [35] and Facial Landmarks [36] used the KDEF datasets, all gaining different accuracies,
which were much lower than our acquired accuracy. However, it can be expected that the addition of a
neural network with our core algorithm to classify expressions might provide much higher efficiency
on the other available standard FER datasets. Much readymade software, such as the Noldus network
with Face-reader 8 [37] and Microsoft Emotion API [38], are available to obtain the facial expression
easily from an image or live video. In Noldus face reader 8, besides FER, several things such as the
detection of age, gender, ethnicity, facial hair, and glasses are performed. In doing so, a 3D model is
created using the Active Appearance Method (AAM), and also an artificial neural network is used
for training and classification. On the other hand, Microsoft Emotion API is a C# client-side library
file, which is suitable for use as a third party API for detecting facial expressions in different projects
under Microsoft Azure Cognitive Services. This API is licensed under the Massachusetts Institute
of Technology (MIT), and the backend image processing model is developed and maintained by
Microsoft. The primary comparison among Noldus Face-reader 8, Microsoft Emotion API and our
work is incompatible as they are, in fact, software methods, and ours is a research method about
MSFLBP. Moreover, only very little information is available on their methods, algorithms, and test
results for building their FER models.

The outcome of SVM on the proposed MSFLBP method is shown in Table 6, compared with
some of the most recent state-of-the-art methods. It demonstrates that the proposed feature extraction
method outperforms the most recent state-of-the-art methods.

Table 6. Results of reviewed works for static image approaches (values are in %).

Year Classifier Features Databases Accuracy (%)

2017 [5] WMDNN LBP CK+/JAFFE/CASIA 97.02
2019 [8] SVM LBP-TOP CASME II/SMIC 73.51/70.02
2019 [9] ELM CS-LGC CK+/JAFFE 98.33/95.24
2017 [18] HOG Ri-HOG CK+/MMI/AFEW 93.8/72.4/56.8
2019 [28] SVM LBP/LTP/RBC Infant COPE 89.43/95.12
2016 [33] SVM AAM/AUs CK+ 54.47
2016 [36] KNN Landmarks KDEF/JAFFE 92.29
2017 [34] SVM/CRF AAM/Gabor CK+ 93.93

CK+ 99.12
2020 SVM The proposed method (MSFLBP)

KDEF 89.08

5. Conclusions

The study demonstrates the recognition rate improvement based on the calculation time of facial
expression recognition methods. In the classification performance, we have used two notable datasets,
CK+ and KDEF, and analyzed, as a set of cell size and number of direction, containers for the seven
fundamental universal expressions’ exact characterization. We have used an unsharp masking kernel
for sharpening the raw images. Then, we have applied two Kernel and bitwise AND to both binary
matrices and converted the final binary matrix into a central decimal pixel value. After that, we have
divided the output image into 64 cells and mapped each cell with ULBP mapping to obtain the features,
like a histogram. By concatenating all cells’ assigned values, we have finally obtained the feature vector,
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which was then trained and tested with four classifiers with 10 K-Fold cross-validations. Among them,
SVM provides the best outcome. In this study, the traditional LBP method’s limitations are overcome
by applying bitwise AND on two rotational kernels by solving the pixel variance limitations. We have
analyzed the neighboring pixel relation of traditional LBP and found two 3 × 3 and 5 × 5 kernels for
obtaining the central pixel values, and after that, bitwise AND was applied to make the relation of the
output central pixels of two kernels. Our described method can improve different texture recognition
performance, utilize specific word applications with non-interrupting low-goals imaging, and also
accomplish considerable accuracy. Several benefits of the described method include precise frequency
extraction capability and less complexity, better efficiency in prediction, and fewer data storage.
The addition of some more datasets from the different geographical regions can improve the real-time
FER process. More combined methods like LBP-CNN can be used to identify augmented images.
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