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Abstract: In humans, the coronin family is composed of seven proteins containing WD-repeat do-
mains that regulate actin-based cellular processes. Some members of the coronin family are closely
associated with cancer cell migration and invasion. The Cancer Genome Atlas (TCGA) analysis
revealed that CORO1C, CORO2A, and CORO7 were significantly upregulated in oral squamous cell
carcinoma (OSCC) tissues (p < 0.05). Moreover, the high expression of CORO2A was significantly
predictive of the 5-year survival rate of patients with OSCC (p = 0.0203). Overexpression of CORO2A
was detected in OSCC clinical specimens by immunostaining. siRNA-mediated knockdown of
CORO2A suppressed cancer cell migration and invasion abilities. Furthermore, we investigated the
involvement of microRNAs (miRNAs) in the molecular mechanism underlying CORO2A overexpres-
sion in OSCC cells. TCGA analysis confirmed that tumor-suppressive miR-125b-5p and miR-140-5p
were significantly downregulated in OSCC tissues. Notably, these miRNAs bound directly to the
3′-UTR of CORO2A and controlled CORO2A expression in OSCC cells. In summary, we found that
aberrant expression of CORO2A facilitates the malignant transformation of OSCC cells, and that
downregulation of tumor-suppressive miRNAs is involved in CORO2A overexpression. Elucidation
of the interaction between genes and miRNAs will help reveal the molecular pathogenesis of OSCC.

Keywords: oral squamous cell carcinoma; coronin; CORO2A; microRNA; miR-125b-5p; miR-140-5p

1. Introduction

Oral squamous cell carcinoma (OSCC), which originates from oral keratinocytes in
the oral cavity, accounts for 40% of head and neck squamous cell carcinomas (HNSCCs) [1].
According to Global Cancer Statistics 2018, there were approximately 350,000 new cases
with OSCC and 180,000 deaths from the disease per year worldwide [2]. Most OSCC cases
are detected at an advanced stage, and the 5-year survival rate of patients with advanced
OSCC is approximately 50% [3]. Advanced-stage patients are treated with combination
therapies, such as surgery, radiation, chemotherapy, and immunotherapy [4]. However,
OSCC cells acquire resistance to these treatments, resulting in local recurrence and distant
metastasis [5]. Unfortunately, there is no effective treatment for patients who have acquired
treatment resistance [6]. Elucidation of the molecular mechanisms of acquiring treatment
resistance and subsequent development of distant metastasis is indispensable for the
development of new treatments for OSCC.
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Metastasis is the process by which cancer cells migrate to distant sites via the lym-
phatic system or bloodstream to form colonies, and it is an important event determining
the prognosis of patients [7]. Various molecules play roles in the metastatic process in a
complex manner. Cancer cells induce changes in cell adhesion and degradation of sur-
rounding cells and acquire the ability to migrate within tissues and metastasize [8]. The
dynamic involvement of actin is required for cancer cells to alter their morphology and
promote migration and invasion [9]. At the edge of migrating and invading cells, actin
polymerization is controlled by various actin regulators, e.g., Rho GTPases, WASP and
WAVE proteins, and actin-related proteins [10].

The coronin family comprises WD-repeat proteins, which are expressed in a large
number of eukaryotic organisms [11]. The WD domain is thought to function as a stable
platform for interacting with other proteins [12]. As the typical structure of a coronin
protein, it contains three to five WD-repeat clusters forming the central core domain, as
well as a coiled-coil domain in the carboxy terminus [13]. In humans, seven coronin genes
have been identified: CORO1A (coronin 1), CORO1B (coronin 2), CORO1C (coronin 3),
CORO2A (coronin 4), CORO2B (coronin 5), CLIPINE (coronin 6), and POD1 (coronin 7) [14].

Previous studies showed that coronins are associated with the actin-related protein
2/3 complex and are involved in an F-actin rearrangement, suggesting that coronins act as
actin-binding proteins [15]. Overexpression of CORO1C in cancer cells has been reported
in a wide range of cancers, and its overexpression contributes to cancer cell migration and
invasion [16]. In this study, we investigated the clinical significance of human coronins
using The Cancer Genome Atlas (TCGA) database. Analysis of the TCGA-HNSC database
showed that expression of CORO2A was upregulated in HNSCC tissues, and its high
expression significantly predicted the 5-year survival rate of patients with HNSCC.

A large number of studies have shown that microRNAs (miRNAs) act as pivotal con-
trollers of gene expression [17]. miRNAs, short single-stranded molecules, negatively control
gene expression in normal and diseased cells in a sequence-dependent manner [18,19]. In
cancer cells, a vast number of studies have demonstrated that downregulation of tumor-
suppressive miRNAs caused overexpression of oncogenes, and these events facilitated cancer
cell aggressiveness, e.g., proliferation, metastasis, and drug resistance [20,21].

The study aimed to investigate the oncogenic function of CORO2A and to clarify the
involvement of miRNAs that control CORO2A expression in OSCC cells.

2. Results
2.1. Expression and Clinical Significance of the Coronin Family in Patients with OSCC According
to TCGA Database Analysis

Expression levels of the coronin family members (CORO1A, CORO1B, CORO1C,
CORO2A, CORO2B, CORO6, and CORO7) were evaluated using the TCGA database
(TCGA-OSCC). The expression levels of three coronin genes (CORO1C, CORO2A, and
CORO7) were significantly upregulated in OSCC tissues (n = 313) compared with normal
tissues (n = 30) (Figure 1). On the other hand, the expression of CORO2B was significantly
downregulated in OSCC tissues (Figure 1). There was no significant difference in the
expression levels of the other three genes (CORO1A, CORO1B, and CORO6) between OSCC
and normal tissues (Figure 1).
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Figure 1. Expression of all members of coronin family by TCGA-OSCC analysis. Expression levels of
CORO1A, CORO1B, CORO1C, CORO2A, CORO2B, CORO6, and CORO7 in OSCC tissues. A total of
313 OSCC tissues and 30 normal epithelium tissues were analyzed (N.S., not significant).

To determine the clinical effectiveness, a clinicopathological analysis of the coronin
family was performed using TCGA-OSCC data. Patients with high expression of CORO1B
and CORO2A had a significantly worse prognosis compared with those with low ex-
pression (Figure 2A and Table S1). Multivariate Cox regression analysis was performed
about expression levels of CORO1B and CORO2A with other expected prognostic factors
(age, disease stage, and pathological grade). As result, CORO2A expression levels were
independent prognostic factors (Figure 2B).
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Figure 2. Clinical significance of all members of the coronin family by TCGA-OSCC analysis.
(A) Kaplan–Meier survival curve analyses of patients with OSCC using data from The Cancer
Genome Atlas (TCGA) database. Patients were divided into high and low expression groups
according to miRNA expression (based upon median expression). The red line shows the high
expression group, and the blue line shows the low expression group. (B) Forest plot presenting the
results of a multivariate Cox regression analysis of the prognostic value of CORO1B and CORO2A
identified in an OSCC dataset from TCGA (HR: hazard ratio, CI: confidence interval). The expression
level of CORO2A was determined to be independent prognostic factors in terms of the 5-year overall
survival rate after adjustments for tumor stage, age, and pathological grade (p < 0.05).



Int. J. Mol. Sci. 2021, 22, 12684 5 of 17

Based on the results of these analyses, CORO2A was selected among the coronin
family members for the functional analyses.

2.2. Overexpression of CORO2A in OSCC Clinical Specimens

Expression of the CORO2A protein was investigated by immunostaining in OSCC clin-
ical specimens. Aberrant expression of CORO2A was detected in OSCC lesions (Figure 3).
In contrast, there was almost no CORO2A expression in the normal epithelium (Figure 3).
Clinical features of 4 OSCC cases used for immunohistochemical staining were summarized
in Table S2.

Figure 3. Overexpression of CORO2A in OSCC clinical specimens. Immunohistochemical staining of
CORO2A in OSCC clinical specimens. High expression of CORO2A was detected in the nuclei and/or
cytoplasm of cancer cells ((A–D) center and right side) and weak expression in the normal oral
mucosa ((A–D) left side).

2.3. Effects of CORO2A Knockdown on the Proliferation, Invasion, and Migration of OSCC Cells

To assess the oncogenic function of CORO2A in OSCC cells, we performed knockdown
assays using small interfering RNAs (siRNAs). Prior to this experiment, we evaluated the
expression of CORO2A in OSCC cells lines (HSC-2, HSC-3, SAS, Sa3, Ca9-22, and Ho-N-1),
and found that CORO2A expression was detected in all of these cell lines (Figure 4). On
the other hand, its expression in normal fibroblast lines (IMR-90 and MRC-5) was weaker
compared with the OSCC cell lines (Figure 4).
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Figure 4. Expression levels of CORO2A in the OSCC cell lines. Expression levels of CORO2A in
OSCC cell lines and normal fibroblast cell lines were evaluated with Western blotting. GAPDH was
used as the internal control.

Next, the inhibitory effect of two different siRNAs targeting CORO2A (siCORO2A-1
and siCORO2A-2) on CORO2A expression was examined. The CORO2A mRNA and protein
levels were effectively suppressed by transfection of both siRNAs into SAS and HSC-3 cells
(Figure 5A,B).

Figure 5. Knockdown efficiencies of siRNAs in OSCC cell lines (SAS and HSC-3 cells). Knockdown
efficiencies of CORO2A expression by siCORO2A-1 and siCORO2A-2 were evaluated by real-time
PCR (A) and Western blotting (B). Data of expression of CORO2A (mRNA) and CORO2A (protein)
were collected 72 h after siRNAs transfection. GAPDH (mRNA) and GAPDH (protein) were used as
internal controls.

Knockdown of CORO2A had a slight inhibitory effect on cell proliferation in SAS and
HSC-3 cells (Figure 6A), and the cell invasion and migration abilities were significantly
inhibited after siCORO2A transfection in SAS and HSC-3 cells (Figures 4B,C, S1 and S2).
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Figure 6. Functional assays of cell proliferation, migration, and invasion following transient transfec-
tion of siRNAs in OSCC cell lines (SAS and HSC-3 cells). (A) Cell proliferation was assessed using
XTT assays. Data were collected 96 h after siRNAs transfection. (B) Cell invasion was determined
48 h after seeding miRNA-transfected cells into chambers using Matrigel invasion assays. (C) Cell
migration was assessed with a wound-healing assay. Data were collected 0 h, 12 h, and 24 h after
cell scratch.

2.4. Selection of miRNAs That Regulate CORO2A Expression in OSCC Cells

Downregulation of some miRNAs is associated with overexpression of CORO2A in
OSCC cells. We searched for miRNAs that negatively regulate CORO2A expression in
OSCC cells. The strategy for identifying miRNAs that regulate CORO2A expression is
shown in Figure 7A. An analysis of the TargetScan database (release 7.2) combined with
our miRNA expression signature of OSCC (accession number: GSE184991) revealed that
three miRNAs (miR-125a-5p, miR-125b-5p, and miR-140-5p) regulate CORO2A expression in
OSCC cells (Figure 7B). TCGA database analysis showed that the expression levels of miR-
125b-5p and miR-140-5p were significantly reduced in OSCC tissues (n = 297) compared with
normal tissues (n = 30) (Figure 7C). Based on these results, we investigated the regulation
of CORO2A expression by miR-125b-5p and miR-140-5p.
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Figure 7. Selection of CORO2A controlled miRNAs in OSCC cells. To identify miRNAs controlling CORO2A expression in
OSCC cells, we used the TargetScan database (release 7.2) and the miRNA expression signature of OSCC. (A) Flowchart of
the strategy used to identify the candidate of CORO2A regulated miRNAs in OSCC cells. (B) Volcano plot of the miRNA
expression signature determined through RNA sequencing. The log2 fold change (FC) is plotted on the x-axis, and the log10

(p-value) is plotted on the y-axis. The blue points represent the downregulated miRNAs with an absolute log2 FC <−1.0
and p < 0.05. (C) The expression levels of miR-125a-5p, miR-125b-5p, and miR-140-5p evaluated in an HNSCC dataset from
TCGA (N.S., not significant).

2.5. Regulation of CORO2A Expression by miR-125b-5p and miR-140-5p in OSCC Cells

Both the mRNA and protein levels of CORO2A were reduced by miR-125b-5p trans-
fection in SAS and HSC-3 cells (Figure 8A,B). To investigate whether miR-125b-5p binds
directly to CORO2A in OSCC cells, we conducted a dual-luciferase reporter assay. Lu-
ciferase activity was significantly reduced following co-transfection with miR-125b-5p
and a vector containing the miR-125b-5p-binding site of CORO2A. On the other hand,
co-transfection with a vector lacking the miR-125b-5p-binding site of CORO2A resulted in
no change in luciferase activity (Figure 8C).

Both the mRNA and protein levels of CORO2A were reduced by miR-140-5p trans-
fection in SAS and HSC-3 cells (Figure 9A,B). A dual-luciferase reporter assay showed
that luciferase activity was significantly reduced following co-transfection with miR-140-5p
and a vector containing the miR-140-5p-binding site of CORO2A. There was no change
in luciferase activity following co-transfection with miR-140-5p and a vector lacking the
miR-140-5p-binding site (Figure 9C).
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Figure 8. Direct regulation of CORO2A expression by miR-125b-5p in OSCC cells. (A) Real-time PCR
showing the significantly reduced expression of CORO2A mRNA at 48 h after miR-125b-5p transfec-
tion in SAS and HSC-3 cells. Expression of GAPDH was used as an internal control. (B) Western blot
showing reduced expression of the CORO2A protein at 48 h after miR-125b-5p transfection in SAS and
HSC-3 cells. Expression of GAPDH was used as an internal control. (C) TargetScan database shows
that a single putative miR-125b-5p binding site predicts the 3′UTR of CORO2A sequence (upper
panel). Dual-luciferase reporter assays showed reduced luminescence activity after co-transfection of
the wild-type vector and miR-125b-5p in HSC-3 cells (lower panel). Normalized data were calculated
as the Renilla/firefly luciferase activity ratio (N.S., not significant).

Figure 9. Cont.
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Figure 9. Direct regulation of CORO2A expression by miR-140-5p in OSCC cells. (A) Real-time PCR
showing the significantly reduced expression of CORO2A mRNA at 48 h after miR-140-5p transfection
in SAS and HSC-3 cells. Expression of GAPDH was used as an internal control. (B) Western blot
showing reduced expression of the CORO2A protein at 48 h after miR-140-5p transfection in SAS and
HSC-3 cells. Expression of GAPDH was used as an internal control. (C) TargetScan database shows
that a single putative miR-140-5p binding site predicts the 3′UTR of CORO2A sequence (upper panel).
Dual-luciferase reporter assays showed reduced luminescence activity after co-transfection of the
wild-type vector and miR-140-5p in HSC-3 cells (lower panel). Normalized data were calculated as
the Renilla/firefly luciferase activity ratio (N.S., not significant).

These findings suggest that miR-125b-5p and miR-140-5p directly regulate CORO2A
expression in OSCC cells.

2.6. Effects of Ectopic Expression of miR-125b-5p and miR-140-5p in OSCC Cells

The tumor-suppressive activities of miR-125b-5p and miR-140-5p were assessed by
ectopic expression of mature miRNAs in SAS and HSC-3 cells. The results showed that
cell proliferation was suppressed by miR-125b-5p transfection in OSCC cells (Figure 10A).
Especially, cancer cell invasion and migration abilities were markedly suppressed by the
expression of miR-125b-5p in OSCC cells (Figures 10B,C, S3 and S4.)
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Figure 10. Tumor-suppressive function of miR-125b-5p in OSCC cells. (A) Cell proliferation assessed
with an XTT assay at 72 h after transfection of mature miRNAs. (B) Cell invasion determined with a
Matrigel invasion assay at 48 h after seeding miRNA-transfected cells into the chambers. (C) Cell
migration was assessed with a wound-healing assay. Data were collected 0 h, 12 h, and 24 h after
cell scratch.

Similar to miR-125b-5p, ectopic expression of miR-140-5p attenuated OSCC cell aggres-
siveness, i.e., cell proliferation, invasion, and migration abilities (Figure 11A–C). These
findings suggest that miR-125b-5p and miR-140-5p act as tumor-suppressive miRNAs in
OSCC cells. (Figures S5 and S6).
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3. Discussion

The prognosis of patients with OSCC depends largely on the presence or absence of
metastasis. Metastasis (regional lymph node or distant metastasis) is a major cause of death
in patients with OSCC, and the 5-year survival rate of OSCC patients with metastasis is
less than 40% [22]. Searching for molecular networks involved in metastasis is an essential
challenge in improving the prognosis of patients with OSCC.

Cancer cells acquire cell motility via regulation of the cytoskeletal structure, allowing
them to move travel from the primary tumor site to distant tissues [23]. Cancer cells
control F-actin filaments at the leading edge to form various protrusion processes, e.g.,
lamellipodia, filopodia, and invadopodia [24]. Various actin-related proteins (e.g., Arp2/3,
WASP/WAVE, fascin, and tropomyosins) are involved in the formation of these protru-
sions in a complex manner [25–27]. For instance, cortactin (CTTN) has multiple binding
domains that can bind several proteins, e.g., Arp2/3 complex, F-actin, WASL, WIPE-1, and
Src [28]. Overexpression of CTTN was reported by several cancers, including OSCC, and
its expression enhanced cancer cell aggressiveness in OSCC [29,30]. Moreover, aberrant
expression of CNNT significantly predicted the HNSCC prognosis [31].

Coronins are actin-binding proteins containing WD repeats that are evolutionarily
conserved from invertebrates to vertebrates [13]. In humans, the coronin family com-
prises at least seven genes [14]. Among these, CORO1C contributes to invadopodium
formation via the F-actin and Arp2/3 complex [32]. Overexpression of CORO1C has been
reported in various solid tumors, including glioblastoma, hepatocellular, breast, lung,
gastric, and colorectal cancers [32–37]. In colorectal cancer, high expression of CORO1C
is associated with malignant phenotypes, such as lymph node and distant metastases.
Moreover, the oncogenic PI3K/AKT signaling pathway was suppressed by the knockdown
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of CORO1C [38]. In gastric cancer, the knockdown of CORO1C markedly suppressed the
malignant transformation of cancer cells [37].

CORO2A is a component of the nuclear receptor co-repressor complex involved in the
actin-dependent activation of inflammatory response genes [39]. There have not been many
reports on CORO2A expression in human cancers. A previous study showed elevated
expression of CORO2A in colorectal carcinoma tissues, and a link between its expression
and oncogenic MAPK14 and PRMT5 signaling pathways [40]. A recent study showed that
expression of CORO2A was associated with overall survival and relapse-free survival in
patients with triple-negative breast cancer; moreover, knockdown of CORO2A reduced
malignant transformation and induced cell cycle arrest [41]. The results of that study
are consistent with our results in OSCC showing that CORO2A expression is a potential
predictor of OSCC prognosis. Furthermore, controlling CORO2A expression and CORO2A-
mediated oncogenic pathways may provide promising therapeutic strategies for OSCC
treatment. A large number of cohort studies by other institutions are essential for CORO2A
expression to gain clinical significance in OSCC.

In this study, we investigated the molecular mechanisms underlying the aberrant expres-
sion of CORO2A in oral cancer, focusing on miRNAs. A vast number of studies demonstrated
that miRNAs act as fine-tuners of gene expression in a sequence-dependent manner [18,19].
Tumor-suppressive miRNAs are frequently downregulated, whereas their oncogene targets
are upregulated, in cancer cells. A previous analysis of our RNA-sequencing-based miRNA
signature of OSCC revealed that miR-125b-5p and miR-140-5p were downregulated in cancer
tissues [42]. Our present study showed that these miRNAs have tumor-suppressive roles,
and miR-125b-5p and miR-140-5p directly regulate the expression of CORO2A in OSCC cells.

Downregulation and antitumor roles of miR-125b-5p have been reported in several
types of cancers [43–48]. For instance, miR-125b-5p is downregulated in esophageal squa-
mous cell carcinoma, and ectopic expression assays demonstrated that its expression
attenuated cancer cell aggressiveness via regulation of cell cycle regulatory genes and
epithelial–mesenchymal transition (EMT)-related genes [49]. In laryngeal squamous cell
carcinoma cells, ectopic expression of miR-125b-5p blocked glucose consumption by target-
ing hexokinase-2 [46].

Previous studies have reported downregulation of miR-140-5p in several cancer
types [50–54]. In hypopharyngeal squamous cell carcinoma, expression of miR-140-5p
suppressed cancer cell migration and invasion abilities by regulating ADAM10-mediated
Notch1 signaling. Moreover, downregulation of miR-140-5p was associated with tumor
classification and lymph node metastasis [55]. In OSCC cells, overexpression of the long
noncoding RNA HCP5 promoted cancer cell proliferation and EMT by adsorbing miR-140-5p.
Notably, suppression of miR-140-5p expression alleviated repression of SOX4, a master
regulator of EMT in OSCC cells [56].

The finding that the antitumor miRNAs miR-125b-5p and miR-140-5p are involved in
the regulation of CORO2A expression in OSCC cells is interesting and new. Detailed func-
tional analyses of CORO2A and its regulated antitumor miRNAs will provide important
information for elucidating the molecular pathogenesis of OSCC.

In this study, we focused on CORO2A among the coronin family and analyzed its
oncogenic functions and epigenetic modification in OSCC cells. For other coronin families
that have not been analyzed in this study (especially, CORO1C, CORO2B, and CORO7
whose expressions are dysregulated in cancer tissues), it is essential to elucidate the molec-
ular pathogenesis of OSCC. Continued analysis of these genes may reveal therapeutic
targets for OSCC.

4. Materials and Methods
4.1. Human OSCC Cell Lines

The six OSCC-derived cell lines (HSC-2, HSC-3, SAS, Sa3, Ca9-22, and HO-1-N-1) and
two human fibroblast lines (IMR-90 and MRC-5) were used in this study (Table S3). These
cell lines were obtained from the RIKEN BioResource Center (Tukuba, Ibaraki, Japan).
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4.2. RNA Extraction and qRT-PCR

RNA was extracted from cell lines and subjected to this study as described previ-
ously [42,57,58]. The TaqMan probes and primers used in this study are listed in Table S4.

4.3. Transfection of siRNAs and miRNAs into HNSCC Cells

Transfection of siRNAs and miRNAs into OSCC cell lines was performed using
Lipofectamine RNAiMAX reagent (Invitrogen, Carlsbad, CA, USA) according to our
previous studies [42,57,58]. The reagents used in this study are listed in Table S4.

4.4. Functional Assays (Cell Proliferation, Migration, and Invasion Assays) in HNSCC Cells

The XTT assay for cell proliferation and the Matrigel chamber assay for the invasion
were performed in OSCC cells as described previously [42,57,58]. In the wound healing
assay for migration, a wound was created using a micropipette tip in the middle of each
plate after siRNA or pre-miRNAs transfection 48 h. We incubated plates at 37 ◦C at 5%
carbon dioxide with a free-serum medium, and live-cell migration was captured after 12
and 24 h.

4.5. Clinical Significance of CORO2A in OSCC Patients Based on TCGA-HNSC Data

Gene expression analysis for each gene were obtained from OncoLnc (http://www.
oncolnc.org, accessed on 20 April 2021) [59]. For the Kaplan–Meier plot, log-rank test,
and Cox proportional hazards regression test, we used TCGA-HNSC clinical data (TCGA,
Firehose Legacy) obtained from cBioportal (https://www.cbioportal.org, accessed on
10 April 2020). Among TCGA-HNSC, those whose primary site was in the oral cavity
(alveolar ridge, buccal mucosa, floor of mouth, hard palate, lip, and oral tongue) were
narrowed down as TCGA-OSCC. The clinical features of TCGA-OSCC (n = 343) was shown
in Table S5. In multivariate analysis, gene expression levels, tumor stage, pathological
grade, and age at diagnosis were used as covariates.

For these analyses, we used JMP Pro 15.0.0 (SAS Institute Inc., Cary, NC, USA).

4.6. Identification of CORO2A Expression Controlled miRNAs

The strategy used to identify CORO2A target miRNAs is presented in Figure 7. We
selected putative miRNA target sites within the CORO2A sequence using TargetScanHu-
man ver. 7.2 (http://www.targetscan.org/vert_72/, accessed on 10 July 2020) [60]. The
expression signature of OSCC miRNA was used for screening. Our OSCC miRNA signa-
ture was deposited in the GEO database (accession number: GSE184991). Clinical features
of 3 OSCC cases used for miRNA sequence were summarized in Table S6.

4.7. Western Blotting and Immunohistochemistry

The procedure of Western blotting and immunohistochemistry were described as
previously [42,57,58]. The antibodies used in this study are shown in Table S4. Full blots of
the membrane are shown in Figures S7–S10

4.8. Clinical Specimens

The clinical information of the patients using immunostaining are shown in Table
S2. Our study has been approved by the Ethics Committee of Chiba University (approval
number; 28–65, 10 February 2015). The research methodology is implemented in accordance
with the standards set by the Declaration of Helsinki.

4.9. Plasmid Construction and Dual-Luciferase Reporter Assays

Plasmid vectors containing CORO2A with the wild-type sequences of the miRNAs
(miR-125b-5p and miR-140-5p) binding sites in the 3′-UTR and without those sequences were
prepared. We have described the methods for transfection and dual-luciferase reporter
assays in our previous studies [42,57,58]. The reagents used in this study are listed in
Table S4.

http://www.oncolnc.org
http://www.oncolnc.org
https://www.cbioportal.org
http://www.targetscan.org/vert_72/
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4.10. Statistical Analysis

We performed statistical analyses using JMP Pro 15 (SAS Institute Inc., Cary, NC,
USA). Differences between the two groups were evaluated using Welch’s t-test. Dunnett’s
test was used for multiple group comparisons. A p-value less than 0.05 was considered
statistically significant.

5. Conclusions

This large cohort analysis revealed that high expression of CORO2A in OSCC clinical
tissues is highly predictive of a worse prognosis in OSCC patients. The knockdown assays
suggested that the expression of CORO2A facilitates cancer cell malignant transformation,
e.g., cell proliferation, migration, and invasion. Tumor-suppressive miR-125-5p and miR-
140-5p directly regulate CORO2A expression in OSCC cells. CORO2A- and CORO2A-
mediated oncogenic signaling pathways may provide novel information regarding OSCC
molecular pathogenesis.
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