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Taking the time for our bodies: How wearables
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Consumer wearables, such as smart watches, are a promising tool for monitoring circadian health in ‘‘real
world’’ settings. Bowman et al. demonstrate that circadian signals can be accurately captured through heart
rate data obtained from wearables, opening up new possibilities for population-level studies on heart rate
and circadian rhythm.
Circadian rhythm is the cyclical change in

behavior and/or physiology established

through a combination of an internal clock

and external stimuli, with a period of

approximately 24 h (Vitaterna et al.,

2001). Circadian rhythm disruptions are

associated with various diseases such

as dementia, diabetes, depression, and

sleep disorders. Therefore, developing

accurate and scalable methods to mea-

sure circadian rhythm is a critical step

for developing improved monitoring and

intervention methods. The current gold

standard method of monitoring circadian

rhythm is through repeated measures of

biomarkers such as melatonin levels,

core body temperature, and rest-activity

cycles (Reid, 2019). However, these mea-

surements can be inconvenient, cumber-

some, and sometimes invasive, making

them impractical in a real-world scenario.

For that reason, researchers have been

exploring alternatives that can reliably

track circadian rhythm by using unobtru-

sive sensing modalities that include actig-

raphy, wrist temperature, light exposure,

and heart rate (Madrid-Navarro et al.,

2018; Reid, 2019).

The rapid adoption of wearables in

recent times, with 21% of people in the

US owning smartwatches (Vogel 2020),

provides an opportunity to monitor physi-

ological and activity characteristics of an

individual continuously and in real-world

scenarios. Utilizing wearables to measure

and track aspects of health and wellness

(e.g., heart rate, steps, sleep duration,

etc.) has gained popularity and attention

among healthcare researchers because

of the unobtrusiveness, convenience,
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and low-cost nature of these devices, as

well as the ability to collect large datasets

longitudinally outside of a clinical setting.

Despite such potential, new challenges

have arisen surrounding the analysis of

these large and often noisy datasets,

particularly because wearable devices

and their corresponding software and al-

gorithms often lack interpretability and

generalizability. One overarching chal-

lenge to interpretability is uncovering and

addressing confounding variables. As an

example, we and others have demon-

strated that the accuracy of some sensors

and algorithms are affected by variables

including race/ethnicity (Bent et al., 2020;

Sjoding et al., 2020), physiological condi-

tion (Dunn et al., 2021; Shcherbina et al.,

2017), and behavioral patterns like work

and sleep schedules (Erickson et al.,

2021; Marino et al., 2013). Another over-

arching challenge is the generalizability,

or extensibility of the technology to new

settings because of differences in the

technology’s development and validation

phase as compared with its real-world

deployment, which can result in lower ac-

curacy in the deployment phase of the

models. For example, sleep detection al-

gorithms developed by using data from

people with typical sleep habits fail to

generalize in a real-world deployment on

shift workers (Erickson et al., 2021;Marino

et al., 2013) as well as individuals with

certain physiologic or pathophysiological

conditions (pregnancy, sleep apnea,

etc.). For these reasons, substantial

research is needed to ensure that the im-

plementation of wearables to monitor

health is interpretable and generalizable.
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Reporting in a recent issue of Cell

Reports Methods, work from Dr. Daniel

Forger and colleagues at the University

of Michigan acknowledges these chal-

lenges by focusing on the interpretable

and generalizable application of wear-

ables to monitor daily physiology in real-

world settings (Bowman et al., 2021). In

particular, the authors investigated how

accurately we can track circadian

rhythms of heart rate (CRHR) by using

ambulatory wearable data in the daily

environment of shift-workers (i.e., medi-

cal interns). They developed a statistical

method to extract key physiological pa-

rameters from wearable data, including

basal heart rate, the amplitude of CRHR,

and circadian phase. They purposefully

investigated the effects of possible con-

founders of heart rate such as the direct

effects of activity and the effects of meals,

posture, and stress on heart rate to under-

stand howwe should interpret CRHR esti-

mated from wearables. The team tested

their models in estimating and tracking

these parameters in a real-world deploy-

ment from a wearable dataset consisting

of over 130,000 days of wearable heart

rate and activity data from more than

900 medical interns. They were able to

identify both the underlying CRHR and

processes accounting for short-term dy-

namics in heart rate, again including

posture, meals, stress, and other external

factors. The method was implemented

in real-time in the ‘‘Social Rhythms’’

iPhone and Android apps, which anony-

mously collects data from wearable users

and provides analysis based on their

method.
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The findings demonstrate that CRHR

can be passively assessed by using heart

rate and activity measurements from

common wearable devices in real-world

settings. This approach is inherently scal-

able and will therefore enable future pop-

ulation-level studies. Another important

finding is the demonstration that long-

term measurements from wearable data

can be utilized to generate personalized

phase response curves (PRCs) (Khalsa

et al., 2003) of CRHR to activity. Gener-

ating PRCs from wearable data alone is

in notable contrast to the traditional

extensive, costly, and laborious clinical

PRC protocol (Khalsa et al., 2003) and

will provide an opportunity to understand

how activity affects phase shifts in

CRHR on a day-to-day basis in real-world

settings. Importantly, this also opens up

possibilities to understand what is normal

variation (due to activity or circadian

rhythm) and what is abnormal variation

in heart rate, which is a crucial step to

monitoring cardiovascular disease.

This study provides new insights into

the circadian rhythm dynamics that can

be captured by wearables, and addition-

ally highlighted the difference in CRHR

compared with dim light melatonin onset

(DLMO), a gold-standard biomarker of

the circadian rhythm. These differences

are physiologically expected, given that

CRHR and DLMO are known to originate

from two distinct places in the body

(D’Souza et al., 2021). The authors have

demonstrated that CRHR dynamics are

distinct from those of sleep-wake or phys-

ical activity patterns because of rotating

shifts and that they vary greatly among in-

dividuals. They also showed that activity

has a longer-lasting effect on CRHR as

compared with that of DLMO. The phase

and amplitude of the CRHR found here

closely match with previous studies

involving a constant routine protocol

(Vandewalle et al., 2007).

Although the approach is promising,

there are a few limitations that must be

addressed before this methodology can

be translated into a general solution to

monitor CRHR in real-world scenarios.

The study demographic is skewed in

terms of age, considering that the study

cohort consists of medical interns only.

Future studies should investigate whether

similar methods work in other age groups,
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in populations with specific physiological

conditions (e.g., pregnancy), and in per-

sons with other occupations that can

disrupt the sleep-wake cycle and are

associated with disease incidence (e.g.,

police, firefighters, etc.) (Rivera et al.,

2020). Another limitation here is the exclu-

sion of sleep data to avoid the effect of

sleep on heart rate as a potential con-

founding variable to circadian rhythm.

This choice is reasonable but misses

some potentially interesting and signifi-

cant analyses and discoveries surround-

ing sleep and CRHR. Moreover, sleep/

wake labels from consumer devices are

often inaccurate (Chinoy et al., 2021),

particularly in the context of non-standard

sleep timing (as is the case for medical in-

terns), and this muddles the reliability of

the sleep phases and sleep midpoints

used in this study.

Regardless of these limitations, it is

conceivable that the adoption and

implementation of consumer wearables

to monitor health will continue to grow,

and the work from Bowman et al. (2021)

successfully addresses many urgent

needs for further development in this field.

In this context, efforts are needed both

from researchers and industry to establish

the field of wearables in monitoring daily

physiology with interpretable and gener-

alizable algorithms.
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